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Deep phenotyping unveils hidden traits
and genetic relations in subtle mutants
Adriana San-Miguel1,w, Peri T. Kurshan2, Matthew M. Crane3,w, Yuehui Zhao4, Patrick T. McGrath4,

Kang Shen2 & Hang Lu1,3

Discovering mechanistic insights from phenotypic information is critical for the understanding

of biological processes. For model organisms, unlike in cell culture, this is currently

bottlenecked by the non-quantitative nature and perceptive biases of human observations,

and the limited number of reporters that can be simultaneously incorporated in live animals.

An additional challenge is that isogenic populations exhibit significant phenotypic

heterogeneity. These difficulties limit genetic approaches to many biological questions.

To overcome these bottlenecks, we developed tools to extract complex phenotypic traits

from images of fluorescently labelled subcellular landmarks, using C. elegans synapses as a

test case. By population-wide comparisons, we identified subtle but relevant differences

inaccessible to subjective conceptualization. Furthermore, the models generated testable

hypotheses of how individual alleles relate to known mechanisms or belong to new pathways.

We show that our model not only recapitulates current knowledge in synaptic patterning but

also identifies novel alleles overlooked by traditional methods.
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U
nderstanding gene function and the structure of biological
networks relies heavily on identifying morphological,
functional or behavioural phenotypic changes upon

genetic perturbations. With deep-sequencing and the recent
advances in genome-editing tools, the bottleneck for discovery of
cellular functions now is phenotypic analyses1–5. Most genetic
studies thus far focus on mutations causing dramatic phenotypic
differences that can be easily assessed by qualitative visual
inspection. Yet, an increased interest in understanding genetic
mechanisms of population heterogeneity6, how noise
affects network responses7,8 and how developmental systems
compensate for perturbations9,10 means that simplistic,
qualitative phenotypes are insufficient. In addition, many
biological perturbations relevant to human diseases have subtle
phenotypes not necessarily accessible to eye1,11,12. This challenge
may be addressed, in part, by sensitive, reliable methods to
robustly characterize subtle phenotypes.

While image-processing tools have been increasingly applied to
perform quantitative analysis, this has been mostly useful
for in vitro cell models13–23. For live in vivo models
(for example, genetic organisms), the number of markers
(for example, fluorescent reporters) that can be simultaneously
used is usually small, thus limiting the dimensions of the
phenotype to be scored. There is also inherent complexity of
working with intact animals, for instance, forward genetic screens
in small model organisms are usually performed by phenotyping
single animals, not populations of clones as in cell culture. These
difficulties have prevented extensive use of large-scale high-
resolution image-based studies. In Caenorhabditis elegans, live
phenotyping has mostly focused on drastic changes exhibited on
gross features (for example, whole-animal or tissue-level
changes)24–26. Most applications involving end point high-
resolution imaging are low dimensional, with the exception of
live tracing of cell lineages and quantification of gene expression in
embryos15,27,28. However, the rich information encoded in
fluorescence images of multicellular models has not been fully
exploited at high resolution (that is, characterization of subcellular
features within a living multicellular organism, thus missing the
identification and characterization of phenotypic changes of weak
alleles29,30). Although different approaches have been used to
identify chemically or genetically induced phenotypes, these have
typically either screened for severe changes or have focused on
behavioural or anatomical changes5,31–38.

One particularly challenging area for quantitative phenotypic
profiling is synaptic patterning in C. elegans as a test case for
the general strategy. Here we present an approach to perform
comprehensive multidimensional phenotypic profiling using
fluorescently labelled synaptic puncta in C. elegans. Our
combined computational and experimental approach addresses
the major challenges to isolate and characterize subtle alleles by
quantifying micron-sized subcellular landmarks in an unbiased
manner from a single genetically encoded reporter. This
integrative approach is based on applying statistical methods to
capture the phenotypic heterogeneity in isogenic populations,
creating phenotypic profiles containing multiple and complex
features, and developing models to place subtle alleles in the
phenotypic space. We demonstrate an approach to identify
genetic alterations that give rise to subtle and varying phenotypic
changes, unintuitive to and difficult to assess by human
perception, but nonetheless relevant in the nematode C. elegans.
Because of the large dimensions of the phenospace available to
the computational approach, we can now identify changes from
an ensemble of phenotype characteristics, use them to cluster
alleles and give rise to new hypotheses of genetic relations. Using
this method, we identified a new allele with a surprising role in
C. elegans synapse morphology and function.

