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MO-MEMES: A method for
accelerating virtual screening
using multi-objective Bayesian
optimization

Sarvesh Mehta, Manan Goel and U. Deva Priyakumar*

Center for Computational Natural Science and Bioinformatics, International Institute of Information

Technology, Hyderabad, India

The pursuit of potential inhibitors for novel targets has become a very

important problem especially over the last 2 years with the world in the midst

of the COVID-19 pandemic. This entails performing high throughput screening

exercises on drug libraries to identify potential “hits”. These hits are identified

using analysis of their physical properties like binding a�nity to the target

receptor, octanol-water partition coe�cient (LogP) and more. However, drug

libraries can be extremely large and it is infeasible to calculate and analyze the

physical properties for each of those molecules within acceptable time and

moreover, each molecule must possess a multitude of properties apart from

just the binding a�nity. To address this problem, in this study, we propose

an extension to the Machine learning framework for Enhanced MolEcular

Screening (MEMES) framework for multi-objective Bayesian optimization. This

approach is capable of identifying over 90% of the most desirable molecules

with respect to all required properties while explicitly calculating the values of

each of those properties on only 6% of the entire drug library. This framework

would provide an immense boost in identifying potential hits that possess all

properties required for a drug molecules.

KEYWORDS

drug discovery, machine learning, virtual screening, Bayesian optimization, chemical

space exploration, High throughout screening

1. Introduction

Drug discovery is a long, expensive, and extremely laborious process that involves

multiple steps with knowledge from awide variety of domains like chemistry, biology and

pharmacology. The first step in this process is the identification of potential hit molecules

for a novel target followed by experimental evaluation typically using biochemical assays

toward lead identification. These hits are then optimized to have higher binding affinity,

low toxicity, and improved bioavailability among other requirements. The time and

expense involved in this process has given rise to alternate in silico approaches like virtual

screening whereinmolecules are computationally evaluated to identify potential hits. The

structure based drug design (SBDD) method, docking, is used most commonly in virtual

screening to identify molecules with high binding affinity to the given target (1–4).
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The availability of large scale open source datasets in

molecular sciences has opened up the avenue for the application

of a wide array of modern machine learning methods in this

domain (5, 6). This includes problems like physical property

prediction (7–9), drug design (10), protein structure predictions

(11, 12), molecular simulations (13–16) and de novo molecule

generation (17). Most de novo molecule generation approaches

are based on recurrent neural networks (18, 19), variational

autoencoders (20–22), generative adverserial networks (23–

26), reinforcement learning (27–30). These methodologies

have shown great promise in molecule generation with

desirable properties like quantitative estimate of drug likeliness

(QED), octanol parition coefficient (LogP) and docking scores

but Gao and Coley found that a large number of the

generated molecules though novel and diverse, are infeasible to

synthesize (31).

In comparison, molecules present in drug libraries

enumerated through simple reactions can also be novel, diverse

and synthesizable with a probability of≈ 86% (31, 32). However,

virtual screening of large molecule libraries can be extremely

time consuming since finding the most stable protein-ligand

conformation is a non-convex optimization problem making

each docking calculation extremely slow. Even in the most

comprehensive study by (33) approximately 108 molecules were

docked, but that is still a very small number in comparison to

the vast ZINC20 library with about 1.4 billion molecules (34).

Moreover, their study also showed that hits for a target can be

identified using only the top fraction of the ligands with respect

to the docking score. This posits the argument for efficiently

sampling from the chemical space to find molecules with high

docking scores.

The DeepDock algorithm by Liao et al. helped in this regard

by augmenting the SBDD process and managed to obtain top

60% of the high scoring molecules with 50 times fewer docking

calculations and Graff et al. proposed the application of pool

based active learning for identifying potential hits (35, 36).

Gupta and Zhou clustered the molecules based on molecular

properties and performed limited docking to improve high

throughput virtual screening (37). We proposed MEMES which

uses Bayesian optimization on the chemical space to find the

top scoring molecules and using gaussian process regression to

estimate the protein-ligand docking score. We showed that the

proposed framework was able to identify most of the top scoring

molecules by performing docking calculations on only 6% of

the molecules in the drug library and showed its application on

multiple drug libraries and proteins. However, findingmolecules

with the highest docking scores is not enough since drug

molecules must also possess other properties like high QED and

LogP between 1 and 5 and it was found that most high scoring

drug molecules violate one or more of these constraints. Hence,

there is a requirement for frameworks that can optimize for

multiple properties during high throughput virtual screening

like the work by Baird et al. (38).

