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Abstract
A complex molecular machinery converges on the surface of lysosomes to
ensure that the growth-promoting signaling mediated by mechanistic target
of rapamycin complex 1 (mTORC1) is tightly controlled by the availability of
nutrients and growth factors. The final step in this activation process is
dependent on Rheb, a small GTPase that binds to mTOR and allosterically
activates its kinase activity. Here we review the mechanisms that determine
the subcellular localization of Rheb (and the closely related RhebL1 protein)
as well as the significance of these mechanisms for controlling mTORC1
activation. In particular, we explore how the relatively weak membrane
interactions conferred by C-terminal farnesylation are critical for the ability
of Rheb to activate mTORC1. In addition to supporting transient membrane
interactions, Rheb C-terminal farnesylation also supports an interaction
between Rheb and the δ subunit of phosphodiesterase 6 (PDEδ). This
interaction provides a potential mechanism for targeting Rheb to
membranes that contain Arl2, a small GTPase that triggers the release of
prenylated proteins from PDEδ. The minimal membrane targeting conferred
by C-terminal farnesylation of Rheb and RhebL1 distinguishes them from
other members of the Ras superfamily that possess additional membrane
interaction motifs that work with farnesylation for enrichment on the specific
subcellular membranes where they engage key effectors. Finally, we
highlight diversity in Rheb membrane targeting mechanisms as well as the
potential for alternative mTORC1 activation mechanisms across species.
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Introduction
The growth of cells is closely matched to changes in the  
availability of nutrients through a complex set of sensing and 
signaling mechanisms that regulate the kinase activity of the  
mechanistic target of rapamycin complex 1 (mTORC1). When 
nutrients are abundant, activation of mTORC1 results in the  
phosphorylation of numerous downstream targets to enhance 
anabolic processes such as nucleotide synthesis and protein  
translation and suppress catabolic processes such as autophagy 
and lysosome biogenesis. In many metazoan organisms, growth  
factor availability is also integrated into the activation of  
mTORC1 via regulation of the nucleotide-binding state of 
Ras homolog enriched in brain (Rheb), a small GTPase that  
binds to and allosterically activates the mTOR kinase when it  
is part of mTORC11,2.

mTOR is a large (289 kDa) kinase that is a critical  
component of two complexes: mTORC1 and mTORC2. In this 
review, we focus on mTORC1, which contains mTOR as well 
as regulatory subunits including LST8 and Raptor that help with  
scaffolding, subcellular targeting, and substrate recognition3–7.  
Of note, Raptor plays a critical role in targeting mTORC1 
to the surface of lysosomes via its interactions with the  
heterodimeric Rag GTPases8,9. The functionally distinct 
mTORC2 is made up of mTOR and LST8, along with a  
different set of interacting proteins, and does not require Rheb  
for its activation5,10,11.

The cytoplasmic surface of lysosomes is the major site within 
cells where mTORC1 activation occurs8,9. mTORC1 activation 
is highly regulated and dependent on the convergence and inte-
gration of multiple signals relaying growth factor and nutrient 
availability to ensure that the cell growth-promoting activity 
of mTORC1 is matched to ongoing changes in environmental  
status8,12–18. GTP-bound Rheb subsequently binds and activates 
mTORC1. This model requires mechanisms to regulate the  
abundance and nucleotide state of both Rag and Rheb GTPases 
on the surface of lysosomes. However, in contrast to the Rags,  
which are enriched on lysosomes via their interactions with 
the lysosome-localized Ragulator complex8,9,18,19, there has 
long been a mismatch between the widespread belief that Rheb  
abundantly resides on the surface of lysosomes and minimal 
direct evidence to support such a localization. This review  
highlights evidence that reconciles differences between Rheb 
steady-state localization and function via a model wherein  
transient interactions of Rheb with lysosomal membranes support 
mTORC1 activation (Figure 1).