Results
Deep phenotyping reveals isogenic population heterogeneity.
In C. elegans, synaptic patterning is thought to be stereotypical39–42,
and the use of fluorescent reporters has enabled the discovery of
many genes involved in synaptogenesis43. We focus on synaptic
patterns at the neuromuscular junction, specifically in the DA9
motor neuron (Fig. 1a and Supplementary Fig. 1a). Genes involved
in synaptic assembly have been identified by screening grossly
mislocalized presynaptic material42,44–49. Identifying weak
alleles (for example, small differences in size, intensity or
distribution of micron-sized puncta as compared with those
of wild type) is an arduous (sometimes impossible) undertaking.
Weak alleles might also exhibit pleiotropy with a variety of
phenotypic characteristics affected, many likely imperceptible to or
difficult to assess by human vision. The challenge resides in
accurately quantifying metrics that fully capture image-based
phenotypes, and in identifying the relevant differences that
characterize subtle alleles (Fig. 1b,c).

Using a modified large-scale imaging and sorting system45,50–53

(Supplementary Fig. 1 and Supplementary Note 1), we performed
multidimensional profiling of the synaptic puncta in DA9. We
developed a microfluidic device capable of orienting animals
for optimal imaging of the axon of DA9, located on the dorsal side
of the animal. Puncta identification was performed based on
support vector machines, while quantitative descriptive metrics of
axonal synaptic patterning were extracted for characteristics that
are difficult to assess by visual inspection. While previous
phenotyping of synaptic patterning in DA9 has mostly focused
on localization defects42–44,46,47,49,54,55, here we focus on
metrics important to identify much subtler phenotypes, such as
the size, intensity and homogeneity of synaptic puncta. The
multidimensional phenotypic profiles incorporate information
from a total of 76 descriptive different metrics. We developed a
data analysis pipeline for automated image annotation
(Supplementary Figs 1–3 and Supplementary Note 1), and
identification of the characteristics that differentiate mutant
phenotypes from wild type. Contrary to the conventional notion
of the stereotyped development39–42, isogenic populations
of wild type and previously isolated strong mutants exhibit
surprisingly significant heterogeneity in various phenotypic
descriptors even under strictly controlled culture conditions.
These descriptors include biologically important measures such
as puncta size, number and intensity, and the synaptic domain
length (Fig. 1d,e). While means of these metrics may be different
between mutants and wild type, many are obscured by the variance
in the data. Even a comparison of the most distinct metrics is
unable to perfectly separate the mutant and wild-type populations
(Fig. 1f). These data suggest that it is in general impossible to
establish an unequivocal threshold to separate populations using
single features (as illustrated in Fig. 1c). Therefore, previous
screens that identified mutants focusing on one trait (such as
synaptic localization)56,57, or based on qualitative inspection, must
have relied on favourable sampling of these populations (either by
having screened more than one animal from these genotypes or by
having stochastically sampled a phenotypically severe individual);
in other words, many alleles could have been missed in these
screens, and even in the screens for severe phenotypic changes.

Subtle alleles exhibit complex multidimensional phenotypes.
To identify new alleles that affect morphology, particularly those
that may be subtle or of previously unidentified phenotypes,
we conducted an automated unbiased forward genetic screen
(Supplementary Note 2). Because the screen is not directed
towards specific phenotypes, we chose to set the sorting threshold
in phenospace where the occurrence of a wild type is rare.
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Figure 1 | Identification of subtle phenotypes requires unbiased quantitative information. (a) Schematic representations of presynaptic sites at the DA9

motor neuron axon. (b) Phenotypes imperceptible by qualitative analysis can be detected by unbiased computation of multiple descriptors. (c) Computation

of complex features enables the identification of non-obvious alleles. (d) Typical fluorescence micrographs of synaptic patterns (four images per genotype) for

wild-type and some mutant genotypes; scale bar, 20mm. (e) Boxplots showing heterogeneity in synaptic descriptors from populations of wild-type and known

mutants. Box represents 25th, 50th and 75th percentiles; whiskers show minimum and maximum. (f) The two features with means most different from wild

type for cdka-1 (top) and lin-44 (bottom); even descriptors with significant differences exhibit data overlap between wild type and mutant. N¼443

(wild type), 124 (cdka-1(tm648)), 225 (lin-44(n1792)), 239 (syd-2(wy5)), 126 (sad-1(ky330)) and 152 (jnk-1(gk7)). **Po0.001 ***Po0.0001. P values in plots

for number and domain length are for comparisons of all groups versus wild type. P values obtained from a multiple comparison test (Kruskal–Wallis), with a

99% confidence level and Bonferroni correction. Statistical values displayed only for comparisons versus wild type.
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Specifically, animals were positively sorted if any of the
phenotypic features exceeded a pre-set threshold. Because of the
stochasticity in the phenotypes, this step serves as an enrichment
for true mutants but cannot definitively identify them. In total, we
screened B4,000 haploid genomes and sorted 155 worms
(B3.7%; Supplementary Fig. 4). Viable and nonsterile animals
were ranked based on the initial phenotypic scores, 24 of which
were subjected for further analysis (Supplementary Note 2).