In this study, we proposeMO-MEMES (Figure 1), a machine

learning based framework for finding the top hits in a drug

library with respect to multiple properties simultaneously. To

achieve this, we perform multi-objective Bayesian optimization

to find molecules that lie at the pareto front with respect

to the required properties. A small subset of the library is

sampled initially and all the properties are calculated for

them. This training set is iteratively augmented using an

acquisition function which aims to find molecules that show an

improvement for as many properties as possible. We experiment

with two acquisition functions and show their application on

different combinations of properties. This methodology was

successful in finding a large number of molecules at/near the

pareto front while performing docking calculations on only 6%

of the ligands.

2. Theory and methods

For the purpose of this study, we have extended the

MEMES framework by Mehta et al. (39) due to its excellent

performance using new acquisition functions to account for

multiple properties during Bayesian optimization (40, 41).

This section describes the docking methodology, molecular

representation, an overview of MEMES and the acquisition

function.

2.1. Docking methodology

Molecular docking is a powerful tool for measuring the

binding affinity of a ligand with a protein receptor using a simple

scoring function. Hence, it is extremely useful in identifying

potential inhibitors from small molecule libraries. Ligand and

receptor preparation were done using AutoDock 4.2 (42). For

the purpose of this study, the ZINC-250K dataset, a subset of the

ZINC15 (43) database of drug likemolecules was used to identify

the top hits for inhibiting the Tau Tubulin Kinase 1 and SARS

CoV-2Mpro proteins.

2.2. Machine learning framework for
Enhanced MolEcular Screening (MEMES)

The MEMES framework uses Bayesian optimization to

find the potential inhibitors for a target from the given

drug library. Bayesian optimization is especially useful for

optimizing expensive black-box function like binding affinity.

There are two main components in Bayesian optimization:

a surrogate function that can be used to approximate the

black box and an acquisition function to determine the

next points to sample. In this work we have used Gaussian

Process Regression (ExactGP) and Deep Gaussian Processes
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FIGURE 1

Overview of the MO-MEMES pipeline. Embeddings for small drug-like molecules in ligand library are extracted and clustered. Points are sampled

randomly from each cluster and respective properties are calculated for each of them and then used to train gaussian process regression.

(DeepGP) as the surrogate functions along with two types

of molecular descriptors: mol2vec and CDDD (44, 45). The

details regarding the ExactGP are provided in Section 2.2.1,

DeepGP in the Supplementary material and acquisition function

in Section 2.2.2.

2.2.1. Gaussian process regression (GPR)

Gaussian process regression is a non-parametric Bayesian

regression technique. In Bayesian statistics it assumed that all

the k points in the initial dataset are drawn at random from a

prior multivariate gaussian distribution given by:

f (x1 : k) ∼ N(µ0(x1 : k),60(x1 : k, x1 : k)) (1)

The mean vector is obtained by the evaluation of the mean

function (µ0) at each data point and the covariance matrix

is obtained by the evaluation of the covariance function or

kernel (60) at each pair of points. The choice of the kernel

function must be such that a strong correlation exists between

points and closer to each other and the resulting covariance

matrix be positive semi definite. Suppose the prior distribution

is constructed for n points. For a point x at k = n + 1, the

distribution is obtained from Baye’s rule:

f (x)|f (x1 : k) ∼ N(µn(x), σ
2
n (x)) (2)

µn(x) = 60(x, x1 : k)60(x, x1 : k)
−1(f (x1 : n)−µ0(x1 : n))+µ0(x)

(3)

σ 2
n (x) = 60(x, x)− 60(x, x1 : n)60(x1 : n, x1 : n)

−16(x1 : n, x)

(4)

The conditional probability distribution is called the

posterior probability distribution. For faster computations,

the matrix inversions are obtained through Cholesky

decompositions and solving a system of linear equations.

The implementation of exact gaussian processes in GPyTorch is

used in this work (46).
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2.2.2. Expected improvement (EI)

The acquisition function is used to find points to be added

to the dataset during Bayesian optimization. For maximizing

TABLE 1 List of experiments performed to validate the performance

of MO-MEMES.

