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Diversity analysis of amplicon sequencing data has mainly been limited to plug-in estimates 
calculated using normalized data to obtain a single value of an alpha diversity metric or 
a single point on a beta diversity ordination plot for each sample. As recognized for count 
data generated using classical microbiological methods, amplicon sequence read counts 
obtained from a sample are random data linked to source properties (e.g., proportional 
composition) by a probabilistic process. Thus, diversity analysis has focused on diversity 
exhibited in (normalized) samples rather than probabilistic inference about source diversity. 
This study applies fundamentals of statistical analysis for quantitative microbiology (e.g., 
microscopy, plating, and most probable number methods) to sample collection and 
processing procedures of amplicon sequencing methods to facilitate inference reflecting 
the probabilistic nature of such data and evaluation of uncertainty in diversity metrics. 
Following description of types of random error, mechanisms such as clustering of 
microorganisms in the source, differential analytical recovery during sample processing, 
and amplification are found to invalidate a multinomial relative abundance model. The 
zeros often abounding in amplicon sequencing data and their implications are addressed, 
and Bayesian analysis is applied to estimate the source Shannon index given unnormalized 
data (both simulated and experimental). Inference about source diversity is found to require 
knowledge of the exact number of unique variants in the source, which is practically 
unknowable due to library size limitations and the inability to differentiate zeros corresponding 
to variants that are actually absent in the source from zeros corresponding to variants 
that were merely not detected. Given these problems with estimation of diversity in the 
source even when the basic multinomial model is valid, diversity analysis at the level of 
samples with normalized library sizes is discussed.
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INTRODUCTION

Analysis of microbiological data using probabilistic methods 
has a rich history, with examination of both microscopic and 
culture-based data considered by prominent statisticians a 
century ago (e.g., Student, 1907; Fisher et  al., 1922). The most 
probable number method for estimating concentrations from 
suites of presence–absence data is inherently probabilistic (e.g., 
McCrady, 1915), though routine use of tables (or more recently 
software) obviates consideration of the probabilistic link between 
raw data and the estimated values of practical interest for 
most users. Both the analysis of microbiological data and the 
control of the methods through which such data are obtained 
are grounded in statistical theory (e.g., Eisenhart and Wilson, 
1943). More recently, the issue of estimating microbial 
concentrations and quantifying the uncertainty therein when 
some portion of microorganisms gathered in an environmental 
sample are not observed by the analyst has added to the 
complexity of analyzing microscopic enumeration data (e.g., 
Emelko et al., 2010). These examples share the common theme 
that the concentration of microorganisms in some source of 
interest is indirectly and imprecisely estimated from the discrete 
data produced by microbiological examination of samples (e.g., 
counts of cells/colonies or the number of aliquots exhibiting 
bacterial growth). The burgeoning microbiological analyses 
grounded in polymerase chain reactions (Huggett et  al., 2015) 
likewise feature discrete objects (specific sequences of genetic 
material) that are prone to losses in sample processing, but 
these methods are further complicated by the variability 
introduced through amplification and subsequent reading (e.g., 
fluorescence signals or sequencing).

In next-generation amplicon sequencing, obtained data consist 
of a large library of nucleic acid sequences extracted and 
amplified from environmental samples, which are then tabulated 
into a set of counts associated with amplicon sequence variants 
(ASVs) or some grouping thereof (Callahan et  al., 2017). The 
resulting data are regarded as a quantitative representation of 
the relative abundance (i.e., proportions) of various organisms 
in the source rather than absolute abundance (i.e., 
concentrations), thus leading to compositional data (Gloor 
et al., 2017). Among the many categories of analyses performed 
on such data are (1) differential abundance analysis to compare 
proportions of particular variants among samples and their 
relation to possible covariates and (2) diversity analysis that 
concerns the number of unique variants detected, how the 
numbers of reads vary among them, and how these characteristics 
vary among samples (Calle, 2019). Conventional analysis of 
these data is confronted with several problems (McMurdie 
and Holmes, 2014; Kaul et  al., 2017; McKnight et  al., 2019): 
(1) a series of samples can have diverse library sizes (i.e., 
numbers of sequence reads), motivating “normalization,” (2) 
there are many normalization approaches from which to choose, 
and (3) many normalization and data analysis approaches are 
complicated by large numbers of zeros in ASV tables. These 
issues can be  overcome in differential abundance analysis 
through use of probabilistic approaches such as generalized 
linear models (e.g., McMurdie and Holmes, 2014) that link 

raw ASV count data and corresponding library sizes to a linear 
model without the need for normalization or special treatment 
of zeros. Diversity analysis, however, is more complicated 
because the amount of diversity exhibited in a particular sample 
(alpha diversity) or apparent similarity or dissimilarity among 
samples (beta diversity) is a function of library size (Hughes 
and Hellmann, 2005), and methods to account for this are 
not standardized.

A variety of methods have been applied to prepare amplicon 
sequencing data for downstream diversity analyses, most of 
which involve some form of normalization. Normalization options 
include (1) rarefying that randomly subsamples from the observed 
sequences to reduce the library size of a sample to some 
normalized library size shared by all samples in the analysis 
(Sanders, 1968), (2) simple proportions (McKnight et al., 2019), 
and (3) a continually expanding set of data transformations, 
such as centered log-ratios (e.g., Gloor et  al., 2017), geometric 
mean of pairwise ratios (e.g., Chen et  al., 2018), or variance-
stabilizing transformations (e.g., Love et  al., 2014). Rarefying 
predates high throughput sequencing methods (including 
applications beyond sequencing of the 16S rRNA gene, such 
as RNA sequencing) and originated in traditional ecology. 
Statistically, these normalization approaches to estimation of 
sample diversity in the source treat manipulated sample data 
as a population because the non-probabilistic analysis of a 
sample (called a plug-in estimate) leads to a single diversity 
value or a single point on an ordination plot.