To determine whether the mutants breed true and how they
are different from wild type, we next characterized the
phenotypes of isogenic populations of the putative mutants
(Supplementary Fig. 4). Because mutants were isolated based on
differences from a few specific parameters and, only from a single
instance of phenotyping, the exact nature (which is highly
unlikely to be the same as the initial sorting criterion) and
magnitude of the phenotypic alterations are unknown. We thus
conducted comprehensive image-based phenotypic profiling
(76 metrics, Supplementary Note 1) of wild type and all mutant
populations. We also included previously identified mutants as
part of the study and validation. Our analysis contains a total
of 41 lines (16 previously identified mutants, 24 isolated in
this screen and wild type), for a total of B6,000 images

(Supplementary Fig. 5). To answer the question to what extent
(degree of separation) and in what way (distinguishing features)
mutants are different from wild type, we next performed pairwise
comparisons between the mutant and the wild-type strains using
stepwise logistic regression (SWLR; Fig. 2). For each model, the
linear combination of all relevant information represents the
mutant phenotypic dimension, and can be used to analyse both
strong and weak mutants. The position of each animal on this
curve is a predictor of the animal exhibiting the specific mutant
phenotype. Figure 2a–c illustrates one visually apparent mutant
(arl-8) and one subtle mutant found from the screen (a178). For
arl-8, a visually identifiable phenotype, the logistic regression
model resembles a step function, perfectly separating the mutant
from wild type (Fig. 2b), and several of the features by themselves
can already differentiate the mutant (Fig. 2c). For weak alleles
such as a178, with no obvious phenotype from visual inspection
(Fig. 2a), the differences are still evident in the model when
compared with wild type along the a178 phenospace (Fig. 2b,c).
Owing to the subtlety of the phenotype, it is necessary to integrate
information from a large population, rather than from
phenotypic analysis of a single animal. From the analysis, a178
has a lower variability in puncta brightness (feature 21), while
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Figure 2 | Phenotypic differences between populations are revealed by logistic regression models. (a) Images of wild type, arl-8 (easily identifiable) and

a178 (no obvious phenotype), four images per genotype; scale bar, 20mm. (b) Plots showing logistic regression fits for obvious (left, arl-8) and subtle (right,

a178) phenotypes. (c) Histograms for the three most relevant features, and the score in the arl-8 and a178 phenotypic scales. N¼ 111 (arl-8(wy271)), 228

(a178). Features listed are: 75: number of puncta in the top 75% of size range; 55: 10th percentile of integrated intensity; 33: intensity of posterior puncta;

21: puncta intensity homogeneity; 1: number of puncta; 52: interpunctal intensity. (d) Relevant features obtained from stepwise logistic regression

(from most to least relevant, left to right) for arl-8 and a178. Black line (quantification on the right axis) shows the change in model deviance as each feature

is added during model construction. Full feature descriptions, statistical analysis for model creation and feature selection are listed in Supplementary

Information.
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also having a larger number of puncta (feature 1), although these
two features alone are insufficient to describe how a178 differs
from wild type (Fig. 2c,d). The most significant feature selected
for a178 is a statistical feature (variability), which will certainly
elude the eye (Fig. 2a). One advantage of building logistic
regression models with forward–backward feature selection
algorithm is that only those variables that significantly
contribute to the model to differentiate the mutant from wild
type are included; it is not surprising that some mutants require
many descriptors while others not (Fig. 2c, Supplementary Fig. 6
and Supplementary Notes 3 and 4). Interestingly, the number of

features necessary to distinguish a mutant varies, and is not
correlated with the separation efficiency achieved (Supplementary
Fig. 7).

We next examined the discriminatory power of each pairwise
model for previously identified mutants and for those isolated in
our screens (Fig. 3a–c). Overlapping probability plots (Fig. 3a)
and slow rising receiver operating characteristic curves (Fig. 3c)
with a small area under the curve (AUC; Fig. 3b), for
example, a221, indicate poor separation of genotypes in the
phenospace, that is, mutant having a subtle phenotype. Models
for most of the previously identified mutant collection display
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excellent discrimination power (AUC40.88), especially for
classical visually apparent mutants (AUC40.99; Fig. 3a). This
includes even the ventral mislocalization mutants (including
cyy-1(wy302), pct-1(wy575), cdk-5(ok626), cdka-1(tm648), a090
and a115), which is somewhat surprising since we did not image
the ventral side of the worms; this suggests that the amount of
synaptic material and their distribution are likely controlled, such
that ventral mislocalization affects dorsal synapse morphology.
For these animals, visual inspection of the dorsal axon typically
cannot differentiate these animals from wild type (Supplementary
Fig. 5). Nonetheless, our models handle these mutants well, and
report true differences in subtle mutants that would have
been overlooked by qualitative assessment. In addition,
some mutants previously not identifiable by eye can also be
scored by our method: jnk-1(gk7) and jkk-1(km2). These
were previously identified from suppressor screens of arl-8
(ref. 58) and show some degree of separation, while
mtm-6(ok330) (ref. 59) is perfectly separable from wild type
(AUC¼ 0.996).