Rheb is a critical link between growth factor receptor 
signaling and mTORC1 activation
Rheb was originally identified as a gene whose expression was 
upregulated by multiple stimuli that increased neuronal activity 
in the rat brain20. Although it was discovered in this neuronal  
context, the broad expression pattern of Rheb suggested  
functions with relevance beyond the adaptive response of  
neurons to changes in activity20. Indeed, a major role for  
Rheb in the regulation of cell growth was subsequently revealed 
by genetic studies in Drosophila, which identified a critical 

Figure 1. Dynamic interactions of Rheb with lysosomal 
membranes support the activation of mTORC1 signaling. 
In this model, farnesylation of Rheb is a major determinant of 
Rheb subcellular localization. The weak membrane association 
conferred by farnesylation means that steady-state levels of Rheb 
on lysosomes are low and influenced by additional factors such as 
sequestration in the cytoplasm by PDEδ and Arl2-dependent release 
on target membranes. In contrast to Rheb, the Rag GTPases are 
enriched on lysosomal membranes through interactions with the 
pentameric Ragulator complex whose LAMTOR1/p18 subunit is  
both myristoylated and palmitoylated on an N-terminal glycine 
with two adjacent cysteines21. Although each of these cysteines 
represent putative sites of palmitoylation, it remains to be formally 
established whether they are simultaneously palmitoylated. 
Furthermore, it was recently reported that LAMTOR1/p18 
palmitoylation can be regulated in response to changes in amino acid  
availability22. Although simplified in this schematic diagram, 
mTORC1 is a dimer and can thus potentially engage a total of 
six GTPases on the surface of lysosomes (two Rag heterodimers 
that can be made up of different pairwise combinations of RagA 
or RagB with RagC or RagD plus two Rheb/RhebL1)1,23. mTORC1, 
mammalian target of rapamycin complex 1; PDEδ, δ subunit of  
phosphodiesterase 6; Rheb, Ras homolog enriched in brain.

role for Rheb in promoting protein translation by activating  
mTORC1 signaling24–27. It was demonstrated that this function 
of Rheb is inhibited by the tuberous sclerosis complex (TSC), 
which acts as a GTPase-activating protein (GAP) for Rheb and  
thereby suppresses the ability of Rheb to activate mTORC1 
by converting Rheb from the GTP- to GDP-bound state25,28–32. 
Growth factor signaling promotes Rheb-dependent activation of  
mTORC1 via AKT-dependent phosphorylation of the TSC2  
subunit of TSC, which creates a 14–3–3 binding site on TSC2 and 
results in the sequestration of TSC2 away from lysosomes33–40.  
Loss-of-function mutations in the human TSC1 and TSC2 genes 
cause tuberous sclerosis, a disease characterized by mTORC1 
hyperactivation and a variable constellation of distinct tumors 
as well as seizures and psychiatric disabilities41. Rheb has  
also been broadly implicated in a wide range of diseases 
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including cancer, diabetes, aging, neurodegeneration, epilepsy, 
and autism, where excessive mTORC1 signaling plays a role18,42. 
The importance of mTORC1 over-activation in multiple disease  
states has motivated the development of pharmacological  
strategies for Rheb inhibition43.

Interestingly, given the abundant evidence demonstrating that 
regulating Rheb activity is critical in both health and disease, no  
guanine nucleotide exchange factor (GEF) has been identified 
for Rheb. Although translationally controlled tumor protein  
(TCTP) was proposed to act as a Rheb GEF, this conclu-
sion was subsequently challenged44–46. The ubiquitin E3 ligase 
known as PAM was also proposed to be a Rheb GEF, but there 
have not been follow-up studies to substantiate that this is  
physiologically relevant47. In the absence of a GEF, it is 
thought that a relatively low nucleotide affinity allows Rheb to  
spontaneously exchange GDP for GTP45,46. The nucleotide state 
of Rheb is thus predicted to reflect the cellular GTP/GDP ratio 
when growth factor-dependent signaling has suppressed the GAP  
activity of TSC. As GTP generally predominates over GDP in 
cells, this results in a predominantly active state for Rheb29,30.  
In this active, GTP-bound state, Rheb can bind to mTORC1 
and trigger long-range conformational changes that result in 
a reorganization and activation of the mTOR kinase domain1.  
Although this allosteric regulation of mTORC1 by Rheb is 
mediated by the GTP-bound state of Rheb, it appears that the  
affinity of the interaction between Rheb and mTORC1 is weak 
and/or transient such that the endogenous complex between  
Rheb and mTORC1 cannot readily be isolated from cells by  
conventional affinity purification methods30,48. Rheb thus  
differs from closely related small GTPases such as Ras proteins 
that bind to effectors such as Raf with high affinity49,50. Looking  
to the future, there is still a need to elucidate how mTOR  
conformational changes that are induced by Rheb are either 
maintained or terminated and how such steps contribute to the  
regulation of mTORC1 signaling.