While it would increase computational complexity to do 
so, it is more theoretically sound to acknowledge that the 
observed library of sequence reads in a sample is an imperfect 
representation of the diversity of the source from which the 
sample was collected and that no one-size-fits-all normalization 
of the data can remedy this. ASV counts would then be regarded 
as a suite of random variables that are collectively dependent 
on the sampling depth (library size) and underlying simplex 
of proportions that can only be  imperfectly estimated from 
the available data. Analysis of election polls is somewhat 
analogous in that it concerns inference about the relative 
composition (rather than absolute abundance) of eligible voters 
who prefer various candidates. A key distinction is that such 
analysis does not presume that the fraction of respondents 
favoring a particular candidate or party (or some numerical 
transformation thereof) is an exact measurement of the 
composition of the electorate. Habitual reporting of a margin 
of error with proportional results (Freedman et  al., 1998) 
exemplifies that such polls are acknowledged to be  samples 
from a population in which the small number of eligible voters 
surveyed is central to interpretation of the data. In amplicon 
sequencing diversity analysis, sampling precludes measuring 
source diversity exactly, but it is analysis of this source diversity 
that is of interest. Recognizing this, Willis (2019) encouraged 
approaches to estimation of alpha diversity from amplicon 
sequencing data that estimate diversity in a source and uncertainty 
therein from sample data using knowledge about random error. 
To do this, it is critical to recognize that diversity analysis of 
observed amplicon sequencing counts must draw inferences 
about source diversity without bias and with adequate precision. 
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Ideally, quantitative information about precision (such as error 
bars for alpha diversity values) should be  provided.

Here, (1) the random process yielding amplicon sequencing 
data believed to be  representative of microbial community 
composition in the source and (2) how this theory contributes 
to estimating the Shannon index alpha diversity metric using 
such data, particularly when library sizes differ and zero counts 
abound, are examined in detail. Theory applied to estimate 
microbial concentrations in water from data obtained using 
classical microbiological methods is extended to this type of 
microbiological assay to describe both the types of error that 
must be  considered and a series of mechanistic assumptions 
that lead to a simple statistical model. The mechanisms leading 
to zeros in amplicon sequencing data and common issues with 
how zeros are analyzed in all areas of microbiology are discussed. 
Bayesian analysis is evaluated as an approach to drawing 
inference from a sample library about alpha diversity in the 
source with particular attention to the meaning and handling 
of zeros. This work addresses a path to evaluating microbial 
community diversity given the inherent randomness of amplicon 
sequencing data. It is based on established fundamentals of 
quantitative microbiology and provides a starting point for 
further investigation and development.

DESCRIBING AND MODELING ERRORS 
IN AMPLICON SEQUENCING DATA

A theoretical model for the error structure in microbial data 
can be  developed by contemplating the series of mechanisms 
introducing variability to the number of a particular type of 
microorganisms (or gene sequences) that are present in a 
sample and eventually observed. This prioritizes understanding 
how random data are generated from the population of interest 
(e.g., the source microbiota) from sample collection through 
multiple sample processing steps to tables of observed data 
over the often more immediate problem of how to analyze a 
particular set of available data. Probabilistic modeling is central 
to such approaches, not just a data analytics tool.

Rather than reviewing and attempting to synthesize the 
various probabilistic methods that have been applied to amplicon 
sequencing, the approach herein builds on a foundation of 
knowledge surrounding random errors in microscopic 
enumeration of waterborne pathogens (e.g., Nahrstedt and 
Gimbel, 1996; Emelko et  al., 2010) to address the inherently 
more complicated errors in amplicon sequencing data. This 
study addresses the foundational matter of inferring a source 
microbiota alpha diversity metric from an individual sample 
because dealing with more complex situations inherent to 
microbiome analysis requires a firm grasp of such simple 
scenarios. Accordingly, hierarchical models for alpha diversity 
analyses that link samples to a hypothetical meta-community 
(e.g., McGregor et  al., 2020) and approaches for differential 
abundance analysis in which the covariation of counts of several 
variants among multiple samples may be a concern (e.g., Mandal 
et  al., 2015) are beyond the scope of this work.

The developed modeling framework reflects that 
microorganisms and their genetic material are discrete, both 
in the source and at any point in the multi-step process of 
obtaining amplicon sequencing data. It also reflects that each 
step is random, potentially decreasing or in some cases increasing 
the (unobserved) discrete number of copies of each sequence 
variant. This applies a systems approach to describing the 
mechanisms through which discrete sequences are lost or 
created. This differs from previous work (e.g., McLaren et  al., 
2019) that does not reflect the discrete nature of microorganisms 
and their genetic material, assumes deterministic (i.e., 
non-random) and multiplicative effects of each sample processing 
step, and assumes only a single source of multiplicative random 
error in observed proportions (when, in fact, these proportions 
are estimated from observed discrete counts and a finite 
library size).

