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Massive online data annotation, 
crowdsourcing to generate high 
quality sleep spindle annotations 
from EEG data
Karine Lacourse   1,4✉, Ben Yetton2,4, Sara Mednick   2 & Simon C. Warby   1,3

Spindle event detection is a key component in analyzing human sleep. However, detection of these 
oscillatory patterns by experts is time consuming and costly. Automated detection algorithms are 
cost efficient and reproducible but require robust datasets to be trained and validated. Using the 
MODA (Massive Online Data Annotation) platform, we used crowdsourcing to produce a large open-
source dataset of high quality, human-scored sleep spindles (5342 spindles, from 180 subjects). We 
evaluated the performance of three subtype scorers: “experts, researchers and non-experts”, as well 
as 7 previously published spindle detection algorithms. Our findings show that only two algorithms 
had performance scores similar to human experts. Furthermore, the human scorers agreed on the 
average spindle characteristics (density, duration and amplitude), but there were significant age and 
sex differences (also observed in the set of detected spindles). This study demonstrates how the MODA 
platform can be used to generate a highly valid open source standardized dataset for researchers to 
train, validate and compare automated detectors of biological signals such as the EEG.

Introduction
Sleep spindles are brief 10–16 Hz bursts of brain activity during stage N2 and N3 sleep. They are typically recorded 
from cortical surfaces by electroencephalography (EEG) and are markers of sleep dependent cognition1, early 
indicators of mental disorders2 or brain deterioration due to age3. Spindles follow a characteristic waxing and 
waning profile, and generally last 0.5 to 1.0 seconds in duration. These characteristics are predominately trait-like, 
and remain remarkably stable night after night within an individual, but vary between individuals4. A small but 
consistently observed decrease of the spindle density, amplitude and duration occurs with age5–9. Sex differences 
of spindle activity linked to memory or aging have been reported10–13, where women tend to be less affected by 
aging6,10 resulting a greater spindle activity (peak-to-peak amplitude14 and density4,7) in women than men, par-
ticularly in the elderly. Characteristics of spindles may index the underlying neuroanatomy involved in normal 
brain function, particularly in the processing of learning and memory, and have been related to intelligence15–21.

As well as their relation to biological processes, the detection of spindles is a key component in analyzing 
human sleep, as spindles are used to indicate the transition from stage N1 to N2 sleep during sleep scoring. 
However, detection and quantification of these oscillatory patterns by highly trained experts is time consuming 
and costly. Further, the definition of sleep spindles(A train of distinct waves with frequency 11–16 Hz with a 
duration > = 0.5 seconds, usually maximal in amplitude using central derivations)22 is not entirely precise, and 
experts disagree on variations of sleep spindles. As well, the EEG signal may be obscured by other signal phe-
nomena, thereby limited human detection. Critical for the advancement of sleep science is the development of 
automated feature detection tools. Recent years have highlighted the power of machine learning methods in the 
biosciences to augment expert clinical judgment. For example, cardiologist level arrhythmia detection23, or sei-
zure diagnosis24. Automated methods do not fatigue, are cost efficient, remain consistent, and are readily deploya-
ble. However, previous studies have suggested that there are important differences between human and algorithm 
detected spindles14, leading to conflicting results depending on how spindles were detected25,26. For instance, a 
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significant decrease in sleep spindle density using visual scoring was observed in autism patients27–29, whereas 
an increase or no difference was found using an automated detector30,31. Similarly, in narcolepsy, a decrease of 
spindle density was observed with visual scoring32 but not replicated with an automated algorithm33. While auto-
mated methods show great promise for sleep science, they require large, highly valid datasets, which were not 
previously available. Here we introduce a large, open, highly valid dataset of human sleep spindles collected 
through crowdsourcing.

Crowdsourcing, which has been previously used to collect spindle data14,34,35, involves collating the judg-
ments of a large number of human scorers to reach a high quality “gold standard” consensus. This data collection 
method leverages the “wisdom of the crowd” effect36, where the collective opinion of a group of individuals tends 
to be more accurate than a single expert. Crowdsourcing yields better spindle detection, and captures more gener-
alizable spindle properties than single expert scoring because each scorer contributes only little, thereby reducing 
errors from fatigue and distraction, and we capture a diverse, unbiased opinion on what represents a true spindle, 
which is especially important given the imperfect agreement between experts. The idea of crowdsourcing for sleep 
science was first introduced by Warby et al.14, where segments of stage 2 sleep (from 110 subjects) were viewed by 
a mean of 5 experts and 11 non-expert Mechanical Turk (mturk) Workers. Agreement between experts (average 
individual f1 = 0.67 against gold standard) and the performance of the group consensus of non-experts against 
the gold standard (f1 = 0.67) were high, and non-experts outperformed the automated detectors. Unfortunately, 
due to privacy concerns, the polysomnography dataset used in this study is not openly available to the pub-
lic, greatly restricting its use as a benchmark for algorithm validation. Ray et al.9 independently developed a 
similar paradigm to Warby et al.14 but used the openly available Montreal Archive of Sleep Studies (MASS)37. 
Each segment of EEG (from 15 subjects) was viewed by two experts and a mean of 18 non-expert mturk work-
ers. Agreement between the non-expert consensus and the expert who scored in similar conditions than the 
non-experts was substantial (f1 = 0.81), but a moderate agreement was observed between the only two experts 
who scored MASS (f1 = 0.54), limiting the validity of the expert dataset of spindles. Similarly Zhao et al.35 col-
lected spindles scoring in a crowdsourcing scheme from 5 experts and 168 non-experts (at least 20 non-experts 
per segment) and reported a high agreement between the non-expert and expert consensus (f1 = 0.78), unfortu-
nately the dataset used is not open source. We aimed to build upon the success of these three studies and produce 
a large, open dataset of high quality spindles from both young and old subjects. Using this dataset, we ask: a) 
Can many non-experts match the quality of an expert technician with much lower cost and completion time? 
b) Do experts agree on spindle features, and if so, what are they? c) How do spindle features change across age 
and sex? Further, the conclusions that drive sleep science are often built upon spindles scored by non-technician 
researchers. Therefore, we added a non-PSG-tech “researcher” group, composed of graduate students, postdocs 
and faculty in the sleep science field and compare these to formally trained PSG experts.

