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Simple Summary: Lumican, a small leucine-rich proteoglycan (SLRP), maintains extracellular matrix
(ECM) integrity while inhibiting melanoma primary tumor development, as well as metastatic
spread. The aim of this study was to analyze the effect of lumican on tumor growth of murine ovarian
carcinoma. C57BL/6 wild type mice (n = 12) and lumican-deficient mice (n = 10) were subcutaneously
injected with murine ovarian epithelial carcinoma ID8 cells, and sacrificed after 18 days. Label-free
infrared spectral imaging (IRSI) generated high contrast IR images allowing identification of different
ECM regions of the skin and the ovarian tumor. IRSI showed a good correlation with collagen
distribution as well as organization, as analyzed using second harmonic generation imaging within
the tumor area. The results demonstrated that lumican inhibited the growth of ovarian cancer mainly
by altering collagen fibrilogenesis.

Abstract: Ovarian cancer remains one of the most fatal cancers due to a lack of robust screening
methods of detection at early stages. Extracellular matrix (ECM) mediates interactions between cancer
cells and their microenvironment via specific molecules. Lumican, a small leucine-rich proteoglycan
(SLRP), maintains ECM integrity and inhibits both melanoma primary tumor development, as well
as metastatic spread. The aim of this study was to analyze the effect of lumican on tumor growth
of murine ovarian epithelial cancer. C57BL/6 wild type mice (n = 12) and lumican-deficient mice
(n = 10) were subcutaneously injected with murine ovarian epithelial carcinoma ID8 cells, and then
sacrificed after 18 days. Analysis of tumor volumes demonstrated an inhibitory effect of endogenous
lumican on ovarian tumor growth. The ovarian primary tumors were subjected to histological and
immunohistochemical staining using anti-lumican, anti-αv integrin, anti-CD31 and anti-cyclin D1
antibodies, and then further examined by label-free infrared spectral imaging (IRSI), second harmonic
generation (SHG) and Picrosirius red staining. The IR tissue images allowed for the identification
of different ECM tissue regions of the skin and the ovarian tumor. Moreover, IRSI showed a good
correlation with αv integrin immunostaining and collagen organization within the tumor. Our results
demonstrate that lumican inhibits ovarian cancer growth mainly by altering collagen fibrilogenesis.
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1. Introduction

Ovarian cancer is the gynecological malignancy with the highest case-to-mortality
ratio in the western world. Since ovarian cancer is often asymptomatic, it is generally
diagnosed at an advanced stage, giving a poor prognosis [1]. It is the second leading cause
of death among patients with gynecologic tumors in the world, as 313,959 women were
diagnosed with ovarian cancer, and 207,252 (66%) died of it in 2020 [2]. Most tumors initially
respond to standard treatments combining surgery and platinum-based chemotherapy.
Moreover, novel second line treatments and maintenance therapies (such as PARP inhibitors
and anti-angiogenic antibodies) permit an improvement in survival and patient welfare [3].
However, frequent recurrence, subsequent acquired chemoresistance, and widespread
dissemination are responsible for the therapeutic ineffectiveness, leading to an overall
10-year survival rate of 35% [4]. Ovarian cancers usually start within the ovary (or ovaries)
or the fallopian tubes, before spreading to other organs in the pelvic region, then finally
metastasizing to peritoneal organs. The mesothelium, a single layer of flat cells covering
the peritoneal cavity and its organs, is the first barrier met by ovarian tumor cells, and is
the major site of ovarian carcinoma metastasis before invading the underlying connective
tissue rich in fibroblasts. Due to the rapid proliferation and spread of ovarian cancer within
the abdominal cavity and its high rate of intra-abdominal recurrence, the prognosis of
patients with this condition is poor. Recently, electronic microscopy permitted a better
discrimination of human ovarian cancer cells heterogeneity [5].