Protein Binding affinity LogP SAS Descriptor

4BTK × × CDDD

4BTK × × CDDD

4BTK × × CDDD

6LU7 × × CDDD

6LU7 × × CDDD

6LU7 × × CDDD

4BTK × × Mol2vec

4BTK × × Mol2vec

4BTK × × Mol2vec

6LU7 × × Mol2vec

6LU7 × × Mol2vec

6LU7 × × Mol2vec

6LU7 × × × CDDD

4BTK × × × CDDD

the black box function, the new points must possess a balance

between exploring unknown regions of the space as well as

exploiting the information about where the function value is

maximum. The acquisition function is responsible for finding

such points and Expected Improvement is one such function.

The improvement (I) at a point x is defined as

I = max(0, f (x)− f ∗) (5)

In Equation (5), f ∗ refers to best function value found so far.

In this scenario, since gaussian processes are being used, f (x) is a

random value∼ N(µ, σ 2) where µ and σ correspond to a mean

and variance evaluated at point x. The expected improvement is

then defined as

EI(x) = E[max(0, f (x)− f ∗)] (6)

After integrating the reparameterized distribution (x = µ+

σǫ) (47), the obtained expected improvement for a point x is

given by

EI(x) = σ (x)Z8(Z)+ σ (x)φ(Z) (7)

FIGURE 2

Heatmap of fraction of molecules sampled from each bucket of docking score and LogP. (A) shows the heatmap for protein target 4BTK while

(B) shows for 6LU7.

Frontiers inMedicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2022.916481
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Mehta et al. 10.3389/fmed.2022.916481

FIGURE 3

Heatmap of fraction of molecules sampled using MEMES framework from each bucket of docking score and SAS. (A) shows the heatmap for

protein target 4BTK while (B) shows for 6LU7.

where

Z =
µ(x)− f ∗ − ζ

σ (x)
(8)

In Equation (7), 8 and φ are the cumulative distribution

function and probability distribution function respectively.

The term ζ determines the degree of exploration during

optimization.

2.3. Multi objective Bayesian optimization

Multiobjective optimization is a significantly more complex

problem than single objective optimization since in this case

optimal decisions have to be taken considering the trade-offs

between conflicting objectives. The task is to find the pareto

frontier which is the set of points such that no objective can

be improved without making another objective worse. This

problem becomes significantly harder when we work with black

box functions in high dimensional space and hence, we try

to extend the single objective Bayesian optimization approach

mentioned in the previous sections to multiple objectives.

Multiobjective Bayesian optimization also consists of two

parts: the surrogate model and the acquisition function. For

the surrogate, we continue to use exact gaussian processes.

However, the choice of acquisition functions is an active area

of research since the acquisition function for multiple objective

along with balancing exploration and exploitation must also

promote improvement for as many objectives as possible in

order to identify the pareto optimal points. These include work

by Daulton et al. (40, 41) and Suzuki et al. (48).

2.3.1. Acquisition function

For the purpose of this study, exact gaussian processes are

trained on each of the given objectives separately and then

used to calculate the expected improvement for each point in

the dataset. The expected improvements from each objective

are then multiplied and the product of individual expected
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FIGURE 4

Distribution of binding a�nity with 4BTK, SAS, and LogP of molecules sampled by Exact MO-MEMES (blue) and molecules sampled randomly

(orange).

improvements is then used as the acquisition function.

EI(x) = EI1(x)× EI2(x).......× EIn(x) (9)

In the aforementioned equation, EIi(x) is the expected

improvement of the ith objective. The molecules with the

highest EI(x) are then inducted into the training set and the

process is then repeated till a preset number of molecules

is reached.

3. Results and discussion

In this section, experiments were performed on different

combinations of properties and proteins to validate the

performance of the proposed framework. The proteins used for

this study are

• SARS CoV-2 Mpro (PDB ID: 6LU7): With the world in the

midst of a global pandemic caused by COVID-19, the main
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FIGURE 5

Distribution of binding a�nity with 6LU7, SAS, and LogP of molecules sampled by Exact MO-MEMES (blue) and molecules sampled randomly

(orange).

protease (Mpro) has been identified as an important target

due its vital role in viral transcription and replication (49).

• Tau Tubulin Kinase 1 (PDB ID: 4BTK): Neurodegenerative

diseases have become extremely common over the past

few years, and the tau-tubulin kinase 1 has proved to

be an attractive target to combat a wide variety of

neurodegenerative diseases (50).

In order to model this as a multi-objective maximization

problem, transformations are applied on all three properties.

Binding affinity and Synthetic Accessibility Score (SAS) are

multiplied by -1 since the values need to be as low as possible.

