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Simple Summary: Mosquitoes are well known to spread diseases when they take a blood meal.
However, not all species feed on blood but instead get their nourishment from other sources.
One such species is Toxorhynchites, which are a paradox among mosquitoes. These mosquitoes
are entirely non-blood feeding and, as a result, are not considered to be harmful to human health.
Indeed, since their larvae feed on the larvae of pest species and other aquatic insects, they are
a potential counter measure against the spread of mosquito-transmitted diseases. Their effective
application has been hampered due to a lack of understanding and inconsistencies in their descriptions.
This review aims to build upon previously published information and summarize recent findings to
support their use in combating mosquito-transmitted infections.

Abstract: The increasing global incidence of mosquito-borne infections is driving a need for effective
control methods. Vector populations have expanded their geographical ranges, while increasing
resistance to chemical insecticides and a lack of effective treatments or vaccines has meant that the
development of vector control methods is essential in the fight against mosquito-transmitted diseases.
This review will focus on Toxorhynchites, a non-hematophagous mosquito genus which is a natural
predator of vector species and may be exploited as a biological control agent. Their effectiveness in this
role has been strongly debated for many years and early