To facilitate scoring, we developed a web-based open source online scoring platform, named MODA for 
Massive Online Data Annotation. The MODA platform allowed scorers from around the world to perform the 
spindle-identification tasks wherever and whenever they chose. While, in this study, we have used MODA for 
spindle scoring, it is an adaptable platform that could be easily used for the crowdsourced scoring of any EEG or 
biosignal-based annotation task. In this paper, we described how data was crowdsourced and analyzed. A number 
of Group Consensuses (GCs) were created by aggregating the scoring of many scorers, thereby removing idio-
syncratic noise and increasing validity of the spindle dataset. GCs in this study were compiled from the three dif-
ferent user subtypes independently: PSG technologists (experts; exp), researchers (re) and non-experts (ne). The 
PSG technologists, who are trained and perform spindle scoring regularly as part of their work, are considered the 
experts, and their GC is designated the formal and highest-quality “gold standard” (GS) set of spindles of MODA. 
This GS spindle annotation dataset introduced here is freely available on the Open Science Framework38 and can 
serve as development and testing database for automated spindle detectors including machine learning methods 
to analyze EEG signals. We also evaluated the performance of seven previously published spindle detectors6,34,39–43 
against our MODA GS, breaking down performance by age and sex, and thereby providing independent bench-
marking (since none of these detectors have been optimized on the MODA GS) for sleep science’s most common 
used spindle detectors.

Results
Spindle dataset collection.  Polysomnographic data from 180 subjects was sourced from the Montreal 
Archive of Sleep Studies (MASS)37. The dataset was split into two “phases”, where phase 1 consisted of 100 
younger subjects (mean age of 24.1 years old) and phase 2 consisted of 80 older subjects (mean age of 62.0 years 
old). A subset of N2 stage sleep from the C3 channel was sampled from each subject (see methods for details). 
25 sec epochs of this single channel EEG were presented to expert PSG technologists, researchers, and non-expert 
scorers via a custom web based scoring platform. Users identified the start and stop of candidate spindles, and 
indicated their confidence (high, med, low) for each spindle marked. In total, 47 PSG technologists, 18 research-
ers and 695 non-experts viewed 10,453, 6,636 and 37,467 epochs respectively in Phase 1. Phase 2 was viewed 
by 31 PSG technologists (7,941 epochs viewed). No scorers viewed the whole dataset, and the histogram of the 
number of scorer views per epoch image is shown in Fig. 1. A minimum number of scorers per epoch was crucial 
to compile a reliable gold standard (GS): the median number of scorers per epoch is 5 for the PSG technologists 
(Fig. 1a,b), 4 for researchers (Fig. 1c) and 18 for non-experts (Fig. 1d). More than 95% of all the epochs have been 
seen by at least 3 PSG technologists. Table 1 presents the number of scorers and amount of data scored for each 
user subtype and phase. Almost 100,000 candidate spindles were identified by all scorers combined.

Human group consensus.  The collected scores include many candidate spindles, and some of them showed 
low agreement across scorers (an event scored as a spindle by some can be scored as “not a spindle” by others). To 
create our GS (dataset of the highest quality spindles from the Group Consensus (GC) of experts) we averaged 
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scoring across experts, and kept (by thresholding) only the candidate spindles that exceed a desired minimum 
consensus between experts – termed Group Consensus Threshold (see Methods). The minimum consensus 
defined by the Group Consensus Threshold (GCt) was chosen to maximize the mean individual expert perfor-
mance (see Supplementary Fig. 1 and Table 1) against the leave-one-out GS (the GS in which the evaluated expert 
did not contribute to the spindle scoring). We identified an optimum required consensus GCt between experts of 
0.2 in phase 1 and 0.35 in phase 2. These GCts are similar to what has been previously reported14. The scorers’ per-
formance was evaluated using a “by-event” f1 score (f1), which is the harmonic mean between the precision and 
the recall. Recall is the percentage of gold standard spindles correctly detected by a scorer (true positives divided 
by true positives plus false negatives i.e. completeness), whereas precision is the percentage of a scorer’s spindles 
that are part of the gold standard set (true positives divided by false positives + true positives i.e. exactness). This 
by-event performance depends on how similar the estimated spindle (marked by a scorer or detected by an algo-
rithm) has to be to the GS spindle to be considered as a match (True Positive); the lowest similitude occurs when 
spindles are adjacent (no overlap between spindles) and the strictest similitude occurs when spindles are tempo-
rally aligned with the exact same length (100% overlap). Figure 2 presents the by-event performance of experts 
(as well as researchers, non-experts and algorithms) as a function of the overlap threshold between estimated and 
GS spindles. An overlap threshold of 0.2 (also previously reported14) was the highest threshold that maximized 
performance and was used for further analyses in the current study.

With the GC threshold and overlap threshold chosen, the gold standard consists of 5342 spindles (3338 in 
phase 1, 2004 in phase 2). The properties of these spindles are reported in Table 2. This set of GS annotations is 
freely available on the Open Science Framework38, and the corresponding EEG data can be downloaded from the 
Montreal Archive of Sleep Studies website (http://www.ceams-carsm.ca/mass/). See the Readme document on the 
Open Science Framework38 for details on how to obtain a license to download these data.

Performance of the human group consensus and automated detectors.  A rigorous evaluation of 
spindle results from clinical and academic sleep studies hinges on quantifying the accuracy and biases of the spin-
dle detection method used. Therefore, to inform future work, we evaluate the spindle detection performance of 

Fig. 1  The histogram of the number of scorer views per 25 s epoch image. (a) PSG technologists (Experts) 
who viewed phase 1 (47 technologies, 10,453 epochs). (b) Experts who viewed phase 2 (31 technologists, 7,941 
epochs). (c) Researchers who viewed phase 1 (18 researchers, 6,636 epochs) (d) Non-experts who viewed phase 
1 (695 non-experts, 37,467 epochs).

User subtype PSG technologists Researchers Non-Experts

Phase
Phase 1 
(younger)

Phase 2 
(older)

Phase 1 
(younger)

Phase 1 
(younger)

nEpochs/scorer 10 (4–1600) 193 (20–1169) 99 (1–2018) 11 (1–2020)

nSpindles/scorer 26 (5–6438) 181 (16–1839) 137 (4–2316) 18 (0–3579)

nScorers/epoch 5 (4–7) 5 (1–6) 4 (1–6) 18 (8–47)

% epochs seen >2 100 95.8 54.7 100

total scorers 47 31 18 695

total spindles 17367 9910 7613 63935

total epochs viewed 10453 7941 6636 37467

Table 1.  Number of scorers and data scored for each user subtype and phase. Median number of epochs and 
spindles per scorer (min and max values), the median number of scorers per epoch (min and max values), the 
percentage of epochs seen more than twice, the total number of scorers, spindles and epochs viewed.
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experts, researchers and non-experts. Human detection of spindles is still considered the highest standard; how-
ever, many recent publications have utilized automated methods to save time and cost. Therefore, along with eval-
uating the performance of humans, seven popular and previously published spindle detection algorithms6,34,39–43 
were run on the EEG data (see Methods for details on the algorithms). We compared the by-event performance 
of each automated detector or human group consensus (GCre and GCne) against the GS, and the individual experts 
were evaluated against the leave-one-out GS to avoid reporting bias.