A gaussian transformation is applied on the LogP values such

that there is a peak at 2.5. The experiments performed in this

study are listed in Table 1.

3.1. Exact MO-MEMES

This section describes the results obtained by applying

the Exact MO-MEMES architecture in screening the ZINC-

250K library to find potential hits for 6LU7 and 4BTK. Section
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FIGURE 6

Distribution of binding a�nity with 4BTK, SAS, and LogP of molecules sampled by Deep MO-MEMES (blue) and molecules sampled randomly

(orange) from the ZINC-250K dataset.

3.1.1 elaborates the performance of MO-MEMES on different

combinations of two properties and Section 3.1.2 talks about

how MO-MEMES works on sampling molecules that possess

three properties simultaneously.

3.1.1. Optimizing two properties

The initial experiments were performed to see how the

pipeline performs for sampling molecules with LogP close to

2.5 and a high binding affinity. We find that the proposed

acquisition performs really well in identifying the molecules

with desirable properties and this is shown in Figure 2. The

red sections in the heatmap show that more than 90% of the

desirable molecules were sampled i.e., molecules with binding

affinity < −8 kcal/mol and LogP between 0 and 5 while

performing docking calculations on only 6% of the entire

dataset. Furthermore, the application of gaussian function on

the LogP to identify molecules with LogP in the appropriate

range also proved helpful in achieving the task. In order

to analyze the effectiveness of the proposed algorithm, the

molecules were split into buckets based on the binding affinity

and LogP and the total number of molecules in each bucket

was then compared to the number of molecules identified by

MO-MEMES.
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FIGURE 7

Distribution of binding a�nity with 6LU7, SAS, and LogP of molecules sampled by Deep MO-MEMES (blue) and molecules sampled randomly

(orange).

For further validation, another combination of properties

was used: SAS and binding affinity. The results for the

experiments involving binding affinity and SAS for 4BTK

and 6LU7 are available in Figures 3A,B, respectively. In

this scenario, the most desirable region is the top left

and for both proteins, the proposed acquisition function

identifies majority of the molecules in the regions where

both properties are optimal. In the most desirable region

where SAS < 2 and binding affinity < −8 kcal/mol, all

the molecules are sampled. This shows that the proposed

acquisition function captures the joint information

from each property and finds the molecules at the

pareto frontier.

3.1.2. Optimizing three properties

The previous section shows the capability of the proposed

framework to sample molecules with two properties

but for further generalization, the pipeline was used

for three properties as well: binding affinity, LogP and
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FIGURE 8

Distribution of binding a�nity with 4BTK, SAS, and LogP of molecules sampled by Deep MO-MEMES (blue) and molecules sampled randomly

(orange) from the HTS collection by Enamine.

SAS. Moreover, from the experiments listed in Table 1,

a consistent trend was seen that models using CDDD

embeddings performed better than the ones with Mol2vec

embeddings. Hence, for this task CDDD embeddings have

been used for finding potential hits against both 6LU7

and 4BTK.

In Figures 4, 5, the distributions of binding affinity, LogP

and SAS of the sampled molecules are plotted in blue and

this is compared to random sampling drawn in orange. The

shift in distribution of binding affinity and SAS toward lower

values along with a peak close to 2.5 for LogP in comparison

to random sampling show that MO-MEMES achieves the goal

of sampling molecules with more than two desirable properties

as well.

3.2. Deep MO-MEMES

The Exact MO-MEMES framework performs extremely

well across all the tasks however, Exact MO-MEMES
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cannot be scaled to very large datasets due to the space

and time constraint of the ExactGP model. Hence, the

performance of Deep MO-MEMES is first verified on three

properties on the ZINC-250K dataset followed by applying

it on the enamine collection by HTS which contains 2

million molecules. The application of Deep MO-MEMES

to all the experiments listed in Table 1 are available in the

Supplementary material.

3.2.1. Optimizing three properties

The performance is evaluated by applying it to sampling

molecules from ZINC-250K that possess a desirable binding

affinity, LogP and SAS. In Figures 6, 7, for each property

two are plotted. The orange curve represents the distribution

of the property of molecules sampled randomly and the

blue curve represents the distribution of the property of

molecules sampled by Deep MO-MEMES. It is visible

that the distribution of binding affinity of molecules

sampled by Deep MO-MEMES is further to the left in

comparison to random sampling. Similarly, for SAS and

LogP, sharp peaks are seen at 2 and 2.5 respectively which is

desirable.