Rheb and RhebL1 function redundantly in the 
activation of mTORC1
In addition to Rheb, whose role in mTORC1 activation is well-
characterized, mammalian genomes also contain a gene for a  
related GTPase called Rheb-like 1 (RhebL1, also known as  
Rheb2) that shares only ~52% amino acid identity with Rheb 
but is also able to activate mTORC1 when over-expressed51,52.  
Although their redundant ability to activate mTORC1 signaling 
has long been established by over-expression approaches,  
considerably less attention has been paid to physiological roles 
of RhebL1 and most studies have simply referred to Rheb as the 
activator of mTORC1. However, even though Rheb knockout  
(KO) mice have an embryonic lethal phenotype and exhibit  
defects in the activation of mTORC1, embryonic fibroblasts  
from these mice still grew in culture53–55. These cells main-
tained a basal level of mTORC1 activation but were markedly  
deficient in acutely re-activating mTORC1 signaling when  
starved and then stimulated with growth factors53,54. Likewise, 
the conditional KO of Rheb reduced but did not eliminate  
mTORC1 signaling in the mouse brain56. The presence of  
even some limited mTORC1 signaling following Rheb depletion 
suggested either that there might be a novel way to activate 

mTORC1 that was distinct from the Rheb-dependent mecha-
nism or that RhebL1 was able to fulfill this function. Unambigu-
ously establishing a requirement for Rheb in activating mTORC1 
was complicated by the essential role for mTORC1 signaling 
in promoting cell growth, which precluded the possibility of  
generating and maintaining animals or cells that completely lack 
such activity. However, the combined use of CRISPR-based  
mutagenesis and siRNA-mediated depletion was recently used to 
achieve highly efficient but transient depletion of both Rheb and 
RhebL1 in human cells57. This dual strategy to acutely deplete 
both Rheb and RhebL1 was required to fully inhibit mTORC1  
signaling, and re-expression of either Rheb or RhebL1 restored 
mTORC1 signaling in the double depleted cells. These  
observations established that Rheb and RhebL1 can independ-
ently activate mTORC1 in human cells. This conclusion is further  
supported by in vitro assays where Rheb and RhebL1 were each 
able to activate mTORC158.

Rheb farnesylation is essential for mTORC1 
activation
The coincidence detection model whereby nutrient and growth 
factor-dependent signaling are integrated on the surface of  
lysosomes by Rags and Rheb to support mTORC1 activation 
requires a mechanism for targeting Rheb to lysosomes. Human 
Rheb is a relatively simple protein that consists of just 184 amino 
acids that encode a GTPase domain within the first 169 amino 
acids followed by a short alpha helical linker known as the hyper-
variable region and finishing with the sequence CSVM, which 
conforms to the CaaX motif that is a signal for farnesylation  
(Figure 2)20,50,59. Farnesylation of the Rheb C-terminal CaaX 
motif is part of a multi-step process of post-translational  
modification (Figure 2). Following addition of the 15-carbon 
isoprenyl-based farnesyl group by the cytoplasmic farnesyl  
transferase on the cysteine within the CaaX motif of Rheb, 
the Rheb C-terminus is further processed at the endoplasmic  
reticulum by Ras-converting enzyme 1 (RCE1), which removes 
the final three C-terminal amino acids, and isoprenylcysteine 
carboxyl methyltransferase (ICMT), which methylates the  
C-terminus60–62. These modifications, which are shared by other 
proteins that contain a CaaX motif, are predicted to enhance 
the hydrophobicity and thus membrane binding of the Rheb  
C-terminus63,64.

Even though farnesylation is not required for the ability of  
Rheb to activate mTORC1 signaling in vitro, Rheb mutants 
lacking the CaaX motif cannot activate mTORC1 signaling in  
cells31,57,65. This is thought to reflect a critical role for farnesyla-
tion in controlling the subcellular localization of Rheb. How-
ever, farnesylation and associated C-terminal modifications are  
expected to support only weak and therefore transient membrane 
binding of Rheb63,64,66. This weak membrane interaction that  
lacks specificity for a particular organelle is seemingly at odds 
with models that imply an enrichment of Rheb at the surface  
of lysosomes for the purpose of mTORC1 activation.