The most common epithelial ovarian cancer (EOC) histological subtype, accounting
for >50% of ovarian epithelial malignancies, is serous ovarian carcinoma [6,7]. Due to
the lack of early detection tools, most serous ovarian carcinomas (>80%) are diagnosed
at a more advanced stage (stages III and IV), where the 5-year survival rate remains at
only 34% and 15%, respectively [4]. Most of these (>50%) are classified as “high-grade“
tumors, based on their degree of nuclear atypia and high mitotic index [8]. High-grade
serous ovarian carcinomas (HGSOC type II) are characterized from other subtypes both
by their aggressive nature and the unique genetic alterations they may harbor, including
TP53 and the homologous recombination (HR) DNA repair genes BRCA 1 and 2. Tumors
mutated from these HR genes are usually more receptive to chemotherapy, due to their
inability to correctly repair their DNA [9]. In contrast, clear cell, endometrioid, low-grade
serous, and mucinous ovarian carcinomas are typically present as indolent low-grade
neoplasms (type I tumors) with somatic mutations in genes such as KRAS, BRAF, ERBB2,
PTEN, CTNNB1, and PIK3CA [10]. Most ovarian cancer cell lines are of human origin.
Indeed, to our knowledge, ID8 is the only well described murine ovarian cancer model.
ID8 represents a cell line derived from spontaneous malignant transformation of C57BL/6
MOSEC (mouse ovarian surface epithelial cells) in vitro [11]. Many of the clinical features
typical of ovarian cancer, including the presence of tumor nodules throughout the omentum
and lymphogenic metastasis in the lungs, were seen in this model, as was the formation of
hemorrhagic ascites [12]. This model was recently used to demonstrate the role of TAX2
peptide, a drug candidate under development, to activate anti-tumor immunity [13].

In multicellular organisms, cells are surrounded by a crowded extracellular envi-
ronment, either a complex architectural extracellular matrix (ECM) network or a liquid
environment. The tumor microenvironment is composed of various cell types embedded
in an altered ECM. The latter not only serves as a support for tumor cells, but also reg-
ulates cell–cell or cell–matrix cross-talks. Tumor ECM is essential to tumor progression,
and ECM alterations are often associated with a poorer prognostic for patients. Tumor
ECM proteome is strongly altered, and different ECM protein signatures may serve as
prognostic biomarkers. Collagen network reorganization facilitates tumor cell invasion.
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Proteoglycan expression and location are modified in the tumor microenvironment, and
affect cell invasion and metastatic dissemination [14].

Lumican belongs to the small leucine-rich proteoglycans (SLRP) family [15,16] and
was shown to control the assembly of collagen fibers in the ECM [17,18]. Amino acid
sequence data of lumican (LUM) indicate that the central region of the protein contains four
asparagine residues that are N-linked with keratan sulphate (KS) or oligosaccharides [19,20].
The molecular mass of the core protein is 38 kDa, and can increase to 55–57 kDa in
the glycoprotein form, and 50–100 kDa, or even higher, in the proteoglycan form [21].
Several forms of LUM are differentially expressed in tissue. The non-glycosylated form
of LUM was observed in lung fibroblasts [22]. The glycoprotein form was detected in the
dermis [21,23–25], and the KS form of LUM was found in corneal stroma [26]. Lumican
is expressed in various tumor tissues, but both positive and negative correlations with
tumor aggressiveness have been reported [25,27,28], highlighting it as either a therapeutic
molecule or an anti-cancer target. In breast tumors, the expression of lumican was detected
at the mRNA and protein levels, and it was concluded that lumican is the most important
proteoglycan in breast tumors [29]. Lumican was identified in human ovarian cancer
ascites [30], where it was more abundant, as compared to serum control samples [31].
LUM and decorin (DCN) showed reduced stromal expression in serous epithelial ovarian
cancer [32]. The expression of lumican in cytostatic-resistant ovarian cancer tissue suggests
that it might also have a role in drug resistance. Moreover, the expression of lumican in
this context is correlated with the expression of the alpha-1 chain of type III collagen [33].

Second harmonic generation (SHG) and Fourier transform infrared (FTIR) imaging
techniques were used to evidence ECM disorganization by lumican in melanoma and,
more specifically, collagen fiber orientation [34]. SHG is commonly used to assess the
structure and abundance of collagen fibrils in a non-invasive, highly resolutive and specific
process [35]. IR spectroscopy is used for structural and compositional analysis due to its
ability to give a complete “molecular fingerprint” of the sample [36]. It has previously been
used to characterize ovarian cancer cells and tissues [37]. At the tissue level, FTIR imaging,
combined with multivariate statistical analysis, has shown the ability to discriminate
inflammatory from non-inflammatory breast cancer tissues [38], and metastatic from non-
metastatic lymph nodes in melanoma patients [39]. In a recent study, dermis of wild-type
versus lumican-deficient mice were characterized by infrared spectral imaging [40]. In
addition, melanoma primary tumors treated with or without lumican-derived peptide
were discriminated through infrared spectral imaging [41].