For mutants from our screen, the phenotype severity varies as
expected for weak alleles with large phenotypic heterogeneity.
Except for a175, which has a posteriorly shifted synaptic pattern,
none of the isolated mutants display a visually apparent
phenotype. According to logistic regression models, however,
some (for example, a220, a163) are as easy to identify as the
known mutant collection, and others are much more subtle
(for example, a228), likely because of two reasons: the model’s
ability to take into account multiple phenotypic features, and

features that are statistical in nature (such as variability), both
changes difficult to assess by human perception. Notably, the
model for a220 can almost perfectly discern between mutant and
wild-type populations (AUC¼ 0.94), although visual inspection
detects no obvious defects (Fig. 3d).

Subtle mutant a178 shows unexpected behavioural defects.
Next, we selected one mutant, a178, for further study since it
possesses an intriguing composite phenotype, one aspect of which
involves reduced variability of synapses within each individual
(Fig. 2). Although robust (that is, measurable and reproducible)
and stable even after multiple outcrosses, the a178 phenotype is
also extremely subtle to human perception. Moreover, this
mutant displayed no obvious defects in standard locomotory
assays (Fig. 4a), and seemed normal in aldicarb sensitivity, which
is a proxy for acetylcholine neurotransmission60 (Fig. 4b). We
mapped a178 to a region of chromosome III, which contained a
splice site mutation in sax-2 as determined by whole-genome
sequencing (Supplementary Note 5); furthermore, two known
alleles of sax-2 (ky216 and ot10) also phenocopied a178 using
both the models for the original isolate and the three times
outcrossed population (Fig. 4c), corroborating that a178 is an
allele of sax-2. Interestingly, sax-2 is previously known to be
involved in neuronal morphogenesis61. The a178 model suggests
that this population on average has a higher number of puncta
with more homogeneous brightness. Thus, we hypothesized that
the gene mutated in a178 may contribute to synaptic material
distribution and synaptic function. As compared with synaptic
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Figure 4 | Subtle mutant a178 exhibits robust behavioural phenotypes. (a) Animals crawling on plate show no locomotive differences (ventral body

bends per min), n¼ 20 per genotype. Statistical comparison performed by t-test with a 95% confidence level. Error bars are standard deviation. (b) a178

exhibits normal acetylcholine release according to an aldicarb sensitivity assay. Plot represents fraction of animals moving after transfer to a 1 mM aldicarb
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Supplementary Fig. 8. (e) Swimming animals represented as an overlay of segmented images (10 frames, 750 ms, see Supplementary Videos 1–4), two

individual worms per genotype and time point.
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patterning mutants (such as lin-44 or syd-2), a178 exhibits a
much subtler phenotype. Without confirmation of a functional
defect, it would be difficult to positively argue that a178, although
morphologically different from wild type, is a relevant mutation
that affects synaptic function. Notably, posterior to isolation, we
identified a drastic behavioural phenotype exhibited by a178.
These animals display a distinct swimming phenotype when
transferred to liquid media. Although no difference was observed
in initial swimming speed, a178 reduces thrashing frequency
drastically over time (Fig. 4d,e and Supplementary Videos 1–4) as
compared with wild type. The phenotype of a178 resembles the
swimming-induced paralysis previously observed in some
mutants (for example, dat-1)62 with defective transmitter
reuptake, which suggests that a178 could be defective in rates
of neurotransmitter release or reuptake while maintaining
rapid and sustained neuronal activation rates. The two sax-2
alleles also reduce swimming locomotion faster than wild
type, although to a smaller extent (Supplementary Fig. 8). The
results suggest that the subtle a178 synaptic patterning phenotype
may be related to inefficient neurotransmission, particularly
in vigorous activities that would require fast rates of
neurotransmitter release and recycling.