3.2.2. Performance on large dataset

In this section, application of Deep MO-MEMES is

shown on Enamine1 dataset, used for virtual screening.

Enamine HTS collection containing 2,106,952 screening

compounds is used to find potential hit molecules against target

receptor TTBK1.

The performance of Deep MO-MEMES is showcased in

Figure 8 where we see a trend consistent with the previous

sections. The molecules sampled by MO-MEMES possess a

more negative docking score, significantly lower SAS and

LogP values between 0 and 5. Hence, this shows that MO-

MEMES gives great performance on large datasets with multiple

properties as well and hence, can be used for screening large

libraries as well.

4. Conclusion

In this study, we propose MO-MEMES, a multi objective

extension of the MEMES framework proposed by Mehta et al.

for machine learning aided enhanced molecular sampling.

MO-MEMES uses multi-objective Bayesian optimization to

sample molecules from drug libraries that possess multiple

desirable properties like binding affinity, LogP and synthetic

1 https://enamine.net/compound-collections/screening-collection/

hts-collection

accessibility. This is done by training individual gaussian

process models for each property and using the product

of the individual expected improvements of each property

to sample the next set of points. This acquisition function

was used with both Exact MO-MEMES and Deep MO-

MEMES variations of MEMES on different combinations of

properties and proteins. The proposed approach showed great

performance in sampling molecules with desirable properties

while optimizing for two and three objectives and consistently

sampled more than 90% of the top hits i.e., molecules at the

pareto frontier with respect to all properties from the drug

library of interest. This method can be efficiently used to screen

large molecular libraries that are typically not feasible using

traditional techniques and can be used in other domains as

well by changing the scoring function that the GPR is expected

to learn.

Data availability statement

The code for MO-MEMES is available at https://github.

com/devalab/MO-MEMES. Data can be obtained from

corresponding author upon request.

Author contributions

UDP conceptualized the problem and supervised the

project. SM, MG, and UDP designed the ML methodology and

wrote the manuscript. SM andMG performed the investigations

and data analysis. All authors reviewed the manuscript. All

authors contributed to the article and approved the submitted

version.

Acknowledgments

We thank DST-SERB (Grant No. CRG/2021/008036) and

IHub-Data, IIIT Hyderabad for financial support.

Conflict of interest

The use of original MEMES framework based on which

MO-MEMES has been developed is filed as a US Non-

provisional application with the USPTO for the use of

MEMES framework in high-throughput screening exercises

by the International Institute of Information Technology,

Hyderabad. US Application No.: 17526712. The funders did

not have any role in the design, idea, data collection, analysis,

interpretation, writing of the manuscript or decision to submit

it for publication.

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

Frontiers inMedicine 11 frontiersin.org

https://doi.org/10.3389/fmed.2022.916481
https://enamine.net/compound-collections/screening-collection/hts-collection
https://enamine.net/compound-collections/screening-collection/hts-collection
https://github.com/devalab/MO-MEMES
https://github.com/devalab/MO-MEMES
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Mehta et al. 10.3389/fmed.2022.916481

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fmed.2022.916481/full#supplementary-material

References

1. Schmidt HR, Betz RM, Dror RO, Kruse AC. Structural basis for
σ1 receptor ligand recognition. Nat Struct Mol Biol. (2018) 25:981–7.
doi: 10.1038/s41594-018-0137-2

2. Lyne PD. Structure-based virtual screening: an overview. Drug Discov Tdy.
(2002) 7:1047–55. doi: 10.1016/S1359-6446(02)02483-2

3. Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH. Structure-based virtual
screening for drug discovery: a problem-centric review. AAPS J. (2012) 14:133–41.
doi: 10.1208/s12248-012-9322-0

4. McCorvy JD, Butler KV, Kelly B, Rechsteiner K, Karpiak J, Betz RM, et al.
Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs. Nat
Chem Biol. (2018) 14:126–34. doi: 10.1038/nchembio.2527

5. Irwin JJ, Shoichet BK. ZINC- a free database of commercially available
compounds for virtual screening. J Chem Inform Model. (2005) 45:177–82.
doi: 10.1021/ci049714+

6. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, et al.
ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res.
(2012) 40:D1100–7. doi: 10.1093/nar/gkr777