In the present report, we investigated the effect of lumican on ECM organization
and tumor progression in ovarian primary tumors by combining FTIR and SHG imaging
with conventional histology and immunohistochemistry. Altogether, both imaging and
histological methods evidence that the absence of LUM leads to a loss of ECM integrity
by disorganization of the collagen fiber network, potentializing edema formation and
tumor progression.

2. Materials and Methods

The workflow for histopathological, immunohistochemical, label-free infrared spectral
imaging (IRSI) and SHG analyses is illustrated in Figure 1.

2.1. Cell Culture

The ID8 cell line (murine ovarian epithelial carcinoma) was purchased from Sigma-
Aldrich, St. Louis, MO, USA, and cultured in DMEM medium (Sigma-Aldrich) supple-
mented with 4% FCS (PAN Biotech, Aidenbach, Germany), 100 µg/mL streptomycin,
100 U/mL penicillin, 5 µg/mL insulin transferrin mix, and 5 ng/mL sodium selenite
(Sigma-Aldrich). All cell cultures were performed in a 95% humidified atmosphere with
5% CO2 at 37 ◦C.
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Figure 1. Workflow showing the histology, the immunohistochemistry of formalin-fixed paraffin-
embedded ID8 ovarian tumor sections, SHG imaging, Picrosirius red staining (polarized light), and
analysis of FTIR images using common K-means clustering.

2.2. Animal Care

The Lum−/− mouse line was generated by targeted mutation and fixed to the C57BL/6J
genetic background (B6.129S-Lumtm1Chak/J) [19]. PCR-based genotyping was performed
to distinguish between homozygous Lum−/− mice and their wild-type (WT, i.e., Lum+/+)
littermates. A mixture of three primers (forward primer, 1893U: 5′-AAG CAG GGG ATG
TTA AGC TGC-3′, reverse primers 2187: 5′-ACG TGC TAC TTC CAT TTG TCA CG-3
and 2231L: 5′-TCA GGG TAT TTC CTG GTG GCA C-3) was used to amplify a 338 bp
and a 294 bp products from wild type and lumican deficient mice, respectively. The mice
body weight was measured every week. The mice clinical status and behavior were
controlled daily.

2.3. Allograft Model

The ID8 cell line was maintained in culture as reported above. For allograft experi-
ments, 2.5 × 105 ID8 cells suspended in 100 µL of DMEM medium (Sigma-Aldrich) were
subcutaneously (s.c.) inoculated into the left flank of randomized groups of either WT
(Lum+/+) or lumican-deficient (Lum−/−) mice (n = 10–12 per group). On day 8, tumors
were detectable, and tumor volume was measured every 1–2 days. Tumor measurements
and animal monitoring were performed as reported elsewhere [23,42–44]. On day 18,
mice were sacrificed, and tumors were surgically extracted, weighted, and then fixed in
4% formaldehyde.



Cancers 2021, 13, 5950 5 of 17

2.4. Histopathological Analyses

Histological analyses of formalin-fixed paraffin-embedded (FFPE) s.c. allografts were
performed on hematoxylin, eosin, and saffron (HES)-stained sections, prepared using
routine histological methods. Picrosirius red staining was performed to observe the bire-
fringence of collagen fibers to distinguish between type I (red) and type (III) (green)
collagens under polarized light (see Section 2.8). All stained sections were digitized with
the VS120 digital scanner (Olympus, Tokyo, Japan).

The rabbit polyclonal antibody raised against lumican core protein [23,34] (1:1600),
the rabbit anti-cyclin D1 (1:200, #RM-9104-SO, Thermo Fisher Scientific, Waltham, MA,
USA), the rat anti-CD31 (1:200, #DIA-310; Dianova GmbH, Hamburg, Germany), and the
rabbit anti-αv integrin (1:200, #60896, Cell Signaling, Ozyme, Saint-Cyr-L’École, France)
antibodies were used to perform immunostaining together with biotin-labeled secondary
antibodies and a streptavidin-HRP AEC (3-amino-9-ethylcarbazole) (# TA-125-SA, Ther-
moFisher Scientific, Waltham, MA, USA) or a DAB (3,3’-diaminobenzidine) detection
system (Abcam), followed by hematoxylin counterstain. Negative controls were performed
by omitting the primary antibody.