When random errors in the process linking observed data 
to the population characteristics of interest are integrated into 
a probabilistic model, it is possible to apply the model in a 
forward direction to simulate data given known parameter 
values or in a reverse direction to estimate model parameters 
given observed data (Schmidt et al., 2020). Analysis of simulated 
data generated in accordance with a mechanistically plausible 
probabilistic model (to determine if the analysis generates 
suitable inferences) is an important step in validating data-
driven analysis frameworks. This reversibility is harnessed later 
in this paper to simulate data from a hypothetical source and 
evaluate how well Bayesian analysis of those data estimates 
the actual Shannon index of the source. The developed method 
is subsequently applied to a sample of environmental amplicon 
sequencing data.

Describing Amplicon Sequencing Data as 
a Random Sample From an Environmental 
Source
Microbial community analysis involves the collection of samples 
from a source, such as environmental waters or the human 
gut (Shokralla et  al., 2012). This study addresses the context 
of water samples because the plausibility that some sources 
could be  homogeneous provides a comparatively simple and 
well-understood statistical starting point for modeling—many 
other sources of microbial communities are inherently not well 
mixed. When a sample is collected, it is presumed to 
be  representative of some spatiotemporal portion of a water 
source, such as a particular geographic location and depth in 
a water body and time of sampling. A degree of local homogeneity 
surrounding the location and time of the collected sample is 
often presumed so that randomness in the number of a particular 
type of microorganisms contained in the sample (random 
sampling error) would be Poisson distributed with mean equal 
to the product of concentration and volume. There are many 
reasons for which a series of samples presumed to be replicates 
from a particular source may yield microorganism counts that 
are overdispersed relative to such a Poisson distribution (Schmidt 
et  al., 2014), including (1) clustering of microorganisms to 
each other or on suspended particles, (2) spatiotemporally 
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variable concentration, (3) variable volume analyzed, and (4) 
errors in sample processing and counting of microorganisms. 
Variable concentration and inconsistent sample volumes are 
not considered herein because the focus is on relative abundance 
(i.e., not estimation of concentrations) and samples that are 
not presumed to be replicates (i.e., analysis focuses on individual 
samples). Non-random dispersion could be a concern affecting 
estimates of diversity and relative abundance because clustering 
may inflate variability in the counts of a particular type of 
microorganisms. For example, clustering could polarize results 
between unusually large numbers if a large cluster is captured 
and absence otherwise rather than yielding a number that 
varies minimally around the average.

The remainder of this analysis focuses on errors in sample 
handling and processing, nucleic acid amplification, and gene 
sequence counting. To be  representative of relative abundance 
of microorganisms in the source, it is presumed that a sample 
is handled so that the community in the analyzed sample is 
compositionally equivalent to the community in the sample 
when it was collected (Fricker et  al., 2019). Any differential 
growth or decay among types of microorganisms or sample 
contamination will bias diversity analysis. A series of sample 
processing steps is then needed to extract and purify the nucleic 
material so that the sample is reduced to a size and condition 
ready for PCR. Losses may occur throughout this process, 
such as adhesion to glassware, residuals not transferred, failure 
to extract nucleic material from cells (Fricker et  al., 2019), 
and sample partitioning during concentration and/or purification 
steps. These introduce random analytical error (because a 
method with 50% analytical recovery cannot recover 50% of 
one discrete microorganism, for example), and likely also 
non-constant analytical recovery if the capacity of the method 
to recover a particular type of microorganisms varies randomly 
from sample to sample (e.g., 60% in one sample and 40% in 
the next). Even with strict control of water matrix and method, 
the analytical recovery of microbiological methods is known 
to be  highly variable in some cases (e.g., United States 
Environmental Protection Agency, 2005). Any differential 
analytical recovery among types of microorganisms (e.g., if 
one type of microorganisms is more likely to be  successfully 
observed than another) will bias diversity analysis of the source 
(McLaren et  al., 2019). Varying copy numbers of genes among 
types of microorganisms as well as genes associated with 
non-viable organisms can also bias diversity analysis if the 
goal is to represent diversity of viable organisms in the source 
rather than diversity of gene copies present in the source.

PCR amplification is then performed with specific primers 
to amplify targeted genes, which may not perfectly double the 
number of gene copies in each cycle due to various factors 
including primer match. Any differential amplification efficiency 
among types of microorganisms will bias diversity analysis of 
the source (McLaren et  al., 2019), as will amplification errors 
that produce and amplify variants that do not exist in the 
source (unless these are readily identified and removed from 
sequencing data). Finally, the generated library of sequence 
reads is only a subsample of the sequences present in the 
amplified sample. Production of sequences that are not present 

in the original sample (e.g., chimeric sequences and misreads) 
is a form of loss if they detract from sequences that ought 
to have been read instead, and the resulting sequences may 
not be perfectly removed from the data (either failing to remove 
invalid sequences or erroneously removing valid sequences). 
Erroneous base calling is one such mechanism of sequencing 
error (Schirmer et  al., 2015). Any differential losses at this 
stage will once again bias diversity analysis of the source 
(McLaren et  al., 2019), as will inadvertent inclusion of false 
sequences. Thus, the discrete number of microorganisms gathered 
in a sample, the discrete number of genes successfully reaching 
amplification, the discrete number of genes after amplification, 
and the discrete number of genes successfully sequenced are 
all random. Due to this collection of unavoidable but often 
describable random errors, the validity of diversity analysis 
approaches that regard samples (or normalized transformations 
of them) as exact compositional representations of the source 
requires further examination.