The mean individual expert f1 was higher in phase 1 (0.76) than phase 2 (0.65), suggesting that spindles are 
easier to score in the younger cohort. A mean individual expert f1 of 0.67 has previously been reported14 for a 
cohort similar to our phase 2. The f1 of the GCre and GCne was ~0.8, suggesting that the group consensus performs 
better than individual experts, on average (Figs. 2a, 3d). It is noteworthy that individuals (including individual 
experts, non-experts and researchers) that have very high or low f1 scores tend to be scorers that did not score 
much data (indicated by lighter colored markers in Fig. 3). Scoring a small amount of data and thereby not 
encountering the full variety of epochs could have resulted in artificially high/low individual scores.

Similar to human scores, the f1 of the detectors were slightly reduced in the older cohort compared to the 
younger cohort, except for a943 which remained the same (Fig. 2a,b and Supplementary Table 2). Top perfor-
mance (based on f1 score) on the younger cohort (phase 1) was the GCre followed closely by the GCne. The a742 
detector had the highest f1 in the younger cohort, closely matching performance of the average human expert 
(Figs. 2a, 3d). The highest f1 in the older cohort was reached by a9. Interestingly, a9 was the method most sensitive 
to the overlap threshold, as its performance decreases more rapidly than other methods as the threshold becomes 
more stringent (see methods). Therefore, spindles detected by the a9 algorithm and matching GS spindles are less 
perfectly temporally aligned (i.e. the start/stop and duration of spindles is less accurate) compared to the other 
methods. Detector a9 performance was followed closely by a7. We also evaluated the detectors performance 
against the GCre (see Supplementary Fig. 2a) or the GCne (see Supplementary Fig. 2b). The performance of the 
automated methods remained essentially the same (for more details see Supplementary Table 3).

Automated detectors had their own specific tradeoff between precision (how many detected spindles were 
matching GS spindles) and recall (how many GS spindles were detected), the most balanced algorithms were a4 

Fig. 2  The f1-score-by-event (f1) in function of the overlap threshold. The average individual expert f1 (exp) 
is shown with the ‘o’ black marker and the shaded area which is the standard deviation across experts. The 
Group Consensus (GC) of researchers (GCre) and non-experts (GCne) are shown with the ‘o’ blue and red marker 
respectively. The f1 of the automated detectors (a2-a9) are shown with dash lines. The performance is evaluated 
against the GS, the leave-one-out GS is used for the individual experts. (a) The phase 1 (younger cohort of 
100 subjects). (b) The phase2 (older cohort of 80 subjects). An overlap threshold of 0.2 (dotted vertical line) is 
used for this study, as it is the strictest threshold that does not decrease performance of the detectors. As the 
threshold increases (i.e. spindle events must overlap with a higher percentage of the overall length of a gold 
standard event in order to be a match), the overall performance (f1) decreases.

Feature Younger Older Female Male

Density (spm) 4.2 (2.4) 2.6 (2.2) 4.2 (2.4) 2.8 (2.3)

Duration (s) 0.79 (0.14) 0.75 (0.16) 0.79 (0.14) 0.76 (0.16)

Amplitude (µV) 31 (7) 26 (7) 32 (8) 27 (6)

Table 2.  Spindle characteristics by-subject in the Gold Standard (GS) for younger (phase 1), older (phase 2) 
and male and females separately. The median (and standard deviation) spindle density, duration and amplitude 
across subjects are reported.
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and a7 (Figs. 3a,d and Supplementary Table 2). The highest f1 on the whole cohort (phase 1 & 2, 180 subjects) 
was reached by a7 (0.72 against the GS) which is the same as the average individual expert f1. This performance 
is followed closely by a9 with a f1 = 0.71, a9 showed a higher recall (0.8) but a lower precision (0.65) (Fig. 3d). 
Figure 3(b,c) shows the Precision-Recall plot of the individual re or ne and their GC (GCre and GCne respectively). 
Note that the majority of the individual researchers showed a high precision to the detriment of the recall (i.e. are 
overly conservative when marking spindles), and the resulting GCre is perfectly balanced with a GCt = 0. The per-
formance evaluation of the detectors against the three different human references (GS, GCre, GCne) provided sim-
ilar results (for more information see Supplementary Table 3). The number of spindles, and detailed performance 
metrics (True positives, False positives, False Negatives) for the GS, GCre, GCne and each automated algorithm are 
reported in Supplementary Table 4. The performance (as quantified by the precision, recall and f1-score) of the 
seven tested detectors were essentially the same as reported previously14,34,42,43. Note that the performance of a9 
was slightly more balanced in the original publication43 than in the current study.

Spindle characteristics by-subject as a function of age and sex.  Spindle activity decreases with age, 
and sex differences have also been reported3–13. We evaluated the age group difference between 100 subjects 18–35 
years old and 80 subjects 50–76 years old, and sex difference between the 88 females and 92 males. We tested the 
spindle density measured as spindle per minute (spm), average maximum peak-to-peak amplitude (µV), average 
duration (s) and average dominant oscillation frequency (Hz) by-subject on the spindle dataset included in the 

Fig. 3  Precision-Recall plot of by-event performance of individual scorers, Groups Consensus (GC) and 
detectors. Each black ‘o’ marker represents a scorer; the intensity of the color is scaled according to how many 
epochs each scorer viewed. Automated detectors are labelled from 2 to 9 for a2-a9. The overlap threshold used 
is 0.2. The Group Consensus Threshold (GCt) used to create the Gold Standard (GS) is 0.2 for phase 1 and 0.35 
for phase 2. The performance is evaluated against the GS, except for the individual experts (exp) which are 
evaluated against the leave-one-out GS. (a) The performance of the exp and automated detectors. Phase 1 and 2 
(180 subjects) are used. (b) The performance of the individual researchers (re) and the GC of re (GCre) (shown in 
blue line). GCre is created with a varying GCt from 0 to 1. The younger cohort is used (phase 1, 100 subjects). (c) 
The performance of the individual non-experts (ne) and the GC of ne (GCne) (shown in red line). GCne is created 
with a varying GCt from 0 to 1. The younger cohort is used (phase 1, 100 subjects). (d) The performance of 
individual exp, automated detectors, GCre and GCne. The younger cohort is used (phase 1, 100 subjects).
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GS (see Methods). A 2 × 2 ANOVA showed main effect for age and sex but no interaction on both for spindle 
density (age p = 0.0001 and sex p = 0.001) and average amplitude (age p = 1.5e-6 and sex p = 3e-8). The differ-
ence on the average spindle duration was significant only for age (p = 0.01). No significant effect was found for 
the dominant oscillation frequency of the spindle. Further analyses of the age and sex differences were performed 
with the non-parametric Mann-Whitney test (Fig. 4) since the spindle characteristics distributions were not all 
normally distributed based on the Shapiro-Wilk test. The spindle density in the GS was higher (p = 0.0002), aver-
age duration was longer (p = 0.008) and average amplitude was higher (p = 2e-06) in younger compared to older 
subjects (Fig. 4). The spindle density (p = 0.0008) and the average spindle amplitude (p = 1e-06) in the GS were 
also higher in females compared to males (Fig. 4). Supplementary Tables 2 and 3 contain detailed analysis of each 
detector’s ability to capture the sex and age trends present in the GS.