The number of functional blood vessels (i.e., vessels displaying endothelial layer
integrity) and their mean diameter, as well as relative CD31-positive areas, were determined
in whole tumor areas. The number of cyclin D1 positive and negative nuclei were assessed
in whole tumor areas, and their ratio was compared between Lum+/+ and Lum−/− mice. All
quantitative analyses were performed using QuPath software [45].

2.5. Fourier Transform Infrared (FTIR) Microimaging

For FTIR microimaging, 5 µm FFPE tissue sections (adjacent to HES staining) were
transferred onto CaF2 windows, and then spectral images were collected using an infrared
microscope (Spotlight 400 Imaging System, PerkinElmer, Villebon-sur-Yvette, France),
coupled with a Frontier spectrometer. Spectral data were acquired in transmission mode at
a pixel size of 6.25× 6.25 µm2, using a spectral resolution of 4 cm−1, and averaged to 8 scans
per pixel on the spectral range 800 to 4000 cm−1. For each sample, an image of pure paraffin
was collected under the same conditions, as well as a background spectrum (90 scans) to
ratio against the single-beam spectrum. Further multivariate statistical analyses were
performed using in-house algorithms written in MATLAB (The Mathworks, Natick, MA,
USA). A modified extended multiplicative signal correction (EMSC) method was used to
digitally deparaffinize the tissue by neutralizing paraffin variability in each FTIR pixel
spectrum [46], as well as to eliminate spectra with low signal-to-noise ratio [47].

2.6. FTIR Images Processing by Unsupervised K-Means Clustering

An unsupervised cluster analysis was applied to correct FTIR images using the
K-means method [48] on the spectral range 900 to 1800 cm−1. K-means clustering it-
eratively partitions spectra into different classes based on spectral signatures. First, K
spectra (K is the predefined number of searched clusters) were randomly chosen to repre-
sent initial centroids that model the mean spectrum of each cluster. Second, each spectrum
was assigned to the cluster with the nearest centroid based on the Euclidean distance
calculation. Third, each centroid was updated as the mean of the spectra belonging to its
cluster. Steps 2 and 3 were repeated until convergence was reached. Spectra belonging
to the same cluster are represented by the same pseudo-color. All spectra eliminated by
EMSC (i.e., pure paraffin and low signal-to-noise ratio spectra) appeared as white pixels.

2.7. Correlation of IR Spectral Images with Type I Collagen Spectrum

Spectral images of the tumor sections were correlated with a type I collagen repre-
sentative spectrum to assess the distribution of collagen. This was performed by first
recording a spectrum of type I collagen from a 5 µm thick section of FFPE rat-tail tendon,
using the same conditions as for the ovarian tumor tissue sections. This spectrum was
then correlated pixel by pixel with the tumor image using the Spectrum Image 6.4 software
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(PerkinElmer). The correlation process resulted in a new image with a correlation scale
ranging from 0 (dark color) to 1 (white color). In this way, the distribution of collagen in
the tissue could be visualized [40].

2.8. Polarized Light Microscopy

To study ECM collagen organization, deparaffinized tissue sections were stained
using the Abcam Picrosirius red stain kit (ab150681), according to the manufacturer’s
instructions. Picrosirius red stained tissues were observed using polarized light, resulting
in birefringence of the collagen fibers, and allowed distinction between type I (thick fibers,
red birefringence) and type III (thin fibers, green birefringence) collagens. Slides were
imaged using a VS120 digital scanner (Olympus, Tokyo, Japan) equipped with cross polar
optics. For each slide, color channels were split in ImageJ software before thresholding
to quantify the percentage of red and green pixels. For each image, mean red and green
intensities and their ratio were also calculated, and then averaged for each mouse group.

To assess the basketweave structure of collagen, an innovative bioimaging approach
combining Fast Fourier Transform (FFT) with Gabor filtering was applied [49]. Picrosirius
red images were first converted to monochrome grey scale into ImageJ software, and then
a 3 × 3 median filter was applied to remove photon noise generated during image acqui-
sition. Gabor filtering was performed using ω direction values of 45◦ + 225◦, 90◦ + 270◦,
135◦ + 315◦, and 0◦ + 180◦ to detect and highlight collagen fiber edges. Before FFT pro-
cessing, windowing was performed on Gabor-filtered images to minimize vertical and
horizontal discontinuities at the image edges that may result in artefactual lines in the
frequency domain. As FFT extracts the strength of the different frequency waveforms
contributing to the pixel values of Gabor-filtered cross-polar collagen images, elliptical
measurements of the scatter pattern for each orientation may be used to determine a
collagen orientation index (N), calculated as previously described [34].

