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Abstract: In order to tackle the study of DNA repair pathways, the physical and chemical agents
creating DNA damage, the genotoxins, are frequently employed. Despite their utility, their effects
are rarely restricted to DNA, and therefore simultaneously harm other cell biomolecules. Methyl
methanesulfonate (MMS) is an alkylating agent that acts on DNA by preferentially methylating
guanine and adenine bases. It is broadly used both in basic genome stability research and as a
model for mechanistic studies to understand how alkylating agents work, such as those used in
chemotherapy. Nevertheless, MMS exerts additional actions, such as oxidation and acetylation of
proteins. In this work, we introduce the important notion that MMS also triggers a lipid stress that
stems from and affects the inner nuclear membrane. The inner nuclear membrane plays an essential
role in virtually all genome stability maintenance pathways. Thus, we want to raise awareness that
the relative contribution of lipid and genotoxic stresses when using MMS may be difficult to dissect
and will matter in the conclusions drawn from those studies.

Keywords: methyl methanesulfonate; lipid stress; nuclear membrane; nuclear lipid droplets

1. Introduction

The study of genome stability maintenance pathways frequently involves the use of
tools to create DNA damage. These can be of a genetic nature, for example by removing a
gene whose product protein is important for the repair of DNA lesions, which therefore
accumulate. In addition, DNA damage can be created by external interventions such as the
use of physical and chemical agents (genotoxins). Although the use of this latter strategy
has granted an enormous power for assessing DNA-damage-related questions, it is not
devoid of drawbacks, since these treatments are prone to harm other cellular molecules.
For example, the widely used radiomimetic agent zeocin also affects components of the
cytoskeleton [1], and hydroxyurea, regularly used to deplete the pool of dNTPs and trigger
replication stress, is also recognized for its oxidative potential [2]. Apart from chemicals,
physical approaches also trigger collateral effects. As such, creating single- and double-
strand breaks in the DNA with ionizing radiation provokes the additional cleavage of
sphingosine moieties at the plasma membrane, thus releasing ceramides, which can trigger
apoptosis faster than the simultaneous breaks occurring in the DNA [3].

A frequently used agent in the field of genome integrity maintenance is the alkylat-
ing agent Methyl methanesulfonate (MMS). This molecule alkylates DNA bases, namely
guanine to 7-methylguanine and adenine to 3-methlyladenine [4]. This way, the helix
morphology and its information are distorted. Apart from the evident mutagenic potential,
these lesions can provoke a myriad of secondary effects, many of which manifest during
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the process of DNA replication. For example, at modest doses, MMS can prevent the
DNA polymerase from smoothly sliding over DNA, forcing its “jumping” forward, thus
leaving unreplicated tracts behind, which equals single-stranded portions accumulating
in the genome. At high doses, the block the alkylated moieties represent is so powerful
that they literally halt the replication fork, a situation that, if not resolved, may lead to
fork collapse and concomitant DNA breakage [5]. Given these abilities, MMS is a model
agent to characterize the mechanisms with which the cell copes with alkylating lesions
on its DNA, a field of immediate application in chemotherapy efficacy. Apart from this
and depending on cell culture conditions, MMS lethality can become primarily ascribed
to oxidation and not to DNA lesions [6]. Further, it can trigger a vast change in the cell
proteome acetylation profile [7].

In this short report, we want to raise awareness of MMS ability to trigger a lipid stress
at the inner nuclear membrane. We show that MMS elicits a growth of membrane structures
that manifests differently depending on the basal rigidity of the nuclear membrane. This
way, in plastic scenarios, the membrane expands and adopts a flower-like aspect. On the
contrary, in expansion-resistant contexts, the stress is alleviated through the emission of
nucleoplasmic reticulum protrusions and nuclear lipid droplets. Given the importance
of the nuclear membrane in virtually all genome stability maintenance pathways, the
consideration of these lipid transitions in the nuclear niche is of utmost relevance.

2. Results

We work to understand the crosstalk between genome integrity and lipid metabolism.
During our studies to evaluate the potential impact of genotoxins on the formation of
lipid droplets in RPE-1 (retinal pigmented epithelium) cells, we realized that 2 h treatment
with the alkylating agent MMS induced the formation of nuclear lipid droplets (nLD)
(Figure 1A,B). Lipid droplets are organelles shielded by a phospholipid monolayer that
store lipids and arise from the endoplasmic reticulum (ER), in this case from the inner
nuclear membrane (INM) subdomain and into the nucleoplasm [8]. The increase in nLD
triggered by MMS was detected irrespective of the plotting strategy, either when consider-
ing the number of nLD-positive cells (Figure S1A) or the number of nLD per positive cell
(Figure S1B).