Multidimensional phenotype models are specific and sensitive.
We next characterized the multidimensional phenotype models’
sensitivity (how well each model picks up all animals in each
population) and specificity (how well the model can identify
wild-type animals as such). Because they were built to
differentiate the mutants from wild-type animals, the model can
be used to classify animals in a binary manner, but can be tuned
to meet different false-positive or false-negative criteria (as the
receiver operating characteristic curves show, Fig. 3). In order to
compare all models, we quantified the sensitivity (true-positive
rate) and specificity (true-negative rate) while applying a
threshold probability of 50%. To characterize sensitivity, we
computed the fraction of mutants picked up by the multivariate
SWLR as compared with that of the best feature (BF) models. We
apply the BF model as a best-case scenario when using single
metrics to characterize the mutants. In reality, and without a
prior feature selection algorithm (like the one performed here
through SWLR), the results of the BF model are an optimistic
estimate of the results when using a single-parameter approach
(Fig. 5a top). Not surprisingly, SWLR shows a much higher
sensitivity than BF. On the other hand, it is evident that
increasing the complexity of the models only moderately
improves specificity (Fig. 5a bottom), although this could be
because BF models themselves already reach high values of
specificity. An increase in model complexity could possibly entail
overfitting, describing noise rather than actual phenotypes and
resulting in reduced specificity. To test whether this trade-off
exists with SWLR, we computed the fivefold cross-validated
accuracy for BF and SWLR models (Supplementary Fig. 9), which
show that increasing model complexity significantly improves
model fit, without compromising model performance. SWLR
effectively overcomes the oversimplified descriptions of the
phenotypes in BF. Thus, unlike classification schemes based on
individual features, SWLR does not have to sacrifice sensitivity for
specificity, or vice versa (Fig. 5a). As expected, specificity
correlates with the severity of the phenotype; models for
more obvious mutants perform better (higher AUCs, higher
sensitivity), and are also more specific.

We next asked whether the sax-2 (a178) phenotype is specific.
It is conceivable that the model to describe a weak phenotype
(meaning where the difference between mutant and wild type is
small) may pick up many other genotypes, and would indicate

that the weak phenotype may be describing noise in the
measurements instead. When applying the SWLR model to
images from animals of all other genotypes, none other than the
original isolate and the three times outcrossed strain had a
probably higher than 0.5, indicating that the model is specific
against all other genotypes (Fig. 5b and Supplementary Note 5).
For comparison, the sax-2 alleles, ot10 and ky216, also scored
above 0.5 (Fig. 4c).

To ask how well the models we developed in this study
represent the specific mutants rather than representing mutants
in general, we next examined the global performance of all 40
SWLR models in a pairwise validation study with all genotypes
(Fig. 5c). As designed, wild type has very low probability of being
identified as a mutant by any of the mutant models, shown as the
small grey dots on the top row. Also as designed, the models pick
up the corresponding mutants effectively, as shown by the large
colour dots on the diagonal line. Severe mutants (rows whose
legends are highlighted in green) appear to be identifiable by a
significant number of models; it is likely that these mutants are
severely defective in a majority of the metrics measured, and thus
models that include these features (which are the majority of the
models) are able to identify them. On the other hand, models for
these severe mutants (columns whose legends are highlighted in
purple) are more selective than other models, as they pick up few
other mutants; this is because they likely contain fewer and more
dramatic descriptors, and thus are less promiscuous. For instance,
the visually apparent mutant arl-8 can be detected by a large
number of models (row highlighted in yellow), whereas
the arl-8 model is extremely selective. In contrast, subtle mutants
isolated in this work are mostly only identified by their
phenotype-specific models. For instance, a178 is exclusively
identified by its own model and by the model for a178(x3), and
vice versa (Fig. 5c,d).

Because promiscuous models suggest that high-probability
mutants using these models may share a set of features in the
phenospace, we next explored the information contained in these
model–data relationships. In Fig. 5e, each edge represents a
best-performing model–population pair (besides the population
used to build the model). As shown in this figure, relationships
between related phenotypes are present: a178 connects with
a178(x3), a176 connects with a176-R2 (an independent imaging
set of a176); similarly, the two alleles for lin-44 (including a175
isolated here) are linked; mutants cyy-1, cdka-1, cdk-5 and pct-1,
which are all part of parallel pathways that regulate targeting
of presynaptic components to the axon47, are part of the
same subnetwork, which also contains a new allele a218,
suggesting that a218 may participate in the same pathway of
synapse elimination and formation.

Visualization tools aid in recognition of altered phenotypes.
While the information provided by the significant features can help
interpret the biological defects of the mutants, the multi-
dimensional descriptors and ‘meta-features’ can be difficult to
conceptualize. We therefore built a visualization tool to illustrate
the average phenotype for each population (Fig. 6). Features
included in the schematics are those that can easily be
represented, such as population averages of synapse size and
intensity, interpunctal distance and location of the most posterior
synapse (Supplementary Note 6), while other complex features are
not included. Synapses are shown in descending order according to
size and intensity. For example, comparing a178 and wild type, we
see that a178 shows a lower variability in puncta brightness (more
homogeneous colouring), in addition to a slightly larger number of
synaptic sites; this is difficult to articulate when just looking at raw
images of both populations (Fig. 2a) as noted earlier. Alternatively,
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Figure 5 | Multidimensional models are sensitive and phenotype-specific. (a) Sensitivity (top) and specificity (bottom) of each SWLR and BF model.