2.9. Second Harmonic Generation Imaging

Collagen second harmonic generation (SHG) imaging was performed using a Zeiss
multiphoton laser scanning LSM710 NLO microscope, equipped with a 20× objective
(0.8 NA). A titanium:sapphire laser (Coherent Inc., Santa Clara, CA, USA) tuned to
860 nm provided the illumination light, while emitted photons were detected through a
430 ± 20 nm filter. One micron-step Z stacks of the complete section were acquired using
the scan slide mode. Collagen density was quantified as the collagen-positive pixels area
percentage in the thresholded image on Z-stack projections.

2.10. Statistical Analyses

For in vivo data, IHC, and imaging analyses, groups were compared using the non-
parametric two-tailed Mann–Whitney U test for unpaired samples using Prism 5.0 (Graph-
Pad Software, La Jolla, CA, USA). A Chi-squared test was used to determine a difference
between the number of tumors with or without edema in each mouse group. Two-sided
p-values < 0.05 (*) are indicated when statistical significance was reached.

3. Results
3.1. Evaluation of Endogenous Lumican Impact on Tumor Growth in ID8 Ovarian Allograft Model

After 18 days of subcutaneous inoculation of ID8 ovarian tumor cells, mice did not ex-
hibit any adverse clinical signs, body weight (BW) loss (Figure 2a), or mortality/morbidity.
In contrast, the mean tumor volume significantly increased in Lum−/− mice (Figure 2b–d).
Moreover, edemas were observed in tumor sections of both groups (Figure 2e,f), but were
significantly predominant in Lum−/− mice (Figure 2g, p = 0.02). These differences might
be explained by the loss of ECM integrity due to altered collagen fibrilogenesis caused by
lumican depletion, resulting in an increased tumor growth [34,40].
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Figure 2. Evaluation of endogenous lumican impact on tumor growth in an ovarian allograft model.
(a–d) ID8 ovarian tumor cells (2.5 × 105) were s.c. inoculated in wild-type (Lum+/+) or lumican-
deficient (Lum−/−) syngeneic C57BL/6J mice; (a) Evolution of normalized mice body weights (BW)
expressed as a percentage of day 0 (mean ± SEM); (b) Averages of calculated tumor volumes in
mm3 (mean ± SEM, n = 10–12 per group) (ns: not significant, * p < 0.05); (c) Scatter dot plot of
individual calculated tumor volumes on day 18. Line, mean ± SEM (ns not significant, * p < 0.05);
(d) Representative photographs of ID8 ovarian tumors s.c. allografts after tumor excision (scale
bar, 1 cm). Representative images of edemas observed in HES staining of Lum+/+ (e) and Lum−/−

(f) tumor sections are shown (scale bar, 500 µm); (g) Quantification of the number of edemas observed
in ovarian tumor sections of Lum+/+ or Lum−/− syngeneic C57BL/6J mice (* p < 0.05).

Alterations in stromal tissue components can inhibit or promote epithelial tumori-
genesis. Lumican expression in advanced colorectal cancer with nodal metastasis was
detected in 62.7% of patients, and was correlated with the spread of lymph node metastasis,
the depth of tumor invasion and significantly lower survival rates of patients [50]. The
expression of lumican in stromal tissues is correlated with shorter survival times of pan-
creatic cancer patients [51]. Another study reported that extracellular lumican enhanced
the cytotoxicity of chemotherapy in pancreatic ductal adenocarcinoma cells by autophagy
inhibition [52]. In lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC), the
expression pattern and glycosylated form of lumican in cancer cells, as well as in stromal tis-
sue correlated with the aggressiveness of ADC and SCC [22]. Lumican is highly expressed
within the stroma surrounding several solid tumors, such as lung ADC [53] and prostate
cancer [54]. These pro-tumoral properties are mainly associated with lumican-mediated
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up-regulations of MMP-9, focal adhesion kinases (FAK), and mitogen-activated protein
kinases (MAPK) [28].

In contrast, lumican has previously been shown to inhibit breast cancer migration [55,56].
Similarly, the downregulation of lumican expression in melanoma was associated with
increased invasion [57]. Lumican was shown to inhibit melanoma cell migration [42,58],
while promoting their adhesion [59], notably by direct interaction with α2β1 integrin [60].
Molecular processes are described as involving down-regulations of extracellular signal-
regulated kinases (ERK), MMP14, and FAK [28]. These results suggest that lumican might
have a similar anti-tumoral effect on ovarian cancer. Moreover, lumican was found to
be transcriptionally repressed by the high-mobility group AT-hook 2 (HMGA2). The
overexpression of HMGA2 confers a powerful oncogenic signal in ovarian cancers through
the modulation of EMT genes [61].