Figure 1. Cont.
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Figure 1. MMS triggers the formation of nuclear LD in RPE-1 cells. (A) Microscopy images corresponding to RPE-1 cells
treated for 2 h with 0.005% MMS. Nuclei are identified by staining DNA with DAPI, and LD with the vital dye NileRed. To
facilitate visualization of the respective position of the LD within the nucleus, merged images are shown at the bottom, and
the perimeter of nuclei superimposed as dashed lines onto the LD images. (B) Quantification of the number of nuclear LD
counted in RPE-1 cells upon treatment with the indicated agents. When cerulenin is indicated, it was added at 5 µg/mL to
the cultures for 4 h, plus the incubation or not with 0.005% MMS, 100 µg/mL zeocin or 1 mM HU during the last 2 h. Each
dot corresponds to the value noted for one nucleus. At least 200 nuclei per experiment and condition were counted from
3 independent experiments. The boxes comprise the 10–90 percentile values, and their central bar represents the median of
the population. Since populations were not normally distributed, the significance of differences between the populations
is indicated by asterisks (*) and their associated p-values, obtained after applying a Mann–Whitney nonparametric test.
(C) Western blot of extracts from RPE-1 cells untreated or treated with either 0.005% MMS, 100 µg/mL zeocin or 1 mM HU
for the indicated times to monitor the activation of the DDR by following the phosphorylation on Serine 345 (pSer345) of
the effector Chk1 and that of Chk2 on threonine 68 (pThr68). Molecular weights are shown in kDa as indicated by co-run
molecular weight ladders. Red arrows mark the samples chosen for the microscopy studies shown in (B). (D) Details as in
(A) for cells treated 4 h with cerulenin at 5 µg/mL, and then 0.005% MMS added during the last 2 h. Dashed white lines
define the nucleus boundaries. Yellow arrowheads point at the locations of the nuclei periphery from which LD are seen to
access the nucleus, eventually preventing the DAPI staining.

We also exposed cells to other genotoxins, namely zeocin and hydroxyurea (HU),
which trigger genotoxic stress in two different ways. Zeocin is a radiomimetic agent causing
single- and double-strand breaks, whose impact can be monitored following the DNA
damage response (DDR) effector Chk2 phosphorylation. HU leads to the exhaustion of the
dNTP pool, thus halting the progression of replication forks, monitored by the progressive
phosphorylation of the DDR effector Chk1. We conducted kinetic studies in response
to these agents in comparison with MMS and established that, at 2 h, the extent of both
phosphorylated Chk1 and Chk2 triggered by MMS was equal or inferior to that elicited by
HU or zeocin, respectively (Figure 1C, red arrows). However, at this timepoint, the birth of
nLD was not stimulated either by HU or zeocin (Figure 1B). This, along with the detection
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of comparable levels of DNA damage markers on chromatin, namely γH2AX and 53BP1,
at 2 h treatment with zeocin or MMS (Figure S1C), suggested that the ability of MMS to
induce nLD formation probably was DNA-damage-independent.

We postulated that MMS may somehow trigger a lipid modification that culminates
with the eviction of these lipids from its original location. This was reminiscent of the
reported ability of various stresses, such as glucose deprivation, C2-ceramide addition,
acidic pH, the ER stressor tunicamycin, or cerulenin to trigger the formation of LD [9].
Among them, we chose cerulenin, which directly relates to the lipid metabolism, given its
ability to inhibit the fatty acids synthase, and measured for the first time its potential ability
to induce nLD. Importantly, cerulenin treatment induced nLD formation modestly in RPE-1
cells (Figure 1B and Figure S1A,B), yet its combination with MMS yielded an additive
pattern of nLD that, again, was specific to MMS and not to other genotoxins (Figure 1B).
Of note, independently of the number of nLD, this combination was remarkable when
considering the profusion of the nLD entry into the nucleus, which even displaced the
chromatin, as estimated by the lack of DAPI staining (Figure 1D, yellow arrowheads). Thus,
by combining MMS and cerulenin, we could reveal a strong potential for nLD emission in
RPE-1 cells.

