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Drug addiction is a chronic and complex brain disease, adding much burden on the community. Though numerous efforts have
been made to identify the effective treatment, it is necessary to find more novel therapeutics for this complex disease. As network
pharmacology has become a promising approach for drug repurposing, we proposed to apply the approach to drug addiction,
which might provide new clues for the development of effective addiction treatment drugs. We first extracted 44 addictive drugs
from the NIDA and their targets from DrugBank. Then, we constructed two networks: an addictive drug-target network and an
expanded addictive drug-target network by adding other drugs that have at least one common target with these addictive drugs. By
performing network analyses, we found that those addictive drugs with similar actions tended to cluster together. Additionally, we
predicted 94 nonaddictive drugs with potential pharmacological functions to the addictive drugs. By examining the PubMed data,
51 drugs significantly cooccurred with addictive keywords than expected. Thus, the network analyses provide a list of candidate
drugs for further investigation of their potential in addiction treatment or risk.

1. Introduction

Drug addiction is a chronic and relapsing brain disease
that causes compulsive drug seeking and abuse. The disease
affects the brain functions and behavior of many people of
all ages. The subjects suffer harmful consequences of drug
addiction, which generates an enormous medical, financial,
social, and emotional burden on individuals, their families,
and our society. During the past several decades, investigators
have made numerous efforts to understand the neuronal
effects of addictive drugs and the molecular mechanisms
of addiction. Such knowledge has facilitated the uncovering
of novel targets and drugs for both treating and preventing
addictive disorders.

The large body of studies has revealed that genetic and
environmental factors contribute to the development of
addiction [1]. The genetic studies of twins and families have
suggested that genetic factors might account for 30–60%
of the overall risk for the development of drug addiction

[2, 3]. The recent advent of high-throughput experimental
technologies, such as gene expression profiling, genome-wide
association studies (GWAS), and next-generation sequencing
(NGS), has revolutionized biomedical research and generated
a massive amount of data for addiction research [4, 5]. This
provides valuable information for further development of
addiction treatment. Even so, an effective treatment of drug
addiction patients is still unavailable.

Currently, medication and behavioral therapy, espe-
cially when combined, are the major therapeutic treatment
approaches for addiction [6]. Thus, the discovery of effective
drugs with fewer side effects is crucial to provide effective
treatment and prevent relapse. During the past decade,
advancements in target-based approaches have provided us
with a promising direction for further treatment develop-
ment [7]. Therefore, systematic investigations of addictive
drugs and their targets might provide deeper insights into
the relationship between individual addictive drugs and
nonaddictive drugs. However, the absence of comprehensive
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drug-target data is a major limitation in performing a
systematic investigation. Recently, DrugBank has provided
a comprehensive collection of drugs and their targets [8],
which largely eases this problem.Other drug-target databases
have become available to assist further computational analy-
ses [9, 10]. Furthermore, the concept of networkmedicine has
been proposed and various approaches have been developed
to assist with drug-drug and drug-target discovery [11–14].
We recently applied network pharmacology approach to
exploring the features of antipsychotic and illicit drugs as
well as their targets and found some interesting drug-target
interaction features [13–15]. Here, we expanded our work
to perform a systematic investigation of the relationships
between multiple addictive drugs and their targets, as well as
other drugs that have targets in commonwith these addictive
drugs. The inclusion of addiction-related drugs might help
us predict other addiction-related drugs from available drugs
through drug repurposing approaches. We hypothesize that
some of the addiction-related drugs that have not been
assigned as addictive drugs might have the potential to treat
addiction, while others might cause addictive effects.

We mainly focused on the addictive drugs annotated by
the National Institute on Drug Abuse (NIDA). We extracted
their targets from the DrugBank database. We first con-
structed a basic addictive drug-target network from which
we attempted to find the unique connectivity as a proof
of the concept of the network pharmacology approach for
addictive drugs. Next, we built an expanded addictive drug-
target network by recruiting non-addictive drugs.These non-
addictive drugs have at least one target in common with at
least one addictive drug. We analyzed these two networks by
examining their network topological characteristics, which
allowed us to explore whether some of the non-addictive
drugs in the network might have the potential to either be
addictive themselves or have the potential to treat addiction.
Finally, to explore some lines of evidence from previous
studies, we examined cooccurrence of drugs and addiction-
related keywords to evaluate the association of non-addictive
drugs with addiction. This preliminary study demonstrated
that the network-assisted approach is promising in the
prediction of drug repurposing.