3.2. Histological and Immunohistochemical Analysis of Ovarian Tumor Sections in Wild-Type and
Lumican-Deficient Mice

As shown in Figure 3a,b, a difference in the organization of ovarian primary tumors
was observed from HES staining. In Lum+/+ mice, tumors predominantly formed compact
masses, while they were more scattered and diffused in Lum−/− mice. This histological
observation confirms the role of lumican in maintaining the ECM architecture and, thus,
controlling tumor development. The expression of endogenous lumican was verified by
immunohistochemistry in Lum+/+ (Figure 3c) and Lum−/− (Figure 3e) mice. As expected,
lumican was detected in Lum+/+ mice, while its expression was not detected in Lum−/− mice.
The αv integrin subunit was previously reported to be overexpressed in ovarian cancer
cells [62–64]. Immunohistochemical staining of this target permitted to discriminate tumor
from healthy tissue in both groups (Figure 3d,f). Vascular sections present within tumor
masses were quantified by immunohistochemical staining of the endothelial cell marker
CD31 (Figure 3g,i). Unexpectedly, quantification did not show any difference in vessel
density between Lum+/+ and Lum−/− tumors (Figure 3k), while lumican was previously
described to be angiostatic [58,65,66], as opposed to other SLRPs such as biglycan [28].
Lastly, cancer cell proliferation was assessed by immunohistochemical staining of the cell
cycle marker cyclin D1 (Figure 3h,j). The latter staining was not statistically different
between Lum+/+ and Lum−/− mice groups. This was also unexpected since, as shown
in Figure 2, tumors in Lum−/− mice grew significantly bigger than in Lum+/+ mice. This
could be explained by the ECM disorganization resulting in a higher presence of edemas
in the Lum−/− group, dispersed tumor cells, and complicating the evaluation of tumor
proliferative features. Indeed, the results were very heterogeneous, particularly within
the Lum−/− group. Heterogeneous tumor vascularization and proliferation areas might
also explain these results, as sections made from the tumor could not assess properly such
features. Moreover, the presence of intra-tumoral cyclin D1-positive inflammatory cells
might alter the evaluation of the immunohistochemical staining of the tumors.

3.3. Investigation of Intra-Tumoral Collagen Organization of Ovarian Tumor Sections in
Wild-Type and Lumican-Deficient Mice

In Figure 4, ECM architecture was investigated by focusing on collagen fibers organi-
zation. HES staining of Lum+/+ (Figure 4a) and Lum−/− (Figure 4b) are shown once more
for comparison. Firstly, SHG imaging was used to visualize collagen fibers (Figure 4c,e).
Due to the presence of edemas, the number of sections in the Lum−/− group that could be
analyzed by SHG was limited (n = 4) in order to provide a statistical evaluation. Never-
theless, Lum−/− tumors tend to exhibit more SHG marking than Lum+/+ ones (Figure 4g),
highlighting a higher concentration of intra-tumoral collagen that might be due to tumors
infiltrating more ECM and healthy tissues in Lum−/− mice, compared to Lum+/+ mice.
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Figure 3. Histological and immunohistochemical analysis of ovarian tumor sections. (a,b) Example
of s.c. allograft whole sections stained with HES (top panel, scale bar 500 µm) in wild-type (Lum+/+)
(a) and lumican-deficient (Lum−/−) mice (b); (c–j) IHC analyses of ovarian allografts in tumors
implanted in Lum+/+ (c,d,g,h) and Lum−/− (e,f,i,j) mice; (c,e) Microscopic views of s.c. allograft whole
sections IHC allowing visualization of lumican within tumors implanted in Lum+/+ mice (c) while it is
not detected in tumors from Lum−/− animals (e) (scale bar 50 µm). Insets show higher magnification
(scale bar 20 µm) of stromal margin surrounding ovarian tumor allografts. Ovarian tumors from
Lum−/− animals lack immunoreactive material confirming the absence of any lumican gene product;
(d,f) IHC allowing visualization of αv integrin (scale bar 50 µm). Insets show higher magnification
(scale bar 20 µm) of endothelial cells ovarian tumor allografts in tumors implanted in Lum+/+ mice
(d) and in tumors from Lum−/− animals (f); (g,i) CD31 immunostaining in tumors implanted in
Lum+/+ mice (g) and in tumors from Lum−/− animals (i) (scale bar 50 µm). Insets show higher
magnification (scale bar 20 µm); (h,j) Cyclin D1 immunostaining in tumors implanted in Lum+/+