RPE-1 cells display a nuclear shape that is consistently maintained irrespective of the
treatment, as simply estimated by the constant form of the DAPI-defined nuclei (Figure 2A).
Therefore, the emission of nLD could reflect a need for releasing a lipid stress from the
nuclear membrane. In that case, the use of cells with a more flexible membrane would
be expected to display a milder phenomenon. Cancer cells present a more deformable
membrane, for example capable of constriction to go through very narrow channels [10].
Another feature illustrating their flexibility is the easiness with which the nuclei of these
cells form blebs, which further give rise to micronuclei during interphase [11]. We chose
HepG2 cells, derived from hepatocarcinoma, to further support the notion that nLD birth
in response to MMS relates to the rigidity of the nuclear membrane in RPE-1 cells. Our
working hypothesis was that, provided that these cells deform their nuclear perimeter in
response to MMS, this would be paralleled by a milder or even absent emission of nLD.
First, MMS triggered a neat deformation of HepG2 nuclei shape (Figure 2A). However,
contrary to the prediction, in response to MMS (Figure 2B), HepG2 cells significantly
emitted nLD (Figure 2C). Importantly, while cerulenin alone also triggered nLD birth,
as in RPE-1 cells, this emission was not further increased when combining it with MMS
(Figure 2C and Figure S2A,B). Thus, the ability of HepG2 to increase nLD generation is
more limited in a system where membrane deformation is possible.

Of note, the emission of micronuclei, which operates toward the cytoplasm, was
undetectable in RPE-1 cells and irresponsive to MMS and/or to cerulenin in HepG2
(Figure 2D). This suggests that the ability of MMS to trigger the deformation of nuclear
shapes (in HepG2 cells) or to give rise to nLD (in RPE-1 cells) was probably associated to
the INM. It is therefore likely that lipid stress generated in the INM by MMS is alleviated
by a combination of nuclear membrane deformation and emission of nLD, depending on
the nuclear membrane basal flexibility.

Lastly, we reasoned that, if MMS elicits lipid transitions, which in HepG2 can deform
the membrane, while in RPE-1, cells are forced to transit toward the nucleoplasm, additional
membrane-related events were likely to be detected. We considered the growth of the
nucleoplasmic reticulum (NR), an organelle derived from the nuclear membrane that
invaginates toward the nucleoplasm [12]. We used immunofluorescence to detect the NR
marker SUN1 [13] followed by image convolution to monitor the eventual growth of this
organelle upon MMS treatment in RPE-1 cells and, as a control, in HepG2. Importantly, we
indeed detected these events exclusively in RPE-1 cells (Figure 3A) and in response to MMS
treatment (Figure 3B, compare with + zeocin). These structures appeared to migrate from
the nuclear periphery toward the nucleoli (Figure 3A, MMS, yellow arrows), a “destination”
previously reported for these bodies [12,14].
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Figure 2. MMS triggers nuclear membrane alterations in HepG2 cells. (A) DAPI-stained nuclei of
the indicated cell lines untreated or treated with 0.005% MMS for 2 h are shown to illustrate that
MMS treatment in HepG2 triggers a general deformation of the nuclear perimeter. (B) Western blot
of extracts from HepG2 cells untreated or treated with 0.005% MMS for 2 h to monitor the activation
of the DDR by following the phosphorylation on serine 345 (pSer345) of the effector Chk1. Co-run
molecular weight is indicated in kDa. (C) Quantification of the number of nLD counted in HepG2 cells
upon treatment with the indicated agents. When cerulenin is indicated, it was added at 5 µg/mL to
the cultures for 4 h, plus 0.005% MMS or not for the last 2 h. Each dot corresponds to the value noted
for one nucleus. At least 200 nuclei per experiment and condition were counted from 3 independent
experiments. The boxes comprise the 10–90 percentile values, and their central bar represents the
median of the population. Since the populations were not normally distributed, the significance of
differences between the populations is indicated by by asterisks (*) and their associated p-values,
obtained after applying a Mann–Whitney nonparametric test. n.s. stands for “not significant”.
(D) Upper panel: illustrative pictures of HepG2 DAPI-stained nuclei displaying blebbing of the
DNA material toward the cytoplasm, the initiating events of micronuclei during interphase. Lower
panel: quantification of the percentage of cells in the population displaying blebbing and/or close-
to-the-nucleus micronuclei in the indicated cell types after the indicated treatments. Each colored
dot corresponds to an independent experiment. At least 150 cells were counted per experiment and
condition. Within a same cell line, none of the treatments led to any significant difference with respect
to the other ones after applying a Mann–Whitney nonparametric test.
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Figure 3. Increase in intranuclear membrane pools occurs in RPE-1 cells in response to MMS. (A)
Immunofluorescence performed on RPE-1 and HepG2 cells to detect SUN1 and nucleolin signals.
Visualization of membrane-associated SUN1 signals is enhanced by convolving the raw image. In
RPE-1 cells, in untreated conditions, SUN1 signals are mostly perinuclear; in response to MMS, SUN1
invaginations reach nucleoli; preincubating the cells with cerulenin prior to MMS addition, SUN1
invaginations mainly run parallel to the nuclear membrane. In HepG2 cells, SUN1 antibody provided
no membrane-associated pattern under these immunofluorescence conditions. (B) Immunofluores-
cence to detect SUN1 performed on RPE-1 cells treated 4 h with 5 µg/mL, the last 2 h either with
additional 0.005% MMS or 100 µg/mL zeocin. On the left, raw images are shown, and NR signals
are indicated by yellow arrows. On the right, the same images were subjected to the ImageJ tool
“convolve”.