The average spindle activity reported in the previous crowdsourcing project14 was similar to our phase 2 (older 
cohort) despite a relatively high standard deviation across subjects. Warby et al.14 reported 2.3 ± 2 spm with 
an average duration of 0.75 ± 0.27 s, a maximum peak-to-peak amplitude of 27 ± 11 μV and an oscillation fre-
quency mean of 13.3 ± 1 Hz. We measured a by-subject dominant oscillation frequency of 13.1 ± 0.8 Hz (see 
Supplementary Table 5).

Comparison of detection methods.  When considering which method to use to detect spindles, auto-
mated or otherwise, it is important to understand which spindle properties are best captured by each. To this end, 
we computed the correlation of the spindle density and spindle characteristics between the GS spindles and auto-
matically detected spindles for each algorithm (a2-a9) as well as GCre and GCne. The correlations for the spindle 
density in phase 1 (younger cohort, 100 subjects) are reported in Table 3. For phase 1, the correlation is higher for 
human GC than automated detectors. The GCne is slightly more correlated (r2 = 0.91) than the GCre (r2 = 0.88). 
The correlation for the detectors is low for the spindle density (r2 average across detectors is 0.37) and spindle 
duration (r2 = 0.32), but very high for spindle amplitude (r2 = 0.90) and high for spindle frequency (r2 = 0.69). The 
detectors a7 and a9 performed better than the average of the detectors, especially for the spindle density which 
their r2 were 0.73 and 0.85 respectively. The correlation coefficients for the detectors in phase 2 are reported in 
the Supplementary Table 6. Briefly, the correlation was higher for the spindle density but lower for all the other 
characteristics compared to the phase 1. Again, the detectors a7 and a9 outperformed the other detectors for the 
correlation with the GS spindle density with a r2 = 0.83 and 0.88 respectively.

Fig. 4  Spindle characteristics-by-subject of the Gold Standard (GS) as a function of age and sex. (a) Spindle 
density (spm), (b) Spindle duration (s) and (c) Spindle amplitude (µV) for younger (y; phase 1) and older (o: 
phase 2) subjects, females (f) and males (m). Each dot in the plot represents one subject; darker points indicate 
multiple subjects at the same position. The ‘−‘ marker is the mean, the ‘X’ marker is the median across subjects, 
and the white box shows the mean + −1 × standard deviation. The *markers show significant difference with 
the Mann-Whitney test: “*”p values < = 0.05, “**”p value < = 0.01, and “***”p value < = 0.001.

a2 a3 a4 a5 a7 a8 a9
Auto 
avg GCre GCne

Density spm 0.22 0.31 0.18 0.26 0.73 0.01 0.85 0.37 0.88 0.91

Duration s 0.32 0.31 0.15 0.14 0.45 0.32 0.55 0.32 0.59 0.73

Amplitude µV 0.83 0.90 0.90 0.90 0.92 0.89 0.95 0.90 0.90 0.95

Frequency Hz 0.53 0.69 0.71 0.71 0.7 0.67 0.8 0.69 0.78 0.87

Table 3.  Correlation coefficient r² between Gold Standard from experts (GSexp) and automated detectors  
(a2-a9) or group consensus of researchers (GCre) or non-experts (GCne) for the spindle density, average duration 
and amplitude by-subject. The mean r2 across detectors is also reported (Auto avg). The correlation coefficient 
p-value was significant (<0.05) for each detector or human scoring except for the spindle density of a8. Only the 
phase 1 is shown (younger 100 subjects).
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We compared the spindle characteristics by-subject distribution of each detector (a2-a9) and human group 
consensus (GCre and GCne) to the GS for the whole cohort except for GCre and GCne using a Mann-Whitney test. 
The variance in spindle characteristics was much larger across detectors than across the three human subtypes 
(PSG technologists, researchers and non-experts) (Fig. 5 and Supplementary Table 7). The spindle density of a2 
was much lower (0.9 spm, p = 9e-38) than the GS (3.8 spm), a3 (7 spm, p = 3.6e-25) and a8 (6.9 spm, p = 2.3e-34) 
were much higher than the GS. The average duration was much higher for a2 (1.15 s, p = 1.6e-33) and a9 (1.15 s, 
p = 2e-49) compared to the GS (0.78 s), but a3 (0.56 s, p = 4.7e-43), a4 (0.67 s, p = 1.1e-15) and a5 (0.5 s, p = 1.2e-
48) were much lower. The average amplitude and oscillation frequency were about the same for all the detectors 
except a2 which showed spindles with greater amplitude (43 µV, p = 9.5e-30) than the GS (30 µV). The histogram 
at the cohort level (by-subject analysis) of the dominant oscillation frequency of spindles of the GS spindles or 
any of the automated detectors is unimodal, and does not support the hypothesis of decomposing the spindles 
into fast and slow spindles (Fig. 5d). Note that the slightly higher spindle density, duration and amplitude for the 
re and ne spindle dataset (Fig. 5) are biased due to the fact that only the younger cohort (phase 1) was scored by 
these groups (see Table 2 for the true comparison for the phase 1, “Phase 1 - Younger” column).