mice (h) and in tumors from Lum−/− animals (j) (scale bar 50 µm). Insets show higher magnification
(scale bar 20 µm); (k,l) Quantification of percentage of CD31-positive blood vessels (k) as well as
relative cyclin D1-positive areas (number of positive cyclin D1 tumor cell nuclei normalized to the
total number of tumor cell nuclei) (l) (mean ± SD, ns: not significant). The quantification of the
MicroVascular Density (MVD) was based on a manual counting of full vascular sections formed by
CD31-positive endothelial cells. All acquisitions were performed with a 20×magnification.
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Figure 4. Analysis of collagen organization in ovarian tumor sections of wild-type and lumican-
deficient mice. (a,b) Representative microphotographs of s.c. allograft sections stained with HES
(top panel, original magnification 20×, scale bar 500 µm) in Lum+/+ (a) and Lum−/− mice (b);
(c–f) Picrosirius red and SHG image analyses of ovarian allografts in tumors implanted in Lum+/+

mice (c,d) and in tumors from Lum−/− mice (e,f); (c,e) Collagen SHG images from ID8 ovarian tumors
(original magnification 20×); (d,f) Ovarian tumor sections stained with Picrosirius red and viewed
under widefield cross-polar optics (original magnification 20×, scale bar 50 µm). Birefringence of
collagen fibers allows distinction between type I (red) and type III (green) collagens; (g) Analysis of
collagen fibers intensity by SHG in tumors and healthy tissues present in each section (mean± SD, ns:
not significant); (h) Analysis of tumor ECM collagen organization from images derived from Gabor
filtering and FFT, processed on Picrosirius red images (mean ± SD, ns: not significant); (i) Quantifica-
tion on Picrosirius red stained sections of the relative distribution of red pixels (corresponding to type
I collagen) in tumor ECM of Lum+/+ and Lum−/− sections (mean ± SD, * p < 0.05); (j) Quantification
on Picrosirius red stained sections of the relative distribution of green pixels (corresponding to type
III collagen) within tumors of Lum+/+ and Lum−/− sections (mean ± SD, * p < 0.05).

To pursue the characterization of intra-tumoral collagen organization, s.c. allografts
sections were visualized under polarized light following Picrosirius red staining (Figure 4d,f)
in order to evaluate type I and type III collagen distribution. Unexpectedly, analysis of
the collagen fibers organization by processing of Picrosirius red images with Gabor filter
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(Figure 4h) did not show any significant difference, unlike the less organized collagen
network that was previously observed in similar conditions in melanoma models [34].
This might be explained by the limited number of samples that could be analyzed with
our methodology.

Pixel count calculations showed a decrease in signals arising from healthy tissue type
I collagen (Figure 4i), and an increase in the intra-tumoral type III collagen (Figure 4j) in
Lum−/− mice, as compared to WT. The contrast between SHG and Picrosirius red results
may be due to a partly denatured type I collagen network in Lum−/− mice. Denatured
collagen is detectable with Picrosirius red, but not SHG, due to the loss of a regular double
helix structure, preventing emission of the SHG signal. Together, these results could
be explained by an increased tumor infiltration and spreading in Lum−/− mice due to
ECM disorganization.

Previous studies have shown the ability of lumican (and its derived peptides), in
contrast to decorin (DCN), to inhibit MMP-14 activity in melanoma cells, where lumican
directly interacted with MMP-14 [67–69]. Thus, lumican can maintain skin ECM integrity
by inhibiting MMPs activity, and consequently melanoma progression and epithelial-
mesenchymal transition (EMT). This process might likely be involved in lumican-mediated
ECM alteration in the context of ovarian cancer.