2. Materials and Methods

2.1. Addictive Drugs and Drug Targets. In this study, we
define addictive drugs as those abused drugs and prescribed
drugs that can cause addiction disease once they are abused
by humans. We manually obtained a list of the abused
drugs from the Commonly Abused Drugs Chart and the
prescribed drugs from the Prescription Drugs Abuse Chart
created by the National Institute on Drug Abuse (NIDA)
(http://drugabuse.gov/). The two charts contain addictive
drugs along with their common and street names. These
addictive drugs could be grouped into six categories accord-
ing to similarities between how they work and what effects
they produce in the human body, especially in the brain.
These six categories are depressants, dissociative anesthetics,

hallucinogens, opioids and morphine derivatives, stimulants,
and other compounds.

We extracted the drug target data from DrugBank, a
publically available database [8]. DrugBank includes 6712
drugs and 150 corresponding data fields for each drug. To
match the addictive drugs collected from NIDA to Drug-
Bank, we first manually searched the DrugBank website
(http://www.drugbank.ca/) by using the drugs’ common
names and then collected their DrugBank accession num-
bers. The “Accession Number” is the unique DrugBank ID
consisting of a two-letter prefix (DB) and a five-digit suffix.
Next, we obtained their targets and the non-addictive drugs
that share at least one target with at least one addictive
drug from the DrugBank XML file (version 3.0) down-
loaded in July, 2013. We extracted the corresponding data
from the following fields: “Name,” “Groups,” and “Targets.”
The “Name” field includes the standard name of a drug
as provided by the drug manufacturer. The “Groups” field
represents the legal status of a drug such as “Approved,”
“Experimental,” “Nutraceutical,” “Illicit,” and “Withdrawn”
(detailed information can be found on the DrugBank web-
site). The “Targets” field contains drug targets to which one
drug can bind, including proteins, macromolecules, nucleic
acids, or smallmolecules. In this study,we primarily extracted
human proteinswithUniProtKB identifiers and thenmapped
them to Entrez gene symbols and gene IDs using the UniProt
ID mapping service (http://www.uniprot.org/mapping/).

2.2. Drug ATC Classification. To systematically examine
drug classifications of addictive and non-addictive drugs,
we further employed the Anatomical Therapeutic Chemical
(ATC) classification (http://www.whocc.no/atc ddd index/).
The classification system categorizes active drugs into five
different levels based on the organ or system on which they
act as well as their therapeutic and chemical characteris-
tics. For each drug, the ATC classification information was
extracted from the DrugBank XML file (version 3.0) or the
Kyoto Encyclopedia of Genes and Genomes (KEGG) DRUG
“htext” file, which was downloaded from KEGG Anatom-
ical Therapeutic Chemical (ATC) classification website
(http://www.genome.jp/kegg-bin/get htext?br08303.keg) in
July, 2013.

2.3. Functional Analysis of Targets. To characterize the func-
tionality of those addictive drugs’ targets, we performed
an enrichment analysis of KEGG canonical pathways using
the online tool Web-Based Gene Set Analysis Toolkit
(WebGestalt) [16]. After the genes of interest were input into
the WebGestalt system, it mapped the genes to the KEGG
annotation and performed hypergeometric tests. To reduce
the type I error, we conducted the Benjamini-Hochberg
correction for multiple testings [17]. Using this approach, we
calculated the adjusted 𝑃 values to assess the overrepresen-
tation of these input genes in each biological pathway. Here,
we selected the pathways with adjusted 𝑃-values of less than
0.01 as the significantly enriched pathways. To further ensure
a biologically meaningful analysis, we considered only those
KEGG pathways that contained at least five target genes [18].

http://drugabuse.gov/
http://www.drugbank.ca/
http://www.uniprot.org/mapping/
http://www.whocc.no/atc_ddd_index/
http://www.genome.jp/kegg-bin/get_htext?br08303.keg
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2.4. Network Construction, Visualization, and Analyses. We
constructed two addiction-related networks. The first one
is the addictive drug-target network, in which the nodes
represent addictive drugs or their targets and edges represent
the associations between these drugs and targets. The second
network is an expanded addictive drug-target network, in
which nodes include addictive drugs, their targets, and non-
addictive drugs that have at least one target in common
with addictive drugs. We employed the software Cytoscape
(version 3.01) [19] to visualize and analyze the networks.