SWLR models are more sensitive and more specific than the best possible single-feature model. Genotypes are ordered from most identifiable to less

identifiable, from each group (refer to Fig. 3a). (b) SWLR model for a178 distinguishes only a178 populations, and barely population a163. Bar plots represent

the average a178 average phenotypic probability of each population. (c) Matrix representing the performance of each SWLR model and the detectability of

each mutant under other models. Coloured dots represent cases where the specific tested population (rows) scored with an average phenotypic probability

above 0.5 under the tested model (columns). The size of the dot, as well as its colour, represents the average probability resulting from each model. Grey

dots represent an average probability below 0.5. Dots plotted on the diagonal line show that each model is able to identify its own population with a

probability 40.5 (except for two very subtle mutants), while the probabilities for wild type are all below 0.5 (no highlighting). Rows highlighted in green are

severe mutant populations. Columns highlighted in purple are models for severe mutants. (d) Models for a178 detect a178 populations. (e) Identification of

the population that each model best identifies (besides itself) reveals phenotypic similarities and corroborates known relationships. Empty circles represent

cases where some genetic or phenotypic relationship is known. Coloured nodes are instances where known genetic relationships are confirmed in the

network analysis. (a176-R2 is a different imaging set from a176, several generations later, a178(x3) is a three times outcrossed a178). Sample sizes,

statistical analysis for model creation and feature selection are listed in Supplementary Information.
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we categorized defects and illustrate the importance and
magnitude of changes in another representation to facilitate
formulating hypotheses of gene functions (Supplementary Fig. 10;
Supplementary Notes 9 and 10).

Allele severity and gene-relationship spectrum. Quantification
of phenotypic similarity has proven useful at dissecting genetic
relationships in studies of embryogenesis, synaptic transmission,
lifespan and insulin signalling, and the role of essential
genes14,15,55,63,64. We next asked whether the high-resolution
phenotypic profiles can be used to place the subtle mutants into
known pathways and thereby help to define the mutants’
functions. Since the phenotypic changes are subtle and present
in multiple features, and may include complex ‘meta-features’,
manually curating these alleles and placing them in putative
pathways is impossible. We thus hypothesized that compiling
information from the full phenotypic profile and comparing it to
phenotypes of known mutants could lead to improved theories of
gene function. Here we use hierarchical clustering to correlate
the full spectrum of phenotypic alterations in the isolated mutants
to those of the known mutants. Distances between genotypes in
the phenospace were calculated based on the average z-scored
phenotypic profiles for every population with all 76 features
(Supplementary Notes 3, 7 and 8). Since the features that make up

the phenotypic profile are not independent, a standardized
Euclidean distance, weighted by the inverse of the correlation
coefficient, was used. Thus, all features were taken into account
while avoiding biases towards aspects more heavily represented in
the phenotypic profile.

Hierarchical clustering recapitulates known relationships
between genotypes, as well as predicting novel relationships
(Fig. 7a). Further, the same information (of distances between
genotypes) is represented visually in the phenospace as a network,
which highlights the dramatic mutants found in conventional
screens as outer vertices and those in clusters near the wild type
as the weak allele found in our screens (Fig. 7b). In general,
phenotypes span a spectrum, with closeness suggesting functional
relatedness. For instance, genes previously known to work on
synaptic vesicle clustering at presynaptic terminals46,65–67, sad-1
and syd-2, do cluster together. Another example is allele a175,
which clustered with lin-44, suggesting that a175 could be
involved in the same Wnt signalling pathway49. We subsequently
tested this hypothesis and indeed found that a175 is an allele of
lin-44 by conventional complementation tests, where phenotypic
analysis was performed by visual inspection (since a175 is a very
easily identifiable phenotype).

Remarkably, mutants jnk-1 and jkk-1, each visually
indistinguishable to wild type, also cluster together. These genes
are known to work in the same pathway: JNK-1 activity is
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Figure 6 | Visualization tools aid in the identification of phenotypic changes. Schematic of the dorsal synaptic puncta of the ‘average worm’.