3.4. FTIR Histopathology of Ovarian Tumor Tissues in Wild-Type and Lumican-Deficient Mice

In Figure 5, conventional histology (HES staining) and infrared spectral imaging of
Lum+/+ (Figure 5a,b) and Lum−/− (Figure 5c,d) mice tissue sections were compared. Using
common K-means clustering with seven classes, all main histological structures could be
identified, namely the epidermis, dermis, hypodermis, muscle fibers, and ovarian tumor.
However, it can be noted that epidermis, hair bulbs, and tumor masses are represented by
the same cluster. An interesting observation between Lum+/+ and Lum−/− tissue sections is
that the same morphological features were detected, with, however, a difference in tumor
cells distribution, which is more compact in Lum+/+. This is concordant with what was
observed in HES-stained images in Figure 3. Nevertheless, no significant differences in
cluster distribution could be identified between Lum+/+ and Lum−/− mice. The different
clusters are represented by their centroid spectra (Figure 5e), and the grouping of spectra
are shown in the dendrogram (Figure 5f). Each class represents an anatomical structure,
except for tumor masses and the dermis, which are each represented by two classes. For
example, tumor masses are represented by the red and orange clusters, while the dermis is
represented by the brown and blue clusters.

Type I collagen being a major component of the ECM, its distribution was assessed in
Lum+/+ and Lum−/− mice tissues by using a reference type I collagen spectrum to construct
correlation images. These are displayed in Figure 6a,b along with a correlation scale. The
results showed that collagen appeared denser in the dermis and in the tumor periphery
in Lum+/+ mice. In contrast, in Lum−/−, collagen distribution was looser, especially at the
tumor site, due to ECM disorganization, as also observed in SHG images. The lack of a clear
difference in collagen correlation between Lum+/+ and Lum−/− mice might be explained
by the capacity of FTIR to detect both well organized and denatured collagen [70], as
discussed above. To further analyze collagen modifications, second derivative spectra of
Lum+/+ and Lum−/− tumors and dermis were compared with a reference type I collagen
spectrum (Figure 6c). The second derivative profile of native collagen was comparable
to both dermis samples from Lum+/+ and Lum−/− mice. In contrast, second derivative
profile of native collagen exhibited differences with both tumors from Lum+/+ and Lum−/−

mice, specifically in the Amide I and III regions. The main impacted Amide I bands are
identified at 1641 cm−1 (1633 cm−1 in native collagen) and 1658 cm−1 (1662 cm−1 in native
collagen) in the tumors. The shifts are respectively of +8 cm−1 and −4 cm−1. These bands
relate to protein secondary structures, indicating a change in structural conformation of
type I collagen, the major component of the ECM. In addition, the absorption bands in the
1000–1100 cm−1 region are more prominent in collagen and dermis spectra, compared to
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the tumor spectra. However, this analysis did not reveal any significant difference between
Lum+/+ and Lum−/− mice, both in the dermis and tumor regions.
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Figure 5. K-means clustering of FTIR spectral images of ovarian tumor sections in wild-type and
lumican-deficient mice. (a,c) Example of s.c. allograft whole sections stained with HES (original
magnification 20× scale bar 500 µm) in Lum+/+ (a) and Lum−/− mice (c); (b,d) Representative color-
coded K-means (7 classes) clustered images of tumor sections in Lum+/+ (b) and Lum−/− mice
(d) (1: epidermis, 2: dermis, 3: hair bulb, 4: hypodermis, 5: smooth muscle, 6: tumor); (e) EMSC-
corrected spectra (900–1800 cm−1) of centroids of all seven clusters. Spectra are offset for clarity;
(f) Dendrogram obtained as a result of hierarchical clustering showing spectral heterogeneity between
the seven cluster centroids estimated by unsupervised K-means clustering of s.c. tumor infrared
images. Random pseudo-colors were attributed to each cluster, while comparison to adjacent HES-
stained sections allowed histological annotations of K-means subclasses.
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were each correlated with a pure type I collagen spectrum. Provided scale indicates the degree of
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4. Conclusions

Overall, the present report is the first to highlight the major role of lumican in the
maintenance of the extracellular matrix integrity in the context of ovarian cancer, showing
its inhibitory role in primary ovarian tumor allografts growth. Thanks to a multimodal
approach, combining histopathology, immunohistochemistry, and three optical imaging
techniques, the alteration of collagen organization could be demonstrated in tumors from
lumican-deficient mice. This disorganization was associated with a significant increase in
tumor growth and edema formation within the tumors. Non-invasive methods such as
FTIR imaging represent potential diagnostic techniques for detection of ovarian tumors at
early stages. Moreover, these techniques are promising in evaluating ECM integrity, leading
to a more appropriate treatment to target cancer cells while preserving ECM structure.
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