7. Pathak Y, Laghuvarapu S, Mehta S, Priyakumar UD. Chemically interpretable
graph interaction network for prediction of pharmacokinetic properties of drug-
like molecules. In: Proceedings of the AAAI Conference on Artificial Intelligence.
(2020). p. 873–80. doi: 10.1609/aaai.v34i01.5433

8. Laghuvarapu S, Pathak Y, Priyakumar UD. Band nn: A deep learning
framework for energy prediction and geometry optimization of organic small
molecules. J Comput Chem. (2020) 41:790–9. doi: 10.1002/jcc.26128

9. Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, et al.
MoleculeNet: a benchmark for molecular machine learning. Chem Sci. (2018)
9:513–30. doi: 10.1039/C7SC02664A

10. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al.
Applications of machine learning in drug discovery and development. Nat Rev
Drug Discov. (2019) 18:463–77. doi: 10.1038/s41573-019-0024-5

11. Su H, Wang W, Du Z, Peng Z, Gao SH, Cheng MM, et al. Improved protein
structure prediction using a new multi-scale network and homologous templates.
Adv Sci. (2021) 2021:2102592. doi: 10.1002/advs.202102592

12. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et
al. Highly accurate protein structure prediction with AlphaFold. Nature. (2021)
596:583–9. doi: 10.1038/s41586-021-03819-2

13. Noé F, Tkatchenko A, Müller KR, Clementi C. Machine learning
for molecular simulation. Annu Rev Phys Chem. (2020) 71:361–90.
doi: 10.1146/annurev-physchem-042018-052331

14. Pattnaik P, Raghunathan S, Kalluri T, Bhimalapuram P, Jawahar
C, Priyakumar UD. Machine learning for accurate force calculations in
molecular dynamics simulations. J Phys Chem A. (2020) 124:6954–67.
doi: 10.1021/acs.jpca.0c03926

15. Manzhos S, Carrington T Jr. Neural network potential energy surfaces
for small molecules and reactions. Chem Rev. (2020) 121:10187–217.
doi: 10.1021/acs.chemrev.0c00665

16. Aggarwal R, Gupta A, Chelur V, Jawahar C, Priyakumar UD. Deeppocket:
ligand binding site detection and segmentation using 3d convolutional neural
networks. J Chem Inform Model. (2021) doi: 10.26434/chemrxiv.14611146

17. Bagal V, Aggarwal R, Vinod P, Priyakumar UD. MolGPT: molecular
generation using a transformer-decoder model. J Chem Inform Model. (2021)
62:2064–76. doi: 10.26434/chemrxiv.14561901

18. Podda M, Bacciu D, Micheli A. A deep generative model for fragment-based
molecule generation. In: International Conference on Artificial Intelligence and
Statistics. PMLR (2020). p. 2240–50.

19. Grisoni F, Moret M, Lingwood R, Schneider G. Bidirectional molecule
generation with recurrent neural networks. J Chem Inform Model. (2020)
60:1175–83. doi: 10.1021/acs.jcim.9b00943

20. Kusner MJ, Paige B, Hernández-Lobato JM. Grammar variational
autoencoder. In: International Conference on Machine Learning. PMLR (2017). p.
1945–54.

21. Jin W, Barzilay R, Jaakkola T. Junction tree variational autoencoder for
molecular graph generation. In: International Conference on Machine Learning.
PMLR (2018). p. 2323–32.

22. Lim J, Ryu S, Kim JW, Kim WY. Molecular generative model based on
conditional variational autoencoder for de novo molecular design. J Cheminform.
(2018) 10:1–9. doi: 10.1186/s13321-018-0286-7

23. Guimaraes GL, Sanchez-Lengeling B, Outeiral C, Farias PLC, Aspuru-
Guzik A. Objective-reinforced generative adversarial networks (ORGAN)
for sequence generation models. arXiv preprint arXiv:170510843. (2017).
doi: 10.48550/arXiv.1705.10843

24. De CaoN, Kipf T.MolGAN: an implicit generativemodel for small molecular
graphs. arXiv preprint arXiv:180511973. (2018). doi: 10.48550/arXiv.1805.11973

25. Prykhodko O, Johansson SV, Kotsias PC, Arús-Pous J, Bjerrum EJ,
Engkvist O, et al. A de novo molecular generation method using latent
vector based generative adversarial network. J Cheminform. (2019) 11:1–13.
doi: 10.1186/s13321-019-0397-9

26. Maziarka Ł, Pocha A, Kaczmarczyk J, Rataj K, Danel T, Warchoł M. Mol-
CycleGAN: a generative model for molecular optimization. J Cheminform. (2020)
12:1–18. doi: 10.1186/s13321-019-0404-1

27. Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo
drug design. Sci Adv. (2018) 4:eaap7885. doi: 10.1126/sciadv.aap7885

28. You J, Liu B, Ying Z, Pande V, Leskovec J. Graph convolutional policy
network for goal-directed molecular graph generation. In: 32nd Conference on
Neural Information Processing Systems. Montreal, QC (2018).