Considering that the nodes that act as hubs or bridging
nodes in a network might play critical roles in drug actions
[11, 20], we performed degree and betweenness analyses to
determine the hubs and bridge nodes. In the network, a node
with a higher degree (number of edges linked to the node)
is defined as a hub. Hubs play important roles in biological
networks because they tend to be encoded by essential genes
[21]. In this study, we determine hubs by plotting the degree
distribution, adopting the methods described by Yu et al.
[22]. We defined the degree value as the cutoff where the
distribution begins to straighten out. For bridging nodes,
we calculated the betweenness centrality using algorithms
implemented in the Cytoscape plugin NetworkAnalyzer [23]
and then drew the betweenness distribution to define the
point that the distribution began to reach its asymptote.

2.5. Literature Search. To evaluate the prediction of non-
addictive drugs’ associations with addiction, we adopted
the NCBI PubMed automatic term mapping strategy
to examine whether a drug and an addiction-related
keyword cooccur in the same PubMed document [24].
The addiction-related keywords included “addiction,”
“addictive,” “abuse,” and “abused.” The total number of
abstract records in the 2012 PubMed was 21,508,439
(http:// www.nlm.nih.gov/bsd/authors1.html). For each
drug, we obtained three numbers corresponding to
three subsets of PubMed abstracts: the number of
abstracts with the given drug name, the number of
abstracts with at least one addiction-related keyword, and
the unique number of abstracts with a co-occurrence
of the drug name and at least one of the addiction-related
keywords. Then, we performed the Fisher’s exact test
based on these numbers for each drug. To identify and
determine the predicted non-addictive drugs that were more
significantly associated with addiction study than expected,
we required that the drugs have a 𝑃 value of less than 0.05
after Bonferroni multiple testing correction [17].

3. Results

3.1. Addictive Drugs and Their Targets. This study included
44 compounds listed as addictive drugs by NIDA. We
extracted their target information from the DrugBank
database. Among them, 39 belonged to the approved drugs
category in at least one country, 22 were illicit drugs that
were scheduled in at least one country, three were withdrawn
drugs, and three were experimental drugs. According to
similarities regarding how they function and what effects

they produce in the human body and brain, as annotated by
the NIDA, these drugs could be grouped into six categories:
depressants (12), dissociative anesthetics (2), hallucinogens
(1), opioids and morphine derivatives (10), stimulants (6),
and other compounds (13). Table 1 summarizes the detailed
information for each drug.

According to ATC system classification, 32 drugs
belonged to “nervous system,” four to “respiratory system,”
three to “alimentary tract and metabolism,” and two to
“sensory organs.” This observation confirmed that almost
all of the addictive drugs perform their actions by affecting
brain function.

Among the 44 addictive drugs, 41 had at least
one target gene. After deleting redundancy and
mapping gene names to NCBI gene annotations
(http://www.ncbi.nlm.nih.gov/gene), we obtained 91
target genes (additional file, Table S1 in supplementary
material available online at http://10.1155/2014/258784).
To examine the pathways in which those target genes
involve, we conducted a KEGG pathway enrichment analysis
using the online tool WebGestalt. Nine pathways were
significantly enriched with the 91 addictive drug target genes
(adjusted 𝑃-value < 0.01) (Table 2). Among them, the most
significant one is “neuroactive ligand-receptor interaction,”
which includes more than half of the addictive drug target
genes (61.54%). This pathway finding is consistent with the
molecular mechanisms underlying the addiction [25].

3.2. Addictive Drug-Target Network. According to the rela-
tionship between addictive drugs and their targets, we
first generated an addictive drug-target interaction net-
work, which provided general insights into the organization
and association between addictive drugs and their targets.
Through finding interesting features from this network, we
aimed to prove the value of the network application concept
when investigating drug repurposing. In this network, an
addictive drug connects to a target (i.e., an edge) if the target is
a known target of the drug.The addictive drug-target network
contained 132 nodes (41 addictive drugs and 91 target genes)
and 297 edges. After superimposing the drug categories onto
the network, five clusters were observed, which corresponded
to five major drug categories: depressants, stimulants, dis-
sociative anesthetics, opioids and morphine derivatives, and
other compounds (Figure 1). Interestingly, there are several
bridging nodes that link the major subnetworks together.
These bridging nodes are GABRA1, SLC6A4, GRIN3A,
CHRNA2, CHRNA4, and CHRNA7.