Pretreatment of cells with cerulenin did not abrogate these MMS-elicited structures,
but instead disoriented their migration, rendering them parallel to the nuclear periphery
(Figure 3A, cerulenin > MMS, yellow arrows; and Figure 3B). As further support to the
notion that MMS-elicited lipid structures mostly stem from the INM, we hardly detected
(only once or twice per experiment) NR-reminiscent structures positive for the outer nuclear
membrane marker calnexin [15] (Figure S2C, MMS, red arrows).
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Overall, we report that the alkylating agent MMS has the ability to trigger lipid
transitions, most probably unrelatedly to its DNA-damaging ability. These modifications
cause a membrane stress, likely at the INM, that needs to be released. In cells with potential
for nuclear membrane flexibility (such as HepG2), this results in nuclei adopting a flower-
like aspect and a limited number of nLD. However, in rigid nuclear membrane contexts
(such as in RPE-1 cells), this stress is alleviated through the emission of both nLD and NR
arms (Figure 4).

Figure 4. Model. Under basal conditions, nuclei display their ellipsoidal shape as ruled by their
shielding membrane. Upon MMS treatment, a lipid stress is elicited at the inner nuclear membrane
whose outcome is determined by the plasticity of such membrane. This way, in rigid contexts, such
as in RPE-1 cells, the resistance of the membrane is alleviated by the emission of bodies toward
the nucleoplasm, such as nuclear lipid droplets (nLD) and nucleoplasmic reticulum arms (NR). By
contrast, in malleable scenarios such as in HepG2 cells, the membrane mostly responds by suffering
an expansion, probably due to increased phospholipid synthesis, which makes it adopt a flower-like
shape. Eventually, it can also emit nLD, albeit more modestly.

3. Discussion

DNA-damaging agents are chemical entities with multiple cellular targets. The agent
used in this work, MMS, is an alkylating molecule that acts on DNA by preferentially
methylating guanine and adenine bases. MMS is broadly used in the research field of
genome stability, both for fundamental studies and as a model for mechanistic studies to
understand how alkylating agents used as chemotherapeutics work. Its additional effects
concern its strong oxidizing potential which, depending on the cell culture conditions, may
be the leading reason of death rather than its harm to the genetic material [6]. Additionally,
it exerts a broad change in protein acetylation [7]. In this work, we introduce the notion, not
to be neglected, that it can also trigger a lipid stress that stems from and affects the inner
nuclear membrane. Given the intricate relationship between this location and genome
stability (see next paragraph), we warn that the relative contribution of lipid and genotoxic
stresses when using MMS may be difficult to dissect.