29. Khemchandani Y, O’Hagan S, Samanta S, Swainston N, Roberts TJ,
Bollegala D, et al. DeepGraphMolGen, a multi-objective, computational strategy
for generating molecules with desirable properties: a graph convolution
and reinforcement learning approach. J Cheminform. (2020) 12:1–17.
doi: 10.1186/s13321-020-00454-3

30. Goel M, Raghunathan S, Laghuvarapu S, Priyakumar UD. MoleGuLAR:
molecule generation using reinforcement learning with alternating rewards. J
Chem Inform Model. (2021) 61:5815–26. doi: 10.1021/acs.jcim.1c01341

31. GaoW, Coley CW. The synthesizability of molecules proposed by generative
models. J Chem Inform Model. (2020) 60:5714–23. doi: 10.1021/acs.jcim.0c00174

32. Tomberg A, Boström J. Can “easy” chemistry produce complex,
diverse and novel molecules? Drug Discover Today. (2020) 25:2174–81.
doi: 10.26434/chemrxiv.12563231

33. Lyu J, Wang S, Balius TE, Singh I, Levit A, Moroz YS, et al. Ultra-
large library docking for discovering new chemotypes. Nature. (2019) 566:224–9.
doi: 10.1038/s41586-019-0917-9

34. Irwin JJ, Tang KG, Young J, Dandarchuluun C,Wong BR, Khurelbaatar M, et
al. ZINC20–a free ultralarge-scale chemical database for ligand discovery. J Chem
Inform Model. (2020) 60:6065–73. doi: 10.1021/acs.jcim.0c00675

Frontiers inMedicine 12 frontiersin.org

https://doi.org/10.3389/fmed.2022.916481
https://www.frontiersin.org/articles/10.3389/fmed.2022.916481/full#supplementary-material
https://doi.org/10.1038/s41594-018-0137-2
https://doi.org/10.1016/S1359-6446(02)02483-2
https://doi.org/10.1208/s12248-012-9322-0
https://doi.org/10.1038/nchembio.2527
https://doi.org/10.1021/ci049714+
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1609/aaai.v34i01.5433
https://doi.org/10.1002/jcc.26128
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1002/advs.202102592
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1021/acs.jpca.0c03926
https://doi.org/10.1021/acs.chemrev.0c00665
https://doi.org/10.26434/chemrxiv.14611146
https://doi.org/10.26434/chemrxiv.14561901
https://doi.org/10.1021/acs.jcim.9b00943
https://doi.org/10.1186/s13321-018-0286-7
https://doi.org/10.48550/arXiv.1705.10843
https://doi.org/10.48550/arXiv.1805.11973
https://doi.org/10.1186/s13321-019-0397-9
https://doi.org/10.1186/s13321-019-0404-1
https://doi.org/10.1126/sciadv.aap7885
https://doi.org/10.1186/s13321-020-00454-3
https://doi.org/10.1021/acs.jcim.1c01341
https://doi.org/10.1021/acs.jcim.0c00174
https://doi.org/10.26434/chemrxiv.12563231
https://doi.org/10.1038/s41586-019-0917-9
https://doi.org/10.1021/acs.jcim.0c00675
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Mehta et al. 10.3389/fmed.2022.916481

35. Liao Z, You R, Huang X, Yao X, Huang T, Zhu S. DeepDock:
enhancing ligand-protein interaction prediction by a combination of ligand
and structure information. In: 2019 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). San Diego, CA: IEEE (2019). p. 311–7.
doi: 10.1109/BIBM47256.2019.8983365

36. Graff DE, Shakhnovich EI, Coley CW. Accelerating high-throughput
virtual screening through molecular pool-based active learning. Chem Sci. (2021)
12:7866–81. doi: 10.1039/D0SC06805E

37. Gupta A, Zhou HX. Machine learning-enabled pipeline for large-
scale virtual drug screening. J Chem Inform Model. (2021) 61:4236–44.
doi: 10.1021/acs.jcim.1c00710