3.3. Expanded Addictive Drug-Target Interaction Network.
Drugs sharing the same targets might participate in the same
pathways and have similar actions. Thus, an investigation of
the drugs that share the same targets with addictive drugs
might provide information for further addiction treatment.
Here, we added these non-addictive drugs to the addictive
drug-target network to construct an expanded addictive
drug-target interaction network. The network contained 705
nodes and 1797 edges. These 705 nodes included 41 addictive

http://www.nlm.nih.gov/bsd/authors1.html
http://www.ncbi.nlm.nih.gov/gene
http://10.1155/2014/258784
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Table 1: Summary of addictive drugs, their targets, and classification.

DrugBank ID Drug name Number of targets DrugBank group NIDA categorya

DB00316 Acetaminophen 2 Approved Opioids and morphine derivatives
DB00404 Alprazolam 20 Approved, illicit Depressants
DB01351 Amobarbital 10 Approved, illicit Depressants
DB00182 Amphetamine 4 Approved, illicit Stimulants
DB01541 Boldenone 1 Experimental, illicit Other compounds
DB00475 Chlordiazepoxide 19 Approved, illicit Depressants
DB00907 Cocaine 8 Approved, illicit Stimulants
DB00318 Codeine 3 Approved, illicit Opioids and morphine derivatives
DB01189 Desflurane 7 Approved Other compounds
DB00514 Dextromethorphan 4 Approved Other compounds
DB00829 Diazepam 18 Approved, illicit Depressants
DB00228 Enflurane 8 Approved Other compounds
DB00898 Ethanol 7 Approved Other compounds
DB00813 Fentanyl 3 Approved, illicit Opioids and morphine derivatives
DB01544 Flunitrazepam 6 Approved, illicit Depressants
DB01440 Gamma hydroxybutyric acid 1 Approved, illicit Depressants
DB01159 Halothane 17 Approved Other compounds
DB01452 Heroin 3 Approved, illicit Opioids and morphine derivatives
DB00956 Hydrocodone 2 Approved, illicit Opioids and morphine derivatives
DB00327 Hydromorphone 3 Approved, illicit Opioids and morphine derivatives
DB00753 Isoflurane 7 Approved Other compounds
DB01221 Ketamine 3 Approved Dissociative anesthetics
DB00186 Lorazepam 20 Approved Depressants
DB04829 Lysergic acid diethylamide 0 Illicit, withdrawn Hallucinogens
DB00454 Meperidine 6 Approved Opioids and morphine derivatives
DB01577 Methamphetamine 11 Approved, illicit Stimulants
DB04833 Methaqualone 0 Illicit, withdrawn Depressants
DB01028 Methoxyflurane 7 Approved Other compounds
DB00422 Methylphenidate 3 Approved, investigational Stimulants
DB01442 MMDA 8 Experimental, illicit Stimulants
DB00295 Morphine 3 Approved Opioids and morphine derivatives
DB00486 Nabilone 2 Approved Other compounds
DB00984 Nandrolone phenpropionate 0 Approved, illicit Other compounds
DB00184 Nicotine 11 Approved Stimulants
DB00621 Oxandrolone 1 Approved Other compounds
DB00497 Oxycodone 3 Approved, illicit Opioids and morphine derivatives
DB00312 Pentobarbital 10 Approved Depressants
DB03575 Phencyclidine 2 Experimental, illicit Dissociative anesthetics
DB01174 Phenobarbital 10 Approved Depressants
DB00647 Propoxyphene 3 Approved, illicit Opioids and morphine derivatives
DB00418 Secobarbital 10 Approved Depressants
DB01236 Sevoflurane 7 Approved Other compounds
DB00624 Testosterone 1 Approved Other compounds
DB00897 Triazolam 20 Approved, illicit, withdrawn Depressants
aDrug category is defined based on the similarities regarding how drugs function and what effects they produce in the human body, including the brain, as
annotated by NIDA.

drugs, 573 non-addictive drugs, and 91 targets. The edges
contained 297 interactions between addictive drugs and their
targets and 1500 interactions between non-addictive drugs
and addictive drug targets.

Among these 573 non-addictive drugs, 407 had at least
one ATC classification distributed among all 14 categories.
Among them, the percentage of addictive and non-addictive
drugs was significantly different in the category of “nervous
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Table 2: KEGG pathways significantly enriched with the target genes of addictive drugs.