Rheb is most prominently enriched on the 
endoplasmic reticulum
Although a broadly accepted model for mTORC1 activation is 
centered on lysosomes14,15,18,67, early localization studies based 
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Figure 2. Rheb maturation takes place through a series of 
modifications to the C-terminal CaaX motif. Human Rheb is 
translated as a 184-amino-acid protein. The first 169 amino acids 
contain the GTPase domain (blue). This is followed by a short 
linker (green) that is sometimes referred to as the hypervariable 
region. The last four amino acids fit the consensus for a CaaX motif 
(cysteine followed by two aliphatic amino acids and with flexibility in 
the final position). This CaaX motif is subsequently farnesylated on 
the cysteine followed by trimming of the final three amino acids by 
the ER-localized Ras converting enzyme 1 (RCE1) and methylation 
of the newly exposed carboxyl group by isoprenylcysteine carboxyl 
methyltransferase (ICMT, also at the endoplasmic reticulum). Rheb, 
Ras homolog enriched in brain.

on Rheb over-expression yielded evidence of farnesylation- 
dependent localization of Rheb to poorly defined “endomem-
branes” and/or to the endoplasmic reticulum and Golgi rather  
than a distinct enrichment on lysosomes60,61,65. It was possible 
that the lack of distinct lysosome localization for Rheb in these  
studies reflected an artifact of the over-expression of tagged 
Rheb proteins or a limitation of the imaging resolution. Indeed,  
another study which used immunofluorescence confocal micro-
scopy with a Rheb antibody to localize the endogenous Rheb 
protein reported Rheb enrichment on lysosomes but still lacked 
the resolution to optimally resolve individual lysosomes37. 
However, a more recent study which used the same anti-Rheb 
antibody and which had improved resolution of lysosome  
morphology instead found that endogenously expressed Rheb 
predominantly localized to the endoplasmic reticulum rather  
than to lysosomes57. As both studies employed robust controls 
for establishing antibody specificity, resolution differences in  
these microscopy studies could potentially explain the differing 
conclusions regarding the presence or absence of lysosome  

enrichment for Rheb, as the extensive contacts between endo-
plasmic reticulum and lysosomes raise challenges for distin-
guishing between these organelles in the crowded perinuclear 
region of cells. As an alternative approach to defining the key  
determinants of Rheb localization and function, mutagenesis of 
putative targeting motifs within the Rheb C-terminus revealed 
that although farnesylation is essential for Rheb-dependent  
mTORC1 activation, sequences within the immediately upstream 
hypervariable region were not conserved between Rheb and  
RhebL1 and could even be replaced by an unrelated sequence 
derived from H-Ras57. In contrast, the last 15 amino acids of 
Rheb were previously reported to act as a lysosome-targeting 
signal that could be transplanted to other proteins in the  
mTORC1 pathway8. However, these seemingly disparate inter-
pretations of the role played by the Rheb C-terminus in con-
trolling Rheb localization and function can be resolved by a  
model wherein weak membrane interactions mediated by 
the farnesylated C-terminus allow Rheb to transiently visit  
lysosomes and thus increase opportunities for encountering 
mTORC1 that has been recruited there by interactions with the 
Rags. Such encounters could be achieved without requiring  
significant enrichment of Rheb at lysosomes. One study pro-
posed a role for microspherule protein 1 (MCRS1) in recruiting 
Rheb to lysosomes68. However, this conclusion has yet to be  
independently corroborated. In addition, mechanisms have not 
been defined for the proposed regulated interactions between  
MCRS1 and Rheb or for MCRS1 interactions with lysosomes. 
Although it has been challenging to visualize Rheb enrichment 
on lysosomes in human cell lines, it was very recently reported 
that the Caenorhabditis elegans RHEB-1 protein exhibits such  
localization69. This new observation raises questions about the 
mechanisms that target Rheb to lysosomes in this organism 
and how they might be regulated for the control of mTORC1  
signaling in this organism, which lacks TSC.