38. Baird SG, Diep TQ, Sparks TD. DiSCoVeR: a materials discovery screening
tool for high performance, unique chemical compositions. Digit Discov. (2022)
doi: 10.33774/chemrxiv-2021-5l2f8-v3

39. Mehta S, Laghuvarapu S, Pathak Y, Sethi A, Alvala M, Priyakumar UD.
Memes: machine learning framework for enhancedmolecular screening. Chem Sci.
(2021) 12:11710–21. doi: 10.1039/D1SC02783B

40. Daulton S, Balandat M, Bakshy E. Differentiable expected hypervolume
improvement for parallel multi-objective Bayesian optimization. In: The
Conference on Uncertainty in Artificial Intelligence (UAI). Elndhoven (2020).
p. 9851–64.

41. Daulton S, Eriksson D, Balandat M, Bakshy E. Multi-objective
bayesian optimization over high-dimensional search spaces. arXiv preprint
arXiv:210910964. (2021).

42. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et
al. AutoDock4 and AutoDockTools4: automated docking with selective receptor
flexibility. J Comput Chem. (2009) 30:2785–91. doi: 10.1002/jcc.21256

43. Sterling T, Irwin JJ. ZINC 15-ligand discovery for everyone. J Chem Inform
Model. (2015) 55:2324–37. doi: 10.1021/acs.jcim.5b00559

44. Jaeger S, Fulle S, Turk S. Mol2vec: unsupervised machine learning
approach with chemical intuition. J Chem Inform Model. (2018) 58:27–35.
doi: 10.1021/acs.jcim.7b00616

45. Winter R, Montanari F, Noé F, Clevert DA. Learning continuous
and data-driven molecular descriptors by translating equivalent chemical
representations. Chem Sci. (2019) 10:1692–701. doi: 10.1039/C8SC
04175J

46. Gardner J, Pleiss G, Weinberger KQ, Bindel D, Wilson AG. Gpytorch:
blackbox matrix-matrix gaussian process inference with GPU acceleration. In:
Advances in Neural Information Processing Systems. (2018).

47. Brochu E, Cora VM, De Freitas N. A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:10122599. (2010). Available online at:
https://proceedings.mlr.press/v119/suzuki20a.html

48. Suzuki S, Takeno S, Tamura T, Shitara K, Karasuyama M. Multi-objective
Bayesian optimization using Pareto-frontier entropy. In: International Conference
on Machine Learning. PMLR (2020). p. 9279–88.

49. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal
structure of SARS-CoV-2 main protease provides a basis for design of improved
α-ketoamide inhibitors. Science. (2020) 368:409–12. doi: 10.1126/science.abb
3405

50. Sato S, Cerny RL, Buescher JL, Ikezu T. Tau-tubulin kinase 1
(TTBK1), a neuron-specific tau kinase candidate, is involved in tau
phosphorylation and aggregation. J Neurochem. (2006) 98:1573–84.
doi: 10.1111/j.1471-4159.2006.04059.x

Frontiers inMedicine 13 frontiersin.org

https://doi.org/10.3389/fmed.2022.916481
https://doi.org/10.1109/BIBM47256.2019.8983365
https://doi.org/10.1039/D0SC06805E
https://doi.org/10.1021/acs.jcim.1c00710
https://doi.org/10.33774/chemrxiv-2021-5l2f8-v3
https://doi.org/10.1039/D1SC02783B
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1021/acs.jcim.7b00616
https://doi.org/10.1039/C8SC04175J
https://proceedings.mlr.press/v119/suzuki20a.html
https://doi.org/10.1126/science.abb3405
https://doi.org/10.1111/j.1471-4159.2006.04059.x
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

	MO-MEMES: A method for accelerating virtual screening using multi-objective Bayesian optimization
	1. Introduction
	2. Theory and methods
	2.1. Docking methodology
	2.2. Machine learning framework for Enhanced MolEcular Screening (MEMES)
	2.2.1. Gaussian process regression (GPR)
	2.2.2. Expected improvement (EI)

	2.3. Multi objective Bayesian optimization
	2.3.1. Acquisition function


	3. Results and discussion
	3.1. Exact MO-MEMES
	3.1.1. Optimizing two properties
	3.1.2. Optimizing three properties

	3.2. Deep MO-MEMES
	3.2.1. Optimizing three properties
	3.2.2. Performance on large dataset


	4. Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