Modeling Random Error in Amplicon 
Sequencing Data
For all of the reasons described above, it is impractical to 
regard libraries of sequence reads as indicative of absolute 
abundance in the source. We  suggest that it is also impossible 
to regard them as indicative of relative abundance in the source 
without acknowledging a suite of assumptions and carefully 
considering what effect departure from those assumptions might 
have. By presuming that sequence reads are generated 
independently based on proportions identical to the proportional 
occurrence of those sequences in the source from which the 
sample was collected, the randomness in the set of sequence 
reads will follow a multinomial distribution (for large random 
samples from small populations, however, a multivariate 
hypergeometric model may be  more appropriate). This is 
analogous to election poll data (if the poll surveys a small 
random sample of voters from a large electorate), repeatedly 
rolling a die, or repeatedly drawing random lettered tiles from 
a bag with replacement. This model may form the basis of 
logistic regression to describe proportions of sequences of 
particular types as a function of possible covariates in differential 
abundance analysis, reflecting how count data are random 
variables depending on respective library sizes and underlying 
proportions of interest.

Multinomial models are foundational to probabilistic analysis 
of count-based compositional data (e.g., McGregor et al., 2020), 
but mechanisms through which natural variability arises in 
the source (such as microorganism dispersion) and the sample 
collection and processing methodology (such as losses, 
amplification, and subsampling) must be  considered because 
they may invalidate such a model for amplicon sequencing 
data—these need to be  considered. Table  1 summarizes the 
random errors discussed above, contextualizes them in terms 
of compatibility with the multinomial relative abundance model, 
and summarizes the assumptions that must be  made to use 
a multinomial model. Although this table addresses the context 
of amplicon sequencing data, it could apply to other applications 
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of diversity analysis with specific modules excluded or modified 
(e.g., it could apply to metagenomics with amplification excluded 
for shotgun sequencing, and it may apply more broadly to 
ecology with modification).

Based on some simulations (see R code in 
Supplementary Material), it was determined that random 
sampling error consistent with a Poisson model is compatible 
with the multinomial relative abundance model (using the 
binomial model as a two-variant special case). Specifically, this 
featured Poisson-distributed counts of two variants with means 
following a 2:1 ratio and graphical evidence that this process 
is consistent with a binomial model (also with a 2:1 ratio of 
the two variants) when the result was conditioned on a particular 
library size. It must be  noted that this is not a formal proof, 
as “proof by example” is a logical fallacy (unlike “disproof by 
counter-example”). Critically, clustering of gene copies in the 
source causes the randomness in sequence counts to depart 
from a multinomial model, as proven by simulation in the 
Supplementary Material (following a disproof by counter-
example approach). When the above process was repeated with 
counts following a negative binomial model that is overdispersed 
with respect to the Poisson model, the variation in counts 
conditional on a particular library size was no longer consistent 
with the binomial model. Microorganisms having multiple gene 
copies is a form of clustering that invalidates the model.

Any form of loss or subsampling is compatible with the 
multinomial model so long as it affects all sequence variants 
equally. If each of a set of original proportions is multiplied 

by the same weight (analytical recovery), then the set of 
proportions adjusted by this weighting is identical to the original 
proportions (e.g., a 2:1 ratio is equal to a 1:0.5 ratio if all 
variants have 50% analytical recovery).

Growth and amplification must also not involve differential 
error among variants, but even in absence of differential error 
they have an important effect on the data and evaluation of 
microbiota diversity. These processes inflate the number of 
sequences present, but only with the potentially reduced or 
atypical diversity represented in the sample before such inflation. 
For example, a hypothetical sample with 100 variants amplified 
to 1,000 will have the diversity of a 100-variant sample in 
1,000 reads, which may inherently be  less than the diversity 
of a 1,000-variant sample directly from the source. Amplification 
fabricates additional data in a process somewhat opposite to 
discarding sequences in rarefaction; it draws upon a small 
pool of genetic material to make more whereas rarefaction 
subsamples from a larger pool of gene sequences to yield less 
(i.e., a smaller library size). Based on some simulations (see 
R code in Supplementary Material), it was proven that 
amplification is incompatible with the multinomial relative 
abundance model (following a disproof by counter-example 
approach). Specifically, the distribution of counts when two 
variants with a 2:1 ratio are amplified from a library size of 
four to a library size of six differs from the distribution of 
counts obtained from a binomial model.

Representativeness of source diversity and compatibility with 
the multinomial relative abundance model can only be assured 

TABLE 1 | Summary of random errors in amplicon sequencing and associated assumptions in the multinomial relative abundance model.

Error source Description of error and compatibility with multinomial model Assumptions

Sample collection The random sampling error describing variability in the number of discrete objects 
captured in a sample yields a Poisson distribution if microorganisms are randomly 
dispersed in a large source. This error is compatible with a multinomial model for 
proportional abundance of variants. Clustering, including multiple gene copies per 
organism, leads to excess variability that is incompatible with a multinomial model.

• All microorganisms are randomly dispersed (i.e., 
not clustered) with only one gene copy each*

Sample handling The number of a particular type of microorganisms may increase or decrease 
between sample collection and sample processing. Growth inflates the number of 
microorganisms at the level of diversity represented before growth occurred and is 
incompatible with a multinomial model. Decay is a form of random analytical error 
that is compatible with a multinomial model if it is consistent among variants.

• No growth

• No differential decay (analytical recovery) among 
variants

Sample processing The number of gene sequences subjected to amplification may be lower than the 
number in the sample prior to processing due to losses (e.g., adherence to 
apparatus, not all genes extracted, sample partitioning). This is compatible with a 
multinomial model if analytical recovery is constant among variants.