The functional significance, if any, of the localization of  
Rheb to the endoplasmic reticulum remains unknown. It has 
been proposed that endoplasmic reticulum-localized Rheb  
activates mTORC1 on lysosomes via contact sites between these  
organelles70. However, constitutive anchoring of Rheb on the  
endoplasmic reticulum via a transmembrane domain did not  
restore mTORC1 signaling when introduced into Rheb+RhebL1-
depleted cells57. Endoplasmic reticulum localization of Rheb  
might not be of fundamental functional importance but may 
instead simply match expectations for a farnesylated protein 
that lacks other major determinants of subcellular targeting. 
This is supported by observations that farnesylation of green  
fluorescent protein (GFP) via the addition of a CaaX motif 
to its C-terminus also results in endoplasmic reticulum  
localization71. Even though evidence is lacking for a model  
wherein endoplasmic reticulum-localized Rheb reaches across 
contact sites to activate mTORC1 on lysosomes, such contact 
sites were recently shown to influence mTORC1 signaling via  
oxysterol-binding protein (OSBP)-mediated cholesterol transport 
from the endoplasmic reticulum to lysosomes and are thus  
of relevance for mTORC1 signaling72. It was also proposed  
that Golgi-localized Rheb activates mTORC1 on lysosomes via 
interactions that occur across Golgi–lysosome contact sites73. 
However, these conclusions were based on the analysis of an  
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over-expressed chimeric protein that artificially targeted Rheb 
to the Golgi, and it remains to be established that mTORC1  
activation by the endogenous Rheb or RhebL1 proteins is  
dependent on sites of Golgi–lysosome contact.

The importance of fine-tuned Rheb subcellular targeting  
mechanisms for mTORC1 activation is highlighted by observa-
tions that mTORC1 signaling becomes insensitive to nutrient  
inputs when cells over-express Rheb51,65. This presumably reflects 
the fact that when Rheb levels are very high, mTORC1 activa-
tion no longer requires the highly regulated mechanisms that 
are normally required to facilitate encounters between Rheb and  
mTORC1 on the surface of lysosomes.

Comparison of membrane targeting mechanisms 
between Rheb and other Ras family members
Comparison of Rheb with other members of the Ras family  
reveals important differences in their membrane interaction 
and subcellular localization mechanisms. Like Rheb, H-Ras 
and K-Ras-4B are small GTPases whose protein sequences  
comprise the GTPase domain, a short linker, and the C-terminal 
CaaX motif. Nonetheless, both of these proteins are highly 
enriched at the plasma membrane74,75. This is because of  
conserved sequences in the hypervariable domains of H-Ras 
(palmitoylated cysteines) and K-Ras-4B (polybasic region) 
which cooperate with farnesylation to target these proteins to 
the plasma membrane. Meanwhile, the hypervariable region 
of human Rheb does not contain any known motifs to confer 
further specificity or affinity for interactions with specific  
intracellular membranes. Thus, even though evolution has  
selected for simple additional mechanisms for targeting other  
members of the human Ras superfamily to specific subcellular 
membranes, Rheb does not harbor additional targeting signals 
that lead it to be enriched on lysosomes. The fact that evolution  
did not select for additional membrane-targeting signals in 
Rheb suggests that weak farnesylation-dependent membrane  
interactions represent a sufficient strategy for Rheb-dependent 
mTORC1 activation.

Support for a lysosome-localized function for Rheb
Even though high-resolution visualization of Rheb enrichment 
on the surface of lysosomes in mammalian cells has been chal-
lenging to achieve and there is no defined lysosome-targeting 
motif within Rheb, there are still several strong arguments  
that support a lysosome-localized function for Rheb in the  
activation of mTORC1 signaling.

First, it is well established that mTORC1 recruitment to lysosomes 
via highly regulated interactions between Raptor and the Rag 
GTPases is a critical determinant of mTORC1 activation9,18,76,77. It 
is also clear that Rheb and RhebL1 function redundantly and are 
essential for mTORC1 activation in human cells57. If mTORC1 
is activated at lysosomes and requires Rheb/RhebL1 for this  
activation, then it follows that Rheb/RhebL1 should at least visit 
lysosomes transiently to fulfil such a function.

Second, the TSC accumulates on the cytoplasmic surface of lys-
osomes in response to cell stress and nutrient deprivation37,78–80. 

The presence of this GAP for Rheb on lysosomes argues that 
lysosomes are central to Rheb regulation. This conclusion is  
further supported by the observation that constitutive targeting of 
TSC to lysosomes suppressed mTORC1 signaling37.