The nuclear membrane not only encloses the genome, thus separating it from the rest
of the cell, but also acts as a scaffolding anchor susceptible of impacting every nuclear
transaction. For example, the nuclear membrane ensures the coordination of transcription
and replication, during which the DNA needs to be dynamically anchored to and dislodged
from the nuclear membrane [16]. Anchor of telomeres to the nuclear membrane instructs
their silencing [17] and warrants their length maintenance [18]. In the same line, the nu-
clear membrane influences the establishment of chromosome territories, of the epigenome
and its maintenance [19–21], it controls the DNA-damage response [22,23] and DNA re-
pair [13,24,25]. In a more incipient field, the lipid composition of the nuclear membrane
directly conditions cell fitness in the case of aneuploidy [26], and overgrown membranes
can trap thus prime the mis-segregation of chromosomes [27]. Excitingly, the naturally poly-
ploid cells from C. elegans intestines also form nLD and NR arms derived from the INM that
travel toward nucleoli [28]. These arms, as the ones we show (Figure 3A), could have addi-
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tional impacts on nuclear homeostasis. First, these structures have already been implicated
in assisting the repair of double-strand breaks happening in the ribosomal DNA [13]. Sec-
ond, ER membranes have very recently been shown to embrace, ivy-wise, membrane-less
condensates such as P-bodies and stress granules, splitting them in two [29]. Given that
nucleoli are the biggest nuclear membrane-less condensates, it is tempting to imagine
that NR membranes could execute the fission of nucleoli. All in all, the lipid alterations
fostered by MMS, whether restricted to the INM or extended toward the nucleoplasm, are
very likely to impact genome stability by other means than through the direct damage to
the DNA.

The differential resistance to membrane expansion observed between RPE-1 and
HepG2 cells could stem from their nontransformed versus cancerous origins, respectively.
Indeed, the nuclear membrane of cancer cells is acceptedly described as prone to defor-
mation and of higher plasticity [10]. Along this line, a feature such as their easiness for
nuclear blebbing and micronuclei formation toward the cytoplasm during interphase is
well documented [11]. However, the phenomenon we describe here is more likely to relate
to events occurring at the INM. In this sense, an alternative explanation could relate to
the cell-type-specific pathways ruling phosphatidylcholine (PC) synthesis. HepG2 cells,
of liver origin, have two different active pathways for the synthesis of this central phos-
pholipid. As all human cells, they possess an active Kennedy pathway, through which
CDP-choline esterified with DiAcylGlycerol gives rise to PC. However, a 30% of their PC
synthesis is ensured by the PEMT pathway, in which PC is produced from phosphatidic
acid (PA) in a process involving multiple methylations [30]. Perhaps, this ability endows
them with a wider window for generating PC, thus more membrane expansive properties,
capable of buffering whatever the stress imposed by MMS. By contrast, RPE-1 cells, lacking
channeling through the PEMT pathway, may accumulate an upstream intermediate giving
rise to NR overgrowth and nLD formation. This is a tempting hypothesis because, as
mentioned, such an intermediate could be PA, whose ability to support negative curvature
at membranes would be perfectly positioned to rule these transitions. This hypothesis is
further supported by the fact that PA is closely related to the formation of nLD [31–33]
Together, we bring the notion that the crosstalk between lipids and genome instability not
only concerns physiological processes but may be also extended to the tools with which
we tackle their study.

4. Materials and Methods
4.1. Reagents

NileRed (HY-D0718, CliniSciences, Nanterre, France), DAPI (D9542, Sigma-Aldrich,
Saint-Quintin Fallavier, France), Hoechst (B2261, Sigma-Aldrich, Saint-Quintin Fallavier,
France), cerulenin (SC-200827A, Santa Cruz Biotechnology, Dallas, TX, USA), Methyl
methanesulfonate (29925, Sigma-Aldrich, Saint-Quintin Fallavier, France), Zeocin (R25001,
ThermoFisher, Illkirch-Graffenstaden, France), Hydroxyurea (H8627, Sigma-Aldrich, Saint-
Quintin Fallavier, France), ProLong (P36930, ThermoFisher, Illkirch-Graffenstaden, France).

4.2. Antibodies

Antibodies used in this work were anti-SUN1 (ab124770, Abcam, used at 1/500); anti-
nucleolin (ab136649, Abcam, used at 1/200); anti-Chk1 (sc8408, SantaCruz Biotechnologies,
used at 1/500); anti-P-Ser345-Chk1 (2348LS, Cell Signaling, used at 1/1000); anti-P-Thr68-
Chk2 (2661S, Cell Signaling, used at 1/1000); anti-Chk2 (05-649, Sigma-Aldrich, used at
1/1000); anti-calnexin (610523, Becton-Dickinson, used at 1/1000 for Western Blot and at
1/100 for immunofluorescence); anti-γ(pSer139]H2AX (05-636, Sigma-Aldrich, used at
1/500); anti-53BP1 (NB100-304, Novus, used at 1/500).