How many scorers are needed for crowdsourcing sleep spindle annotations?.  Obtaining quality 
spindle scoring is costly and time consuming; knowing the number of scorers per epoch to achieve reliable results 
is worthwhile and may help to create future GS datasets. We identified that aggregating the scoring from two to 
four experts or researchers per epoch is optimum (Fig. 6a). However, three to ten non-experts were needed for 
similar performance (Fig. 6b). Zhao et al.35 reported the need for at least six non-experts to score spindles in 
N2 sleep stage, but the plateau of the non-experts group consensus performance (f1 < 0.8) was reached around 
10 non-experts. Figure 6 shows the f1-score-by-event of five “partial” GCs, each based on different number of 
scorers. We evaluated these partial GC’s against the GC from another user subtype to avoid positive reporting 
bias. Using the leave-one-out GS was not sufficient since only few epochs include more than five experts per 

Fig. 5  By-subject spindle characteristic distributions of the gold standard (GS), group consensus of researchers 
(re) group consensus of non-experts (ne), and each detector (a2-a9). Each panel refers to a different metric: 
(a) spindle density, (b) average spindle duration, (c) average spindle amplitude, (d) average spindle dominant 
frequency. The dotted horizontal line shows the average of the GS distribution for reference. The whole cohort is 
used (phase 1 & 2, 180 subjects) except for the re and ne where only the younger cohort was scored (phase 1, 100 
subjects).
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epoch. Therefore, partial GCs of experts (pGCexp) were evaluated against the GC made from the scoring of all 
the researchers (GCre), and partial GCs of researchers (pGCre) and non-experts (pGCne) were evaluated against 
the formal GS made from the scoring of all the experts. Three random selections of the scorers per epoch were 
performed to see the inter-scorers/inter-epochs variation shown as a gray area. The Group Consensus Thresholds 
(GCt) used depended of the number of scorers per epoch and the user subtypes, from 0.4 for one scorer/epoch to 
the optimum GCt for each user subtype.

Discussion
In this study, we describe the use of the MODA platform and crowdsourcing to generate the group consensus of a 
large number of human scorers for sleep spindle detection in EEG data. The group consensus of human PSG tech-
nologists (experts) is used to form the gold standard (GS), and we outline a method to evaluate the performance 
of the different groups of scorers, including previously reported spindle detection algorithms. The group consen-
sus of experts and non-experts produced a high-quality spindle dataset, and the automated detectors performed, 
on average, worse than human scorers. Our current study (specifically phase 2, 80 older subjects from MASS37) 
is consistent with the results from our first crowdsourcing project14 (110 old subjects from Wisconsin Sleep 
Cohort44). The lower performance of spindle detection algorithms does not appear to be due to the age of the 
sleeping subjects, as we initially hypothesized14, as the finding is now similarly reproduced in a group of younger 
adults (phase 1 of MODA). The current study additionally included evaluation against a Group Consensus (GC) 
made from researchers scoring, and the analysis of spindle activity as a function of age and sex. Furthermore, 
two additional spindle detectors tested (a742 and a943) yielded performance equivalent to an average individual 
expert. To our knowledge, the MODA dataset is now the largest and most comprehensively scored sleep spindles 
GS available for validation of spindle detection algorithms.

The average spindle activity (such as the density, duration and amplitude) of the MODA GS for the phase 2 (80 
old subjects from MASS37) were surprisingly consistent with the expert GS from the previous crowdsourcing pro-
ject14 suggesting a high agreement between experts in an older cohort even across datasets. This agreement was 
also observed between the experts, re and ne (phase 1, 100 subjects) in the younger cohort of the current study. 
The high validity of our scoring allowed us to conclude the average spindle density for a young cohort was 4.2 
spm with an average duration of 0.8 s, average maximum peak-to-peak amplitude of 33 µV and average dominant 
oscillation frequency of 13.3 Hz (activity when considering all the scorers of MODA, across all 100 subjects). The 
aggregated average spindle activity for older sleepers was 2.5 spm with an average duration of 0.75 s, average ampli-
tude of 27 µV and average frequency of 13.2 Hz (MODA phase 2, 80 subjects 50–76 years old, and Warby et al.14  
110 subjects 42–72 years old). The agreement for the average spindle activity between automated algorithms 
was poorer than the human scoring. Only the a7 detector showed similar descriptive statistics to human scorers; 
i.e. average density of 3.9 spm, duration of 0.85 s, amplitude of 29 µV and frequency of 13.26 Hz for the whole 
cohort (phase 1 & 2). Spindles detected by a9 showed similarities with the GS spindles but the average duration 
was significantly longer (1.15 s). One caveat of the algorithmic performance evaluation is that the detectors were 
not tuned for the current dataset (instead using the default parameters suggested in their original publications). 
While many researchers do not tune these algorithms, the performance with tuning is potentially higher than 
reported here. We did not differentiate slow and fast spindles in our analysis because the oscillation frequency 
histogram of the spindles at the group level is clearly unimodal for the GS, GCre, GCne and each automated 
detector. The existence of slow and fast spindles could have been more obvious in our database with the analysis 
of additional channels, such as a frontal channel for slow spindles and a parietal channel for fast spindles6,45,46.

Most of the detectors tested in our study showed the same significant age and sex differences as the experts, 
which, in-turn, matches the literature3–13. However, algorithms a7 and a9 detected an additional significant sex 
difference: the spindles were on average longer in females, a finding which until now has only been seen at a 

Fig. 6  The human group consensus (GC) f1-score-by-event (f1) as a function of the number of scorers. (a) 
Partial group consensus of experts (pGCexp), each based on a different number of scorers, shown by the ‘o’ 
marker are evaluated against the GC of the researchers (GCre). Partial group consensus of researchers (pGCre) 
shown by the ‘+’ marker are evaluated against the Gold Standard made from all the experts (GS). (b) Partial 
group consensus of non-experts (pGCne) shown by the ‘x’ marker are evaluated against the GS. Only the phase 
1 (100 younger subjects) is used. The shaded area represents the standard deviation across the three random 
selections of scorers per epoch. The overlap threshold used to evaluate the performance is 0.2. Group Consensus 
Threshold (GCt) used depended of the number of scorers per epoch and the user subtypes (from 0.4 for one 
scorer/epoch to the optimum GCt for each user subtype).
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trending significance level (p0.05 < p < 0.1)4,7. We did not detect this effect in our own GS (only a trend in cor-
rect direction was observed, with p = 0.2), and this potentially points to a7 and a9 detectors being more dis-
criminatory than human scoring. The a834 detector was alone in showing an opposite age and sex effect for the 
spindle density. Not all detectors performed equally: the correlation of the by-subject spindle density between 
the GS and the detectors was generally low (an average r2 across detectors of 0.37) compared to the human group 
consensus (GCre r2 = 0.88 and GCne r2 = 0.91) in the younger cohort, however the detectors a7 (r2 = 0.73) and 
a9 (r2 = 0.85) performed well. Algorithm performance was slightly better in the older cohort (average r2 across 
detectors = 0.47), and again a7 (r2 = 0.83) and a9 (r2 = 0.88) performed well. Spindle density and amplitude was 
more accurately captured compared to spindle duration: correlations between GS and detectors/humans were 
generally lower for duration than for density (even for the human Group Consensus, GCre r2 = 0.59 and GCne 
r2 = 0.73), and all detectors and human GC had a high correlation with the GS for the average spindle maximum 
peak-to-peak amplitude.