Schematics were constructed based on size distribution, interpunctal distance, intensity distribution and number of puncta. Synapses are arranged from

largest to smallest, and from brightest to dimmest for visualization purposes. Colour represents intensity. Genotypes are arranged and highlighted

according to Fig 7a.
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dependent upon JKK-1 activation68, and were found in
suppressor screens of arl-8, not a direct visual screen58. This
example demonstrates that even in instances when visual
inspection fails to detect differences, deep phenotyping can
extract quantitative information that leads to identification of new
alleles and possible functions. Another striking result of
phenotypic clustering is that mutants with known dendritic
mislocalization of synaptic puncta (for example, cdka-1 and
cdk-5) are also clustered together, even though the analysis is
performed solely on the axonal synaptic domain. cdka-1 and
cdk-5 are not only similar in their dendritic mislocalization, but
are also known to work in the same pathway (cdka-1 is an
activator of cdk-5 (refs 47,54)). Both new allele a177 and pct-1
exhibit dendritic mislocalization of synaptic material and are also
clustered together. In addition, a222 and a228, which are
clustered, also exhibit dendritic mislocalization. The SWLR
models for these mutants provide information regarding the
phenotypic changes observed by these subtle mutants. The axonal
phenotypes suggest that the dendritic mislocalization known for
cdka-1 and cdk-5 is accompanied by a reduction and
redistribution of synaptic material in the axonal domain. By
further examining the SWLR models for these mutants, we find,
for instance, the most relevant features for cdka-1 and cdk-5
(Supplementary Fig. 6): both include a reduced number of
puncta and a slight shift in the location of the most posterior
puncta, and reduced puncta intensity in the posterior portion of
the synaptic domain. This further corroborates the idea that the
synaptic material distribution on the dendritic and axonal regions
are commonly regulated.

Discussion
In this work we have applied an integrated approach to perform
quantitative and unbiased phenotyping of synaptic morphology
in C. elegans to search for alleles with very subtle but significant
differences, extremely difficult to perceive by human vision.
For genetic model systems, visual screens for subtle phenotypes
is generally challenging because it is experimentally difficult to
use many markers and to phenotype a large number of animals in
isogenic populations. The approach we present here can
address these challenges. Our high-throughput live imaging
set-up enables fast acquisition of images leading to large
sample numbers. Furthermore, coupling computer vision tools
with the extraction of complex non-intuitive ‘meta-features’, a
thorough quantitative reconstruction of phenotypic profiles
is built, in addition to the improved speed and reduced human
bias. These high-content profiles include far more information
than what is perceptible to human vision, particularly those
statistical in nature. We showed that this multidimensional
phenotypic profiling overcame the confounding effects of
phenotypic heterogeneity exhibited by isogenic populations, and
enabled the identification and characterization of subtle mutants.
Finding significant and relevant changes in the subtle mutants
was enabled by stepwise feature selection applied to build logistic
regression models and the pairwise population comparisons
against wild type. We discovered extremely subtle mutants that

also display striking behavioural phenotypes, such as a178,
impossible to identify by visual inspection, which illustrated the
power of this approach to explore potentially previously
unavailable phenospace.

Conventionally, mutants are traditionally considered interest-
ing if they give a large enough phenotypic alteration, usually
obvious to the eye; those alleles that have small changes,
particularly where the heterogeneity of the samples drowns the
difference, would be considered false-positives. The method
presented extends the boundary of accessible phenospace to
identify mutants, particularly those inaccessible via conventional
manual scoring. This becomes more important as the work using
genetic model systems move into problems relevant to human
psychiatric diseases, for instance, where the morphological
changes in the nervous system are extremely subtle11,12. Our
analysis shows that detailed and precise phenotypic profiling is
particularly effective at detecting differences from content-rich
images, imperceptible to human vision. Quantifiable phenotypic
changes, identified without prior knowledge or human vision-
driven biases, should enable the identification of previously
undiscovered morphological signatures that might aid in better
understanding the relationships between genetic variations and
phenotypic outcomes. This information can lead to hypotheses of
altered biological functions within populations of animals where
phenotypic differences appear extremely subtle. This type
of analysis should be applicable to deep phenotypic profiling of
fluorescent markers in the search for genes, metabolites or
drugs important for various biological functions. We envision this
approach to be invaluable in understanding the role of genes
with no known function, and finding the missing relevant players
in known pathways. Furthermore, this approach enables the
identification of subtly varying phenotypes that can result
from multigenic traits. Studies in model organisms, like
C. elegans, can lead the way to develop analysis tools able to
link phenotype to genotype in the complex but common
scenarios of multigenicity and phenotypic pleiotropy, and reveal
qualitatively uncovered phenotypic connections between
genotypes.

Methods
C. elegans strains and culture. Worms were cultured on nematode growth
medium (NGM) plates seeded with OP50 Escherichia coli bacteria using standard
methods69. Strains are listed in Supplementary Note 9. The wild-type strain is
XA7810: N2, wyIs85 (Pitr-1pB::gfp::rab-3). The following mutants were used syd-2
(wy5)X, sad-1 (ky330)X, mtm-6 (ok330)III, jnk-1 (gk7)IV, jkk-1 (km2)X, cdka-1
(tm648)III, cyy-1 (wy302), pct-1 (wy575), cdk-5 (ok626)III, lin-44 (n1792)I, arl-8
(wy271), sax-2 (ky216)III and sax-2 (ot10)III. Mutants found in a previous screen45

were also used: GT085, GT090, GT107, GT109 and GT115. Imaging of populations
was performed on age-synchronized worms grown to the start of egg-laying age.