4.3. Human Cell Culture and Treatments

RPE-1 and HepG2 cells were a kind gift from Krzysztof Rogowski and Urszula Hibner,
respectively. They were seeded on p100 plates (dilution 1:7 from one confluent p100).
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After two days, medium was changed (at 37 ◦C), and treatments were applied. RPE-1
were grown in DMEM (D5796-500ML, Sigma, Saint-Quintin Fallavier, France) and HepG2
in DMEM + GlutaMAX (Gibco, 31966-021, ThermoFisher, Illkirch-Graffenstaden, France)
supplemented with 10% FBS (S1810-500, Biowest, Nuaillé, France) and 1% Pen/Strep
(P0781, Sigma, Saint-Quintin Fallavier, France). At the end of the corresponding treatments,
cells were collected for Western blot or fixed for immunofluorescence with 4% PFA/PBS
(20 min at room temperature), and then washed once with PBS. For SUN1, a pre-extraction
was done putting plates on ice with 20 mM NaCl, 0.5% NP-40, 20 mM Hepes pH 7.5, 5 mM
MgCl2, 1% DTT for 20 min prior to fixation. We verified that this did not affect nucleolin
patterns. DNA-damaging treatments were always applied for 2 h at a final concentration of
0.005% MMS, 100 µg/mL zeocin or 1 mM hydroxyurea. Pretreatment with cerulenin was
done for 4 h with 5 µg/mL cerulenin (2 h prior to addition, or not, of the genotoxic agents).

4.4. Immunofluorescence

Fixed cells on coverslips were washed once with PBS and permeabilized with 0.2%
Triton/PBS for 10 min at room temperature, then saturated with 3% BSA/PBS for 30 min.
Coverslips were incubated with primary antibodies diluted in 3% BSA/PBS for 90 min
then washed 3 times x 10 min with PBS under gentle shaking. Coverslips were further
incubated with fluorophore-coupled secondary antibodies diluted (1:500) in 3% BSA/PBS
for 45 min while protecting them from light from this point on, then washed 3 × 10 min
with PBS under gentle shaking, then incubated for 5 min with Hoechst (20 µg/mL) or for
10 min with DAPI (1 µg/mL), both diluted in H2O, and washed 3 times with H2O. Finally,
coverslips were allowed to dry and mounted using ProLong, then left to dry overnight at
room temperature in the darkness.

4.5. Western Blot

All the samples were lysed with high salt buffer (50 mM Tris pH 7.5, 300 mM NaCl, 1%
Triton X-100, protease inhibitors (Roche), phosphatase inhibitors Halt cocktail) (400 µL per
p100) for 10 min on ice with frequent vortexing. After lysis, samples were centrifuged 10
min at 14,000 rpm at 4 ◦C, and supernatants retrieved for Western blot. Typically, 20–30 µg
of whole cell extracts was loaded onto homemade 10% acrylamide gels (1.5 mm thick)
and migrated 70 min at 40 mA per gel (migration buffer: 25 mM Tris, 200 mM glycine,
0.1% SDS). The proteins were transferred to a nitrocellulose membrane for 2 h at 100 V in
transfer buffer (25 mM Tris, 200 mM glycine, 20% ethanol).

4.6. Image Analyses, Quantification and Statistics

Fluorescent signals were detected using adequate wavelengths and acquired either
with a Zeiss CCD AxioCam MRm monochrome camera from a Zeiss AxioImager Z1
microscope with ApoTome technology or with a Zeiss Axioimager Z2 microscope, in both
cases using a 40× Plan Apochromat 1.3-NA oil objective lens and either Zen or Metamorph
software, respectively. Images were acquired at 20–23 ◦C. Subsequent image visualization,
co-localization, and analysis were performed with Image J v2.0.0-rc-69/1.52i. Both the
number of cells with micronuclei and the number of nLD per cell were counted visually
by the experimenter. The processing of SUN1 signals was conducted by choosing the
“Process > Filter > Convolve” tool without changing the basal parameters. Graphical
representations and statistical analyses were conducted by using GraphPad Prism v9.
Given that the studied populations did not appear as normally distributed, the significance
of possible differences between the populations is indicated by asterisks and p-values
obtained after applying a Mann–Whitney nonparametric test in all instances.

Supplementary Materials: Available online at https://www.mdpi.com/article/10.3390/ijms22147
461/s1, consist of original images of the Western blots presented in this work and a pdf document
with their annotation, as well as Figures S1 and S2.

https://www.mdpi.com/article/10.3390/ijms22147461/s1
https://www.mdpi.com/article/10.3390/ijms22147461/s1
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