Creating an optimal GS is central to maximizing dataset validity. Obtaining the highest number of scorers 
with the highest level of expertise possible is, of course, the best scenario to create this optimal GS. However, 
our study suggests that collecting the scores of three researchers (re) or 10 non-experts (ne) provided a GC f1 
of 0.8 against the expert’s GS, providing a performance similar to the average individual expert (f1 = 0.76) (only 
observed in phase 1 since the phase 2 was not scored by re or ne). Comparing the spindle detectors to the GC 
of re (GCre) or ne (GCne) allowed the same conclusion about their performance as the experts’ comparison. The 
GCre proved to be a valid standard reference despite the high precision and the moderate recall of the researchers. 
Creating a GC where the f1-score is maximized effectively forced the GC to be balanced between the recall and 
the precision. We also identified that aggregating the scoring from two to four experts/researchers or three to ten 
non-experts is sufficient, and after this point, the performance of the GC begins to plateau.

Throughout the analysis, we have used a relaxed overlap threshold (only 20% overlap between a potential 
detection and a spindle in the GS was required to be a true positive). Clearly a higher threshold is desirable in 
practice, but we wanted to present the best performance possible for the automated detectors. All automated 
detectors decay in performance with increasing overlap threshold faster than human scorers, meaning that 
automated detectors do not predict the start/stop and duration of spindles similarly to humans. Using a stricter 
threshold such as 80% would produce an even larger difference between human and automated scoring perfor-
mance. In this regard, the a9 detector, which had some of the highest performance scores with an overlap of 20%, 
was unique in that it had the most rapid decline of performance with increasing overlap threshold requirements 
(Fig. 2). The preference of the a9 detector to find very long spindles may be an area of potential improvement for 
this particular algorithm.

It should be clearly noted that the use of human-scored spindles as the gold standard is open for debate. In our 
study, the scoring performance reported and descriptive statistics of the MODA GS spindles are “true” only in 
the sense that many human experts agree on them. The lesser performance of spindle algorithms is only relative 
to human scoring. It remains unclear whether the algorithmically detected “hidden spindles” that are missed by 
humans are mechanistically identical to human detected spindles, spurious, or perhaps separate and biologically 
meaningful phenomena. Individual spindle detection algorithms may prove to be superior for specific uses, such 
as disease biomarkers, markers of cognition and intelligence, or in cases of co-recorded EEG and fMRI, where the 
signal-to-noise ratio becomes more challenging. What remains clear however, is that individual spindle detection 
algorithms find different sets of spindles relative to human scoring, and different than other spindle algorithms. 
Since the different algorithms are not entirely consistent with each other, it is difficult to use any one detector as 
the gold standard. Therefore, if you are designing an automated detector to match human scoring, then validation 
against the MODA GS is the best choice.

The variance in automated detectors means choosing one is not a one-size-fits-all process. Some detectors 
may be better in characterizing the spindle activity of unhealthy subjects, subjects under different conditions 
or to reveal specific features of spindles. For example, out of the seven detectors tested in the current study a239 
was the best in separating Parkinson’s disease patients from controls (unpublished results conducted in our lab). 
Furthermore, a8 showed poor results in the current study, but performed well when compared to an expert 
(f1 = 0.71) or a group consensus of non-experts (f1 = 0.73) who scored on a band-pass filtered 11–16 Hz EEG 
signal34. The a7 detector was the most similar to the human scoring, which is not surprising considering it was 
designed to emulate expert human scoring, and it has been trained on a human GS42. The detector a9 showed high 
performances in the current study. It is based on a non-linear model to separate the transients from the sustained 
rhythmic oscillations of the spindle43. The detector a9 is also proposed to pre-process the raw EEG prior to the 
spindle detection (possibly combined to another automated detector)47, a design possibly of interest for noisy 
EEG signals such as those recorded in fMRI. Instead of choosing the top performing algorithm defined here (e.g. 
a7), researchers might consider testing multiple or even a combination of detectors. For example, testing multiple 
published detectors initially (ideally on pilot data) to establish which detector is the most useful for their applica-
tion, they could then use that method consistently for all future work, thereby allowing valid comparison between 
versions of their work. Specific research areas may focus on specific properties of the spindle signal (e.g. require 
amplitude sensitivity rather than frequency sensitivity), and, as shown here, some detectors are more sensitive 
specific signal properties. Therefore, automated algorithms to detect spindles may also be chosen based on the 
specific field of inquiry and their history in answering specific research questions. Overall, choosing appropriate 
spindle detection requires efforts from the researchers to standardize the evaluation of the detectors. A common 
set of spindles to compare with, e.g. the MODA GS, is one important step of this standardization.

There are some limitations to the current work. Producing a higher quality GS might be achieved with more 
experts (although see our recommendations for a sufficient number of scorers), but also by improvements to 
the MODA web interface. An interface which better replicates the PSG technologist work environment, such as 
presenting a complete montage of channels, the possibility to go back and forth between epochs, and displaying a 
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whole night per subject, and may yield higher validity expert annotations. Furthermore, the current GS includes 
only healthy subjects from 18–76 years old (distributed non-uniformly), and focuses on spindles in stage 2 and 
the C3 channel; different GS could be created from other populations, channels or stages.

With the release of the MODA annotations dataset, we hope to spur development of reliable, generalizable 
automatic sleep analysis tools. Complex models with many parameters (such as those in machine learning) are 
prone to overfitting (i.e. fitting dataset specific noise), and therefore, the reported accuracy of detectors may be 
inflated, and results may not generalize to new, unseen data. We suggest that developers should train, validate and 
test their algorithm with a nested cross-validation on the MODA GS.

In conclusion, our study demonstrates that crowdsourcing with experts, researchers and non-experts repli-
cates well, and is a viable method for generating a large dataset of EEG events. We trust that the MODA interface 
and the GS dataset generated from it will prove a popular tool for researchers to collect data, train and validate 
automated detectors, and act as a standardized benchmark for selecting the most appropriate algorithm for spe-
cific research goals. The MODA dataset was a concerted effort, and highlights the importance of open, transpar-
ent and collaborative research. In this vein, we encourage all developed algorithms to be open source so that these 
tools may help us understand sleep further, including how spindles play a role in memory and mental disorders.