Third, the Rheb gene is broadly conserved across diverse  
branches of the eukaryotic family tree. However, the CaaX 
motif that supports Rheb C-terminal farnesylation is not  
uniformly present81. Instead, Euglenozoa have a Rheb that lacks 
C-terminal farnesylation and is instead predicted to interact with 
membranes via an N-terminal FYVE domain. Although this  
FYVE domain has not yet been well-characterized, FYVE 
domains are best known for their ability to bind to phosphatidyl- 
3-phosphate (PI3P) and thus recruit proteins that harbor them 
to endolysosomal membranes that are enriched in this lipid82,83.  
The presence of a FYVE domain in the Euglenozoa Rheb is 
thus suggestive of a function in the endolysosomal pathway.  
Likewise, the Rheb C-terminal CaaX motif in Cryptista is  
accompanied by an N-terminal PX domain, another protein  
module that confers weak PI3P interactions81. These putative  
PI3P interaction mechanisms for Rheb proteins point to the  
importance of weak membrane interactions and suggest a  
preference for endolysosomal membranes. Even for human  
Rheb, the requirement for C-terminal farnesylation can be  
overcome by providing another weak mechanism for membrane 
association such as that conferred by N-terminal myristoylation57. 
These studies also indicate that although farnesylation of Rheb 
is essential for its ability to activate mTORC1, the farnesylated 
C-terminus is not directly part of the activation mechanism.  
The lack of a direct requirement for Rheb farnesylation in  
mTORC1 activation was also supported by in vitro assays where 
recombinant Rheb which lacks farnesylation still activated 
mTORC158.

Rheb-independent mechanisms for mTORC1 
activation in budding yeast
Analysis of Rheb protein sequences across diverse organisms 
yields a diversity of putative endo-lysosomal targeting mecha-
nisms. Although it is interesting to interpret this information in 
the context of what is known about human mTORC1 activation,  
additional functions for Rheb and alternative mechanisms for 
mTORC1 activation should also be considered. Phylogenetic  
analyses have predicted that some organisms contain genes 
for mTORC1 subunits (mTOR, Raptor, LST8) and yet lack  
TSC1, TSC2, and/or Rheb84–86. It remains to be determined to 
what extent this reflects limitations in gene annotation versus  
the genuine existence of alternative mechanisms for mTORC1  
activation, as this pathway has not been extensively studied in 
many of the organisms whose sequenced genomes provided  
information for phylogenetic analyses. However, Saccharomyces 
cerevisiae, an exceedingly well-studied model organism, lacks  
both TSC1 and TSC2 genes85–87. Furthermore, in spite of  
considerable literature focused on TORC1 signaling in budding 
yeast, there is currently no published demonstration that the  
Rheb homolog (Rhb1) is required for TORC1 signaling, 
although it has been implicated in the regulation of amino acid  
transporters87. The lack of evidence for Rheb-dependent  
TORC1 activation in S. cerevisiae raises questions about 
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how Rheb-independent TORC1 activation is achieved in this  
organism. Such activation still takes place on the surface of the 
vacuole (yeast lysosome), is regulated by nutrient availability, 
and is dependent on interactions with the Gtr1 and Gtr2 GTPases  
which are homologous to the Rags88. Interestingly, it was  
recently revealed that TORC1 oligomerizes on the surface of 
the vacuole in response to glucose deprivation and that this is  
required for TORC1 inactivation89. It remains to be determined 
whether similar oligomerization-based regulatory mechanisms for 
mTORC1 take place on the surface of mammalian lysosomes.

PDEδ binds Rheb in the cytoplasm
Dynamic interactions between Rheb and lysosomal membranes 
raise questions about factors that regulate its interactions with 
membranes. In contrast to the Rab subfamily of GTPases that 
preferentially bind to GDP dissociation inhibitor (GDI) and are 
thus stabilized in the cytoplasm when in the GDP-bound state, 
Rheb and RhebL1 do not interact with a solubilizing factor 
in a manner that depends on their nucleotide state90. Instead,  
Rheb and RhebL1 (as well as other Ras family members and  
many other prenylated proteins) interact in the cytoplasm with  
phosphodiesterase δ (PDEδ)91–93. PDEδ was named based on 
its discovery as the δ subunit of phosphodiesterase 6, which  
degrades cGMP in rod and cone cells of the retina94. This  
interaction of PDEδ with the farnesylated PDE6 protein was  
later found to be generalizable to other farnesylated proteins  
such as Rheb, other Ras family members, and many other  
proteins that undergo C-terminal prenylation (farnesylation or  
geranylgeranylation)95–97. An explanation for the ability of PDEδ 
to bind to so many structurally distinct proteins whose only  
common feature is C-terminal prenylation came from a crystal 
structure of Rheb in complex with PDEδ, which revealed that 
the interaction is mediated by the insertion of the farnesyl  
group deep within a hydrophobic cavity on PDEδ without 
the need for any major contacts between the rest of the Rheb 
protein and PDEδ (Figure 3). Owing to the minimal contact  
between the protein part of Rheb and PDEδ, this mode of  
interaction is insensitive to the Rheb nucleotide state91. A 
role for PDEδ in the regulation of Rheb function is consistent 
with the inhibition of mTORC1 signaling following treatment  
of cells with deltarasin, a drug that competes with Rheb for  
binding to the hydrophobic pocket of PDEδ57,98. However,  
because of the many prenylated protein partners of PDEδ whose 
function might also be perturbed by deltarasin, multiple factors 
beyond just the disruption of Rheb–PDEδ interactions could  
contribute to the effect of deltarasin on mTORC1 signaling.