• No differential losses (analytical recovery) among 
variants

Amplification The number of gene sequences is purposefully increased using polymerase chain 
reactions, inflating the number of gene sequences at the level of diversity 
represented before amplification occurred, and is incompatible with a multinomial 
model. Copy errors are a form of loss for the original sequences that were 
incorrectly copied and produces erroneous sequences that may then be further 
amplified. Erroneous sequences are incompatible with a multinomial model unless 
all of them are removed from the data.

• Pre-amplification variant diversity is fully identical to 
source diversity and sequences are perfectly 
duplicated in each PCR cycle*

• No differential amplification efficiency or potential 
for copy errors among variants

Amplicon sequencing Only a subsample of sequences are read, and all variants must be equally likely to 
be read. Sequence reading errors are a form of loss for the original sequences that 
were incorrectly read and also produces erroneous sequence reads. Sequence 
reading errors are incompatible with a multinomial model unless all resultant 
erroneous sequences are removed from the data.

• No differential sequence reading errors among 
variants or differential losses

• Data denoising must remove all erroneous 
sequence reads and no legitimate reads

*Without these difficult assumptions, the multinomial model describes post-amplification variant diversity rather than source microbial diversity.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Schmidt et al. Evaluating Uncertainty in Diversity Analysis

Frontiers in Microbiology | www.frontiersin.org 6 March 2022 | Volume 13 | Article 728146

if the post-amplification diversity happens to be  fully identical 
to the pre-amplification diversity and the observed library is 
a simple random sample of the amplified genetic material. 
Such an assumption may presume random happenstance more 
so than a plausible probabilistic process, though it would 
be  valid in the extreme special case where pre-amplification 
diversity is fully identical to source diversity and every sequence 
is perfectly duplicated in each cycle (with no erroneous sequences 
produced). Without making relatively implausible assumptions 
or having detailed understanding and modeling of the random 
error in amplification, observed libraries are only representative 
of post-amplification diversity and indirectly representative of 
source diversity. This calls into question the theoretical validity 
of multinomial models as a starting point for inference about 
the proportional composition of microbial communities using 
amplification-based data. Nonetheless, the multinomial model 
was used as part of this study in some illustrative simulation-
based diversity analysis experiments.

THE MANY ZEROS OF AMPLICON 
SEQUENCING DATA

As in other fields (Helsel, 2010), zeros in microbiology have 
led to much ado about nothing (Chik et  al., 2018). They are 
(1) commonly regarded with skepticism that is hypocritical 
of non-zero counts (e.g., assuming that counts of zero result 
from error while counts of two are infallible), (2) often 
substituted with non-zero values or omitted from analysis 
altogether, and (3) a continued subject of statistical debate 
and special attention (such as detection limits and allegedly 
censored microbial data). Careful consideration of zeros is 
particularly relevant to diversity analysis of amplicon sequencing 
data because they often constitute a large portion of ASV 
tables. They may or may not appear in sample-specific ASV 
data, but they often appear when the ASV table of several 
samples is filled out (e.g., when an ASV that appears in 
some samples does not appear in others, zeros are assigned 
to that ASV in all samples in which it was not observed). 
They may also be created by zeroing singleton reads (Callahan 
et  al., 2016), but this issue (and the bias arising if some 
singletons are legitimate read counts) is not specifically 
addressed in this study. Zeros often receive special treatment 
during the normalization step of compositional microbiome 
analysis (Thorsen et  al., 2016; Tsilimigras and Fodor, 2016; 
Kaul et  al., 2017), including removal of rows of zeros and 
fabrication of pseudo-counts with which zeros are substituted 
(to enable logarithmic transformations or optimal beta diversity 
separation). However, it is fundamentally flawed to justify 
use of pseudo-counts to “correct for” zeros arguing that they 
are censored data below some detection limit (Chik et  al., 
2018; Cameron et  al., 2021). In methods that count discrete 
objects (e.g., microorganisms or gene copies) in samples, 
counts of zero are no less legitimate than non-zero counts: 
all random count-based data provide imperfect estimation 
of source properties, such as microorganism concentrations 
or proportional composition.

We propose a classification of three types of zeros: (1) 
non-detected sequences (also called rounded or sampling zeros), 
(2) truly absent sequences (also called essential or structural 
zeros), and (3) missing zeros. This differs from the three types 
of zeros discussed by Kaul et  al. (2017) because the issue of 
missing zeros (which is shown to be  critically important in 
diversity analysis) was not noted in that study and zeros that 
appear to be outliers from empirical patterns are not considered 
in this study (because all random read counts are presumed 
to be  correct). Likewise, Tsilimigras and Fodor (2016) 
differentiated between essential or structural zeros (truly absent 
sequences) and rounded zeros (resulting from undersampling), 
but did not consider missing zeros.