Methods
EEG data.  Polysomnographic data used came from the Montreal Archive of Sleep Studies (MASS)37; 180 sub-
jects were sampled from the SS1-SS5 subsets. The dataset was split into “phase 1” and “phase 2”; 100 younger sub-
jects (mean age of 24.1 years old) and 80 older subjects (mean age of 62.0 years old) respectively. “Blocks” of 115 s 
were randomly extracted from artifact free Stage N2 sleep. Three blocks (~6 mins) were extracted in 85 subjects in 
phase 1 and 65 subjects in phase 2; and 10 blocks (~20 mins) were extracted in the remaining 15 subjects of each 
phase. Almost 24 h of EEG time series was extracted to be scored. Table 4 presents the demographic information 
of subjects sampled and the amount of EEG data extracted. C3 channel was reformatted to C3-A2 when possible 
otherwise the original reference “C3-Linked Ear” (C3-LE) was kept. We band-pass filtered the signal between 
0.3–30 Hz as suggested by AASM22 and down sampled it to 100 Hz to reduce processing time.

Signal processing.  Band-pass filter 0.3–30 Hz is implemented in MATLAB 2016b (MathWorks, Inc., Natick, 
MA, USA). The filter characteristics are Butterworth IIR 10th order. The filter is constructed with zero-pole-gain 
form converted into a Second Order Section (SOS) and the non-linear phase is corrected by the “filtfilt” function. 
The EEG down sampling to 100 Hz is also implemented in MATLAB 2016b (MathWorks, Inc., Natick, MA, USA) 
with the function “resample” which has been called to use a polyphase antialiasing filter.

MODA Web interface developed to collect spindle scoring.  We developed a custom JavaScript web 
interface, called MODA, to collect the annotations of a large number of scorers. Signals to be scored on MODA 
must be encoded as images, therefore the extracted data blocks of 115 s (C3 EEG channel) were converted into 
5 epoch images of 25 s (overlap of 2.5 s between consecutive epochs). Images were 10” wide per 1” high in five 
resolutions from 80 dpi to 125 dpi to suit the most common monitors. Negative voltages (+100 µV to −100 µV) 
were displayed upward to present data time series in a familiar way to experts. The scorers were first asked to 
register and complete a simple profile about their experience in sleep scoring (if any). A short description of 
how the interface works, and how to score spindles, was presented. The American Academy of sleep medicine’s 
(AASM’s)22 spindle criteria were used to develop the instructions to score spindles. All the scorers underwent 10 
practice trails with feedback; they were asked to draw boxes around each spindle they saw and rate the confidence 
(as “high”, “medium” or “low”) that each box contains a spindle (Supplementary Fig. 3). After the completion 
of the practice session, they were allowed to score spindles (possibly in multiple short sessions) for the MODA 
dataset (Fig. 7). Phase 1 dataset (younger cohort) was presented first. Images were displayed as a “set” of 2 blocks 
(i.e. 10 epochs) to scorers. The same “set” was presented to different scorers until the desired number of views was 
reached. The number of sets scored was shown, but the total number of sets left to score was unknown for each 
scorer. Epochs may contain no spindles and there was no limit on the number of spindles that could be present.

MODA scorers.  Scorers consisted of PSG Technologists (registered as Polysomnographic Technologists on 
www.brpt.org/rpsgt), designed the experts (exp) in our study, Researchers (re) with experience in scoring sleep, 
and Non-Expert (ne) “MTurkers” recruited from Amazon Mechanical Turk. PSG technologists and researchers 
were recruited through on-line announcements, scientific conferences, word of mouth, and from the authors’ 
personal database.

Phase
Subjects (ratio 
female)

Mean Age years 
(min-max)

Number of 
epochs

Total 
duration (h)

1 100 (0.52f) 24.1 (18–35) 2020 12.9

2 80 (0.46f) 62.0 (50–76) 1725 11

Total 180 (0.49f) 41.0 (18–76) 3745 23.9

Table 4.  Data collection to score spindles. Number of subjects selected from MASS37 and the number of epochs 
extracted with the corresponding amount of time (h) for each phase.
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Creating the MODA group consensus.  The visual scoring of spindles needs practice since other signal 
features also mimic spindles and they can be partially hidden or deformed; therefore, only spindles that have 
been marked with a certain agreement between scorers should be kept to form a high-quality set of spindles 
noted Group Consensus (GC). To increase the scoring quality, we asked to scorers to rate their confidence (low, 
med, high) for each spindle marked. Specifically, each sample of the EEG time series had a score weighted by the 
confidence rate given by the scorer; 1 for high, 0.75 for medium, 0.5 for low confidence and 0 for no spindle at all. 
Then, sample by sample, the scores were averaged across scorers, and if they exceed the chosen Group Consensus 
Threshold (GCt) then these samples were identified to be part of the GC spindle dataset. In this way, either some 
scorers must be certain, or many scorers must be moderately confident for a location to be marked as a GC spin-
dle. The three subtypes of users who scored on MODA: “exp, re and ne” allowed the creation of different GC. The 
GC of experts was considered the highest-quality set of spindles of MODA, and therefore was designated as the 
formal “gold standard” GS of MODA. The GCt used to create our GS was chosen to maximize the average indi-
vidual performance across experts. Each individual expert was evaluated against a GS which did not include its 
own scores (leave-one-out GS) to avoid a positive reporting bias. The GCt used to form the GC of re (GCre) or ne 
(GCne) were chosen to maximize the GC performance against the GS made from all the experts. These thresholds 
are arbitrary, and others may want to use a different aggregation method or thresholds to create their own GC. 
Additional clean-ups, on the created GC, were made to increase their validity. A spindle shown on two consec-
utive epochs (during the 2.5 s overlap of epochs) may be detected more easily on either epoch. Therefore, for the 
set of samples that occur on two epochs, we consider the highest score for each scorer. Too short (<0.3 s) adjacent 
(<0.1 s apart) spindles were merged, and spindle longer than 2.5 s or shorter than 0.3 s were filtered out of the GC.