Pathway name Number of target genes (%) Nominal P valuea Adjusted P valueb

Neuroactive ligand-receptor interaction 56 (61.54) 8.65 × 10−102 7.78 × 10−101

Long-term potentiation 10 (10.99) 3.35 × 10−16 1.51 × 10−15

Calcium signaling pathway 12 (13.19) 3.25 × 10−15 9.75 × 10−15

Amyotrophic lateral sclerosis (ALS) 7 (7.69) 1.94 × 10−11 4.36 × 10−11

Alzheimer’s disease 9 (9.89) 8.50 × 10−11 1.53 × 10−10

Tyrosine metabolism 5 (5.49) 2.50 × 10−8 3.75 × 10−8

Drug metabolism-cytochrome P450 5 (5.49) 4.75 × 10−7 6.11 × 10−7

Salivary secretion 5 (5.49) 1.28 × 10−6 1.44 × 10−6

Metabolic pathways 8 (8.79) 2.50 × 10−3 2.50 × 10−3
aNominal P values were calculated using the hypergeometric test.
bAdjusted P values were estimated by Benjamini-Hochberg (1995) multiple testing corrections [17].
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Figure 1: The addictive drug-target network. The red nodes denote addictive drugs and the green nodes denote their targets. The edges
indicate the relationship between each drug and its targets. Subnetworks are highlighted to differentiate five drug categories: depressants,
stimulants, opioids and morphine derivatives, dissociative anesthetics, and other compounds.

system” (N) (Fisher’s exact test, 𝑃-value: 2.56×10−5).Though
almost half of the non-addictive drugs (203/407, 49.88%)
belong to “nervous system,” this proportion is significantly
lower than that of addictive drugs involved in the expanded
network (32/38, 84.21%; 𝑃-value: 3.00 × 10−5). The difference

in the category “nervous system” was expected since almost
all addictive drugs function through the brain.

In the network, the average drug degree (number of
targets) was 2.9 with a range between 1 and 20, while the
average target degree (number of drugs) was 19.5 with a range
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between 1 and 73. In the network, the target degree was
oversaturated compared to the drug degree, which was
mainly caused by the approach used to generate this network.
The distribution of drug degrees followed a power law, but
the distribution for target degrees did not have this feature
(Figure 2). Thus, to identify the drugs related to addiction,
we calculated the drug degree distribution to determine
the drug hubs in the network. As shown in Figure 2,
the nodes with degrees greater than three were defined as
hubs. Similarly, we defined each node with a betweenness
centrality greater than 0.04 as a bridging node (data not
shown). After retaining the hub nodes and bridging nodes,
a subnetwork was extracted from the expanded addictive
drug-target network. The subnetwork contained 193 nodes
(25 addictive drugs, 94 non-addictive drugs, and 74 targets)
and 1002 edges (Figure 3). As a result, we identified 94 drugs
that either have a high potential for having addictive effects
or could be used as a potential treatment for addiction.
The degree and betweenness values of these 94 drugs were
provided in additional file, Table S2.

3.4. Evaluation of Predicted Non-Addictive Drugs for
Addiction. To evaluate the association between these 94
non-addictive drugs and addiction, we examined the co-
occurrence of each drug and addiction-related keywords
including “addiction,” “addictive,” “abuse,” and “abused” in
PubMed abstracts. Among the 94 drugs, 51 drugs (54.26%)
(yellow nodes in Figure 3) had statistically significant
𝑃-values after Bonferroni correction of multiple testing
(Fisher’s exact test, 𝑃-value: 0 ∼0.0004) (additional file, Table
S2). For example, the drug temazepam, which is a hub with
20 targets shared with addictive drugs, is a highly addictive
benzodiazepine medication [26–30]. The drug dronabinol,
which is the strongest drug bridge node in the network,
has the potential for addiction [31]. It is also a promising
medication for the treatment of cannabis dependence [32].
The drug methadone is the fourteenth strongest bridge node
and the top one based on the ratio of the observed versus
expected number of documents in PubMed. We added more
discussion below.

Methadone is themost widely available pharmacotherapy
for opioid addiction and it has been shown to be an effective
and safe treatment for many years [33, 34]. To illustrate
the molecular mechanism of this drug, we generated a
methadone-specific network (Figure 4). This network
included 74 nodes and 94 edges.The nodes included the drug
methadone, its four targets and 12 enzymes from DrugBank,
and 67 proteins directly interacting with the four targets and
12 enzymes (Figure 4). The edges included 4 interactions
between the drug and four targets, 12 relationship between
the drug and 12 enzymes, and 78 protein-protein interactions
between targets/enzymes and other proteins, which were
extracted from the protein interaction network analysis
(PINA) database [35]. According to the KEGG pathway
annotations, all four targets (OPRM1, GRIN3A, CHRNA10,
and OPRD1) are neuroactive ligand receptors. Among the 12
enzymes, ten are directly involved in drug metabolism.There
are 20 KEGG pathways that were significantly enriched in