Microfluidic device operation and imaging. Microfluidic chips were made by
polydimethylsiloxane (PDMS) replica molding from an SU-8 master mold fabricated
by photolithography, as previously described45. During imaging or genetic screening,
age-synchronized worms were suspended in M9 buffer with 0.01% Triton X-100.
A sealed plastic vial containing the worm suspension connected to the inlet of the
microfluidic chip and to the pressure source was used to inject worms into the chip by
pressure-driven flow. Imaging was performed at � 40 magnification in a compound
microscope using an oil objective (numerical aperture¼ 1.4) with a Hamamatsu Orca
D2 camera for simultaneous imaging of the red and green channels.

Figure 7 | Multidimensional profiles reveal mutant relationships and differences in the phenotypic spectrum. (a) Hierarchical clustering suggests

altered pathways. Highlights represent known genetic or phenotypic relationships. Mutants known to work in the same pathway, but with no visible

phenotype, are accurately clustered together (jkk-1 and jnk-1). Mutations that cause mislocalization to dendritic domains are also clustered together, from

their axonal, previously undetected, phenotypes alone (cdka-1, cdk-5 and cdka-1). Mutants with very similar phenotypes, and known to work in synaptic

vesicle clustering (syd-2 and sad-1) also cluster together. Complementation test confirmed a175 is a new allele of lin-44. A list of all clustered genotypes in

order appears in Supplementary Materials. (b) Network representing the average differences between populations computed from a weighted phenotypic

profile. Subtle mutants isolated in this screen, imperceptible by visual inspection, are labelled in pink. Subtle mutants lie closest to wild type, while most

previously identified mutants are the farthest from wild type.
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Off-chip components and automated operation. Off-chip components include
an in-house built pressure control box with a digital I/O card (Pacdrive, Ultimarc),
solenoid valves (Cole Palmer) for off-chip on/off flow control and a custom
in-house built cooling system consisting of a peristaltic pump for flow of the
cooling liquid, a Peltier and an in-house built heat exchanger. Actuation of the
solenoid valves, the pressure box, the microscope stage and the camera for image
acquisition was controlled by a Graphical User Interface (GUI) developed in
MATLAB (Mathworks). Automated operation during imaging or screening was
performed with pre-built worm detection, imaging, phenotyping and sorting
functions called from the GUI, as well as with error-handling functions.

Genetic screens and whole-population profiling. Genetic screens were
performed by imaging an age-synchronized F2 population as previously
described45 with standard techniques70. Briefly, mutagenesis was performed based
on standard protocol using 50 mM EMS on L4 animals. F1s from B20 P0s were
pooled per plate; five to six plates were prepared. F2 embryos hatched overnight in
M9 to synchronize and subsequently cultured on NGM plates with OP50. F2 young
adults were imaged and mutants were obtained from the screens and picked to an
individual plate for self-propagation. A total of B4,100 F2 animals were
phenotyped from four separate mutagenesis experiments.

Behavioural assays. Crawling was assessed by counting the number of ventral
bends that each animal performed in a 1-min period. Wild type and a178 were
assessed on the same seeded NGM plate. N¼ 20. Aldicarb sensitivity assays were
performed as described elsewhere60, with a 1-mM aldicarb concentration in NGM
plates. N¼ 20. Swimming assays were performed by transferring single animals at
the start of egg-laying to wells fabricated on agarose pads filled with water. Videos
were acquired of the swimming animals (Supplementary Videos 1 and 2).

Statistics and animal models. Imaging sample sizes were chosen to ensure
adequate power to detect changes in the variables contained in the
phenotypic profiles (Supplementary Note 11). Images excluded from analysis were
those that have fewer than five puncta, since this prevents computing certain
features; moreover, animals with fewer than five puncta are likely very small, or
have defects in reporter expression. Sample sizes are larger than 50 for all data sets,
except for imaging repeats of mutant populations (a176-R2) or outcrossed mutant
populations (a178(x3)). Sample sizes account for all analysed images. Details of
sample sizes are reported in Supplementary Information. Sample sizes for
behavioural experiments were 20 for on-plate assays, and 30 for swimming assays
(per genotype). No sample randomization was performed in this work. Analysis of
imaging data was performed in an automated manner, without user input, and was
thus blind. Behavioural assays were also performed blind.

Data availability. Software and code for high-throughput imaging, phenotypic
profiling and SWLR model construction are publicly available at github at:
https://github.com/asanmiguel/SynapsePhenotyping, under an MIT licence. The
raw data set of phenotypic profiling is also included at the github repository. Raw
images are available upon request.
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