The displacement of prenylated proteins such as Rheb from  
PDEδ is stimulated by Arl2, a small GTPase91,99–101. Although a  
comparable ability of Arl3 to promote dissociation of Rheb 
from PDEδ was previously reported91, it now appears that Arl3 
function is most physiologically important at cilia, where it  
promotes the release of myristoylated cargos from another set 
of solubilizing factors known as UNC119a and UNC119b102.  
Meanwhile, the relevance of Arl2 for prenylated protein  
displacement from PDEδ is supported by the observation that 
Arl2 depletion from cells is sufficient to suppress the release of 
K-Ras from PDEδ92. This Arl2-dependent re-targeting mechanism 

Figure 3. Rheb C-terminal farnesylation allows for interactions 
with PDEδ. (A) A structure (3T5G) of the complex formed  
between Rheb (red) and PDEδ (blue) reveals that the interaction 
is largely independent of contacts between the Rheb and 
PDEδ proteins and is instead based on the insertion of the Rheb  
farnesyl group (yellow) deep into a hydrophobic cavity within  
PDEδ91. Additional features include GDP bound to Rheb in gray, 
Mg2+ in green, and water molecules in purple. (B) Schematic  
diagram of the Rheb–PDEδ heterodimer which highlights 
the insertion of the farnesyl group from Rheb deep into the  
hydrophobic cavity at the core of PDEδ. PDEδ, δ subunit of 
phosphodiesterase 6; Rheb, Ras homolog enriched in brain.

is thought to prevent entropic randomization of the distribution 
of prenylated client proteins and was recently suggested to 
play a role in the regulation of Rheb-dependent mTORC1  
activation103. At the moment, relatively few studies have 
investigated the interaction between PDEδ and Rheb, the  
impact of this interaction on Rheb subcellular localization, and 
the overall consequences of PDEδ-dependent mechanisms for  
mTORC1 signaling. Further research is required to define 
how regulation of the interactions between Rheb and PDEδ is  
integrated with the overall control of mTORC1 signaling by 
the rest of the cellular machinery dedicated to sensing and  
responding to changes in nutrient and growth factor avail-
ability. If the importance of PDEδ for mTORC1 signaling is 
solidified by additional studies, then it will become critical to 
answer questions about the identity, regulation, and subcellular  
localization of the Arl2 GEF(s).

Summary
Although Rheb is not highly enriched at lysosomes, multi-
ple lines of evidence coming from studies of the subcellular  
localization of Rheb targets and regulatory proteins, rescue  
assays in Rheb/RhebL1-depleted cells, and phylogenetic  
analyses support a model wherein Rheb transiently visits the 
surface of lysosomes in order to activate mTORC1. In human 
Rheb, the weak membrane interactions that are conferred by  
farnesylation fulfil this role. In contrast to expectations for  
other small GTPases that exhibit more robust enrichment on  
target membranes and well-defined mechanisms for support-
ing such localization, the dynamic membrane-targeting ability  
conferred by Rheb C-terminal farnesylation coupled with weak 
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interactions between mTORC1 and Rheb may be sufficient  
to facilitate the initial encounter with lysosome-localized  
mTORC1 via a reduction of dimensionality but still allow  
activated mTORC1 to leave lysosomes in order to phosphor-
ylate downstream targets elsewhere in the cell. Although much 
has been discovered with respect to mechanisms of Rheb- 
dependent mTORC1 activation, it remains unclear whether Rheb 
must remain bound to mTORC1 in order to maintain the kinase 

activity of TOR and whether additional regulatory mechanisms 
act through Rheb to terminate this signaling.
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