It is typically presumed that zeros correspond to non-detected 
sequences, meaning that the variant is present in some quantity 
in the source but happened to not be  included in the library 
and is represented by a zero. A legitimate singleton that is 
replaced with a zero would be  a special case of a non-detect 
zero. Bias would result if non-detect zeros were omitted or 
included in the diversity analysis inappropriately (e.g., substitution 
with pseudo-counts or treating them as definitively absent variants). 
It is conceptually possible that a particular type of microorganisms 
may be truly absent from certain sources so that the corresponding 
read count and proportion should definitively be  zero. If false 
sequences due to errors in amplification and sequencing are 
filtered from the ASV table but left as zeros, then they are a 
special case of truly absent sequences. Bias would result if such 
zeros were included in diversity analysis in a way that manipulates 
them to non-zero values or allows the corresponding variant 
to have a plausibly non-zero proportion. Missing zeros are variants 
that are truly present in the source and not represented in the 
data—they are not acknowledged to be  part of the community, 
even with a zero in the ASV table. Bias would result from 
excluding these zeros from diversity analysis rather than recognizing 
them as non-detected variants. Thus, there are three types of 
zeros, two of which appear indistinguishably in the data and 
must be handled differently and the third of which is important 
but does not even appear in the data. In this study, simulation-
based experiments and environmental data are used to illustrate 
implications of the dilemma of not knowing how many zeros 
should appear in the data to be  analyzed as non-detects.

PROBABILISTIC INFERENCE OF 
SOURCE SHANNON INDEX USING 
BAYESIAN METHODS

The Shannon index (Shannon, 1948; Washington, 1984) is used 
as a measure of alpha diversity that reflects both the richness 
and evenness of variants present (number of unique variants 
and similarity of their respective proportions). When calculated 
from a sample, the Shannon index (S) depends only on the 
proportions of the observed variants (pi for the ith of n variants) 
and not on their read counts. Critically, the Shannon index 
of a sample is not an unbiased estimate of the Shannon index 
of the source (even in scenarios without amplification); it is 
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expected to increase with library size as more rare variants 
are observed until it converges asymptotically on the Shannon 
index of the source (Willis, 2019). Even if all variants in the 
source are reflected in the data, the precision of the estimated 
Shannon index will improve with increasing library size.
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Building on existing work applying Bayesian methods to 
characterize the uncertainty in enumeration-based microbial 
concentration estimates (e.g., Emelko et  al., 2010) and inspired 
by the need to consider random error in evaluation of alpha 
diversity that was noted by Willis (2019), a Bayesian approach 
is explored here for the simplified scenario of multinomially 
distributed data. It evaluates uncertainty in the source Shannon 
index given sample data, the multinomial model, and a relatively 
uninformative Dirichlet prior that gives equal prior weight to 
all variants (using a vector of ones). Hierarchical modeling that 
may describe how the proportional composition varies among 
samples is beyond the scope of this analysis. Such modeling can 
be  beneficial when strong information in the lower tier of the 
hierarchy can be used to probe the fit of the upper tier; however, 
it can be biased if limited information in the lower tier is bolstered 
with flawed assumptions introduced via the upper tier.

Here, a simulation study is employed that is analogous 
to compositional microbiota data with small library sizes and 
small numbers of variants and that does follow a multinomial 
relative abundance model. The simulation uses specified 
proportions for a set of variants; for illustrative purposes, 
the simulation represents random draws with replacement 
from a bag of lettered tiles based on the game Scrabble™. 
Randomized multinomial data (Supplementary Table S1, 
Supplementary Material) were generated in R using varying 
library sizes and the proportions of the 100 tiles (including 
26 letters and blanks), which correspond to a population-level 
Shannon index of 3.03. Markov chain Monte Carlo (MCMC) 
was carried out using OpenBUGS (version 3.2.3), with 
randomized initialization and 10,000 iterations following a 
1,000-iteration burn-in. The model specification code and a 
small sample dataset are included in the Supplementary Material. 
Due to the mathematical simplicity of a multinomial model 
with a Dirichlet prior, this number of iterations can 
be  completed in seconds with rapid convergence and good 
mixing of the Markov chain. Each iteration generates an 
estimate of each variant proportion, and the set of variant 
proportions is used to compute an estimate of the Shannon 
index for the source inferred from the sample data. The 
Markov chain of Shannon index values generated in this way 
is collectively representative of a sample from the posterior 
distribution that characterizes uncertainty in the source Shannon 
index given the sample data and prior. The simulated data 
were analyzed in several ways, as illustrated using box and 
whisker plots in Figure  1: (1) with all non-detected tile 
variants removed, (2) with zeros added as needed to reach 
the correct number of tile variants used to simulate the data 
(i.e., 27), and (3) with extraneous zeros (a total of 50 tile 
variants of which 23 do not actually exist in the source).

The disparity in results between the three ways in which 
the data were analyzed exemplifies the importance of zeros in 
estimating the Shannon index of the source from which a sample 
was gathered. Omitting non-detect zeros in this Bayesian analysis 
characteristically underestimates diversity, while including zeros 
for variants that do not exist in the source characteristically 
overestimates diversity. In each case, the effect diminishes as 
the library size is increased. Notably, the approach that included 
only zeros for variants present in the source that were not 
detected in the sample allowed accurate estimation of the source 
Shannon index, with improving precision as the library size 
increases (exemplifying statistical consistency of the estimation 
process). Given these results, the proposed Bayesian process 
appears to be  theoretically valid to estimate the source Shannon 
index from samples (for which the multinomial relative abundance 
model applies), and it does so without the need to normalize 
data with differing library sizes. Practically, however, it is not 
possible to know how many zeros should be  included in the 
analysis estimating the Shannon index because the number of 
unique variants actually present in the source is unknown. This 
is a peculiar scenario that must be  emphasized here because 
accurate statistical inference about the source is impossible: 
although the model form (multinomial) is known, the number 
of unique variants that should be  included in the model is 
practically unknowable. Model-based supposition is not applied 
in this study to introduce information that is lacking; this can 
be a biased approach to compensating for deficiencies in observed 
data or flawed experiments in which “control variables” are not 
controlled (e.g., it is not possible to estimate concentration from 
a count without a measured volume) unless the supposition 
happens to be  correct (Schmidt et al., 2020).