the 67 proteins. Among them, seven pathways are directly
involved in the neurodevelopment, including “Long-
term potentiation” (7 proteins: CALM2, CALM3, GRIN2A,
PRKCA,CALM1,GRIN2B, andGRIN1;𝑃-value: 1.75×10−11),
“Long-termdepression” (5 proteins: PRKCA,GNAI2, GNAZ,
GNAO1, and GNAI1; 𝑃-value: 8.70× 10−8), and “Neuroactive
ligand-receptor interaction” (5 proteins: ADRB2, OPRK1,
GRIN2A, GRIN2B, and GRIN1; 𝑃-value: 6.75 × 10−5). These
observations confirmed that methadone directly acts with
neurotransmitters and further regulates the other molecular
components in neurodevelopment.

Put together, the drug pool through our network analyses
might provide a list of candidate drugs for further investiga-
tion of their potential for addiction treatment or addiction
risk.

4. Discussion

In this study, we investigated the relationships between
addictive drugs, their targets, and non-addictive drugs
that have targets in common with addictive drugs in the
context of drug-target networks. Most of the addictive
drugs with similar functions could cluster together in
their drug-target network (Figure 1), indicating that
network-assisted approaches could effectively capture drug
classification characteristics. After studying the network
topological characteristics, we predicted some drugs that
might have the potential leading to addictive effects or to
addiction treatment. These results illustrate that the network
pharmacology approach is promising for drug repositioning
[36, 37]. Therefore, the strategy employed for building
the basic and the expanded networks in this study
is effective and straightforward, offering a promising
computational method to predict potential drugs for a given
disease. Furthermore, this study proves the concept
that such a network approach can be implemented in pre-
dicting drug-target relationships and uncovering novel
drugs/targets for both basic and clinical research.

We mainly extracted the drugs and their targets from
DrugBank. Though the study provides some promising
results, future improvement is needed. One limitation of this
study is that the current data is neither complete nor bias-
free. In future, we will include more drug-target information
from multiple data sources such as the binding database
(binding DB) [38], therapeutic targets database (TTD) [39],
and other drug-target centered databases.We also expect that
data quality and annotations of drug-target interactions will
be substantially improved in the near future due to numerous
ongoing efforts in this research area.

In our previous study, we explored the relationship
between illicit drugs and their targets [15]. Illicit drugs are
those drugs that are annotated as illicit in at least one country
according to DrugBank annotation. Some illicit drugs could
lead to addiction once they are abused by humans. However,
only the drugs that could lead to addiction are referred to as
abused drugs by NIDA. In this study, we mainly focused on
the 44 drugs that lead to addiction, of which only 20 belong
to the illicit drugs category.
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Figure 2: Degree distribution of drugs (a) and targets (b) in the expanded addictive drug-target network.
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Figure 3: The expanded addictive drug-target network after filtering by hubs and bridge nodes. The red nodes denote addictive drugs, the
green nodes denote targets, the yellow nodes denote nonaddictive drugs that have a significantly higher cooccurrence than expected with
addiction-related keywords in the literature from PubMed, and the blue nodes denote non-addictive drugs that have a co-occurrence with
addiction keywords but are not significantly higher than expected in the literature data.
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Figure 4: The methadone drug-target network. The red nodes denote the methadone (drug), the orange nodes denote its targets, the green
nodes denote its enzymes, and the blue nodes denote the directly interacting proteins of targets and enzymes from protein-protein interaction
network.

In this study, we predicted 94 non-addictive drugs that
might have associations with addiction. To explore if some
of these drugs have been studied with addiction, we used a
keyword-based literature search followed by a co-occurrence
analysis. The literature search approach we utilized largely
relied on the co-occurrence of addictive drugs and addiction-
related keywords in the PubMed database.The high through-
put literature search revealed that more than half (54.26%)
of non-addictive drugs have been previously investigated
or reported as linked to addiction. However, the current
literature survey method did not allow us to examine the
logical relationship between these drugs and addiction.Thus,
we could not filter those negative studies based on negative
logical relationship information in abstracts. In the future, we
may improve our strategy for searching the co-occurrence of
drugs and keywords by creating a more efficient algorithm
using natural language processing techniques.
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