Performance evaluation.  The performance evaluation followed the strategy described in the previous spindle 
crowdsourcing project14. The primary performance evaluation was approached ‘by-event’, meaning that spindles are 
considered to be variable length events. An overlap rule must therefore be applied to determine if two variable length 
and partially overlapping events (estimated spindle and GS spindle) can be considered a match. The recall (fraction 
of GS spindles found: 

+
TP

TP FN
), the precision (fraction of events that matches GS spindles: 

+
TP

TP FP
) and the f1-score 

× ×
+( )2 precision recall

precision recall
 (where TP is the number of True Positive, FP the False Positive and FN the False Negative) were 

used since spindles are relatively rare events. To consider an estimated spindle (detection) as correctly matching a GS 
spindle (event), the detection must overlap the event above a certain overlap threshold. The overlap is computed as 
the intersection (the part of event detected) over the union (sum of the length of the event and the detection) 
between the event and the detection. Only one detection can match an event, the one with the greatest overlap, other 
detections overlapping the same event are considered FP. The overlap threshold chosen was the strictest threshold 
that did not penalize any of the human group consensuses or automated algorithms. A low overlap threshold (0.2 
was previously reported14) allows detections to be shorter or longer than the GS spindle or being not perfectly 
aligned with the GS spindle. In addition, the performance evaluation was done at the ‘by-subject’ level. The multiple 
detections or measurements that belong to the same individual EEG recording (sleeping night of one subject) were 
aggregated into a single average for that subject. These characteristics are the spindle density measured as the num-
ber of spindles per minute (spm), the average spindle duration (s), amplitude (µV) and frequency (Hz). In detail, the 
amplitude was computed as the maximum peak-to-peak amplitude of the spindle band-pass filtered 11–16 Hz. The 
frequency was computed as the dominant oscillation frequency of the spindle through FFT (Fast Fourier Transform). 
An FFT with five seconds zero-padding was performed on the EEG signal of the spindle band-pass filtered 10–16 Hz, 
and the frequency with the maximum energy was extracted. The frequency histogram at the cohort level was gener-
ated to evaluate the opportunity of breaking down spindles into fast and slow. The by-subject analysis allowed look-
ing at the correlation of the spindle density or characteristics with the GS. The by-subject performance can be high 
compared to the by-event performance if the detection bias (such as recall or precision) is constant across subjects 
(ex. detections are consistently 0.5 s longer or delayed by 0.2 s compared to the GS spindles).

Automated spindle detectors tested.  To provide a framework of how to test automated algorithms on 
the MODA GS, we evaluated the performance of seven previously published spindle detectors6,34,39–43 (for more 
details about their respective design see Table 5). These detectors were selected because of the prevalence of 
their use, the requirement that they only need one EEG channel to perform the analysis, and the availability of 

Fig. 7  An example of 25 s epoch image to score spindles with confidence intervals on the MODA (Massive 
Online Data Annotation) website.
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open source Matlab code to facilitate their implementation. Detectors were run “out-of-the-box” with the default 
parameters suggested in their corresponding publications. The detectors were evaluated first by-event against 
the MODA GS and secondly against the GC made from the researchers (GCre) or non-expert scoring (GCne). The 
by-subject analysis was also performed in order to compare their spindle density and average spindle character-
istics to the human scoring. Age and sex differences for the spindle activity were also tested for each detector. 
Reported performances are valid “out-of-sample” performance since none of these detectors have been developed 
or trained on the MODA GS. Even if the EEG data for MODA comes from the open source MASS37 dataset, only 
15 subjects (out of the 180 subjects used for MODA) have existing spindles scored (and by only 2 experts com-
pared to an average of 5 experts per epoch in our data). Furthermore, one of the previous experts from the MASS 
spindle dataset did not score in the same manner as MODA (looking at the band-pass filtered signal 11–16 Hz 
instead of looking only at the broad-band (0.3–30 Hz) C3 channel).

Data availability
The dataset generated in the current study is described on the Open Science Framework (OSF)38, it includes links 
to the spindle annotations and instructions on how to obtain the PSG data used (MASS37 dataset). See the wiki 
on the OSF site, and Readme on linked Github repository for more information on how to download the data. 
The PSG files can be requested as described on the MASS web page (http://www.ceams-carsm.ca/mass). Sharing 
occurs after the requirements of the MASS databank application are met.

Code availability
The JavaScript code of the MODA interface developed to collect the annotations is open source48. The Matlab 
code to manage the PSG files and generate the GS from the spindle scoring files is also open source38.
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a239
Band-pass filters (11–15 Hz) the EEG signal to compute its envelope. An upper (8 x mean) and lower (2 × mean) thresholds are used 
to detect spindles.
Code available on github.com/swarby/SpindleAlgorithms_NatMeth_2014

a340
Band-pass filters (11.3–15.7 Hz) the EEG signal to compute the root mean squared (RMS) on sliding windows (100 ms length with a 
step of 50 ms), and then applies a threshold (1.5 × STD).
Code available on github.com/swarby/SpindleAlgorithms_NatMeth_2014

a46
Band-pass filters (11–15 Hz) the EEG signal to compute the RMS on sliding windows (25 ms length with a step of 25 ms), and then 
applies a threshold (95th percentile).
Code available on github.com/swarby/SpindleAlgorithms_NatMeth_2014

a541
Transforms the EEG signal into continuous Morlet wavelets to compute the moving average on sliding windows (0.1 sec length), and 
then applies the threshold (4.5 × mean).
Code available on github.com/swarby/SpindleAlgorithms_NatMeth_2014

a742

Computes the absolute (Mean Square) sigma (11–16 Hz) power, the relative sigma power with Power Spectral Analysis, the 
covariance and correlation between sigma filtered and the unfiltered EEG signal on sliding windows (0.3 sec length with a step of 
0.1 sec). It then detects a spindle if the 4 features extracted from EEG exceed their respective threshold (1.25 µV2, 1.6 × STD, 1.3 × 
STD and 69%).
Code available on github.com/swarby/A7_LacourseSpindleDetector

a834

Decomposes the EEG signal into 3 components: Direct Current, oscillation around 13.5 Hz and other frequency components 
(0.3–30 Hz). Spindles are detected from the oscillation around 13.5 Hz with an upper (2.33 × STD) and lower (0.1 × STD) thresholds 
applied in sliding windows (60 sec length).
Code available on github.com/stuartfogel/detect_spindles

a943

Decomposes the EEG signal into 3 components: transient (t), low-frequency (lf) and oscillations (s). S are represented sparsely with 
Short Time Fourier Transform (1.28 sec length with a step of 0.32 sec). It then detects spindles by thresholding (c1 = 0.03) the Teager-
Kaiser energy operator (energy smooth) of s band-pass filtered (11.5–15.5 Hz). Parameters initialization: lambda0 = 0.6, lambda1 = 7, 
lambda2 = 8.5, mu = 0.5 and c1 = 0.03.
Code available on github.com/aparek/detoks

Table 5.  Simplified descriptions of spindle detector algorithms tested. See original publication for more details.
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