Because the extent to which zeros compromised accurate 
estimation waned with increasing library size (Figure 1), a similar 
analysis was performed on amplicon sequencing data for six 
water samples from lakes. The samples (Cameron et  al., 2021, 
Supplementary Data Sheet 2) featured library sizes between 
10,000 and 30,000 and observation of 1,142 unique variants 
among the samples. All singleton counts had been zeroed and 
the completed ASV table had 3,342 rows (2,200 of which are 
all zeros associated with variants detected in other samples from 
the same study area). Each sample was analyzed three ways: 
(1) with all non-detected sequence variants removed, (2) with 
zeros as needed to fill out the 1,142-row ASV table, and (3) 
with zeros as needed to fill out the 3,342-row ASV table. The 
appropriate number of zeros to be  included for each sample 
cannot be  known, but the Shannon index estimated with 
all  non-detected sequence variants removed is very likely 
underestimated. The results (Figure  2) show that the Shannon 
index can be  quite precisely estimated (narrow error bars) with 
library sizes nearing 30,000 sequences but that the number of 
zeros included in the analysis can still have a substantial effect 
on accurate estimation of the Shannon index of the source 
(results, though precise, vary widely with the number of zeros 
included in the data). It is thus concluded that it is not statistically 
possible to estimate the Shannon index of the source (even if 
all the assumptions are met that enable use of the multinomial 
relative abundance model) unless the number of unique variants 
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present in the source is precisely known a priori. Accordingly, 
the following section elaborates upon evaluation of sample-level 
diversity accounting for varying library sizes and the mechanistic 
process by which data are obtained.

DIVERSITY ANALYSIS IN ABSENCE OF 
A MODEL TO INFER SOURCE 
DIVERSITY

Recognizing that amplicon sequencing of a sample provides only 
partial and indirect representation of the diversity in the source 
(specifically partial representation of post-amplification diversity) 
and that statistical inference about source diversity is compromised 
by clustering, amplification, and not knowing how many zeros 
should be  included in the data, the question of how to perform 
diversity analysis remains. The approach should acknowledge the 
random nature of amplicon sequencing data, reflect the importance 
of the library size in progressively revealing information about 
diversity, avoid normalization that distorts the proportional 
composition of samples, and provide some measure of uncertainty 
or error. Inference about source diversity is the ideal, but it is 
not possible with a multinomial relative abundance model unless 

the number of unique variants in the source is precisely known, 
and there are many types of error in amplicon sequencing that 
are likely to invalidate this foundational model as discussed above. 
Rarefying repeatedly, a subsampling process to normalize library 
sizes among samples that is performed many times in order to 
characterize the variability introduced by rarefying (Cameron et al., 
2021), satisfies these goals. When a sample is rarefied repeatedly 
down to a smaller library size (using sampling without replacement), 
it describes what data might have been obtained if only the 
smaller library size of sequence variants had been observed. This 
can then be propagated to develop a range of values of an alpha 
diversity metric or a cluster of points on a beta diversity ordination 
plot to graphically display the variability introduced by rarefying 
to a normalized library size. It also does not throw out valid 
sequences because all sequences are represented with a sufficiently 
large number of repetitions. A value of the sample Shannon index 
may then be  computed for each of the repetitions to quantify 
the diversity in samples of a particular library size.

Figure 3 illustrates the relationship between repeatedly rarefying 
to smaller library sizes and statistical inference about the source 
from which the sample was taken. Rarefying adds random 
variability by subsampling without replacement while statistical 
inference includes parametric uncertainty that is often ignored 
in contemporary diversity analyses. Because the extent to which 

FIGURE 1 | Box and whisker plot of Markov chain Monte Carlo (MCMC) samples from posterior distributions of the Shannon index based on analysis of simulated 
data (Supplementary Data Sheet 2). Data with various library sizes (Supplementary Table S1) were analyzed in each of three ways: with zeros excluded (not 
applicable in some cases), with zeros included for non-detected variants, and with extraneous zeros corresponding to variants that do not exist in the source. The 
true Shannon index of the source from which the data were simulated is 3.03.
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diversity is exhibited by a sample depends on the library size, 
such sample-level analysis must be  performed at the same level 
(analogous to converting 1 mm, 1 cm, and 1 km to a common 
unit before comparing numerical values) and any observations 
obtained about patterns in sample-level diversity are conditional 
on the shared library size at which the analysis was performed. 
On the other hand, current methods (including rarefying once), 
distort the data to facilitate use of compositional analysis methods 
that presume the transformed data are a perfect representation 
of the microbial composition in the source; it is important to 
recognize that the detected library is only a random sample 
that is imperfectly representative of source diversity.

Cameron et  al. (2021) addressed issues such as choice of 
normalized library size and sampling with or without replacement 
and completed both alpha and beta diversity analyses using repeated 
rarefaction and environmental data, but it did not include simulation 
experiments. Accordingly, a simulation experiment was performed 
using the hypothetical population-based on Scrabble™ and samples 
with varying library sizes (see R code in Supplementary Material) 
to explore rarefying repeatedly and plug-in estimation of the 
Shannon index (Figure  4). A thousand simulated datasets with 
a library size of 25 yielded Shannon index values between 1.86 
and 2.87 (with a mean of 2.49), illustrating that the source diversity 
(with a Shannon index of 3.03) is only partially exhibited by a 

sample with a library size of 25. Five samples were generated 
with library sizes of 50, 100, 200, 500, and 1,000, and corresponding 
Shannon index values are shown in red (deteriorating markedly 
at library sizes of 100 or less). Each sample was then rarefied 
repeatedly (1,000 times) to a library size of 25, resulting in the 
box and whisker plots of the calculated Shannon index values. 
Although samples with larger library sizes exhibit more diversity, 
samples repeatedly rarefied down to the minimum library size 
of 25 exhibit very comparable diversity. The Shannon index at 
a library size of 25 is similar for all samples, as it should be given 
that they were generated from the same population. If rarefying 
had been completed only once without quantification of the error 
introduced, it may erroneously have been concluded that the 
samples exhibited different Shannon index values.

DISCUSSION

Diversity analysis of amplicon sequencing data has grown 
rapidly, adopting tools from other disciplines but largely 
differing from the statistical approaches applied to classical 
microbiology data. Most analyses feature a deterministic set 
of procedures to transform the data from each sample and 
yield a single value of an alpha diversity metric or a single 

FIGURE 2 | Box and whisker plot of MCMC samples from posterior distributions of the Shannon index based on analysis of environmental amplicon sequencing 
data (Supplementary Data Sheet 2). Data with various library sizes between 10,000 and 30,000 were analyzed three ways: with zeros excluded, with zeros 
included in a 1,142-row ASV table (no zero rows), and with additional zeros from the full 3,342-row ASV table including variants with rows of zeros (detected in other 
samples from the same study area).
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point on an ordination plot. Such procedures should not 
be  viewed as statistical analysis because observed sequence 
count data are not a population (i.e., perfect measurements 
of the proportional composition of the community in the 
source); they are a random sample representing only a portion 
of that population. Recognizing that the data are random 
and that the goal is to understand the alpha and beta diversity 
of the sources from which samples were collected, it is 
important to describe and explore the error mechanisms 
leading to variability in the data and uncertainty in estimated 
diversity. Additionally, graphical displays of results should 
reflect uncertainty, such as by presenting error bars around 
alpha diversity values.

This study provides a step toward such methods by 
describing mechanistic random errors and their potential 
effects, proposing a probabilistic model and listing the 
assumptions that facilitate its use, discussing various types 
of zeros that may appear (or fail to) in ASV tables, and 
performing illustrative analyses using simulated and 
environmental data. Several sources of random error were 
found to invalidate the multinomial relative abundance model 

that is foundational to probabilistic modeling of compositional 
sequence count data, notably including clustering of 
microorganisms in the source and amplification of genes in 
this sequencing technology. Nonetheless, it is a good starting 
point for inference of the alpha diversity of the source and 
quantifying uncertainty therein. Future simulation studies 
could explore the effect of non-random microorganism 
dispersion, sample volume (relative to a hypothetical 
representative elementary volume of the source), differential 
analytical recovery in sample processing, amplification errors, 
and sequencing errors on diversity analysis more thoroughly 
and evaluate the potential for current normalization and 
point estimation approaches to misrepresent diversity.

This study also presents a simple Bayesian approach to 
drawing inference about diversity in the sources from which 
samples were collected (rather than just diversity in the 
sample or some transformation of it). Even under idealized 
circumstances in which the multinomial relative abundance 
model is valid, it was unfortunately found to be biased unless 
the number of unique variants present in the source was 
known a priori. This may have implications on analysis of 

FIGURE 3 | Representation of how library size and diversity quantified therefrom relate to uncertainty in statistical inference about source diversity and variability 
introduced by repeatedly rarefying to the smallest obtained library size. In this case, rarefying repeatedly evaluates the extent of the diversity (after amplification) 
exhibited if a library size of only n = 5,000 had been obtained from each sample.
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any type of multinomial data, beyond microbiome data, in 
which the number of possible outcomes (or the number of 
outcomes with zero observations that should be  included in 
the analysis) is unknown. It is plausible that a probabilistic 
model could be developed to account for errors that invalidate 
the multinomial model, though this would require many 
assumptions that would be difficult to validate and that could 
substantially bias inferences if the assumptions are incorrect. 
In summary, probabilistic modeling should be  used to draw 
inferences about source diversity and quantify uncertainty 
therein, but the simple multinomial model is invalidated by 
some types of error that are inherent to the method and 
inference is not possible even with the multinomial model 
unless the practically unknowable number of unique variants 
in the source is known.

For lack of a reliable and readily available probabilistic 
approach to draw inferences about source diversity, an approach 
to evaluate and contrast sample-level diversity at a particular 
library size is needed. Rarefying only once manipulates the 
data in a way that adds variability and discards data (McMurdie 
and Holmes, 2014), and (like other transformations proposed 
to normalize data) the manipulated data are generally only 
used to obtain a plug-in estimate of diversity. Rarefying 
repeatedly, on the other hand, allows comparison of sample-
level diversity estimates conditional on a library size that is 
common among all analyzed samples, does not discard data, 
and characterizes variability in what the diversity measure 
might have been if only the smaller library size had been 
observed. This approach is by no means statistically ideal, 
but it may be  a distant second best relative to the Bayesian 
approach (or analogous frequentist approaches based on the 

likelihood function) presented in this study that cannot 
practically be  applied in an unbiased way in many scenarios, 
especially due to the unknowable number of unique variants 
that are actually present in the source and complex error 
structures inherent to amplicon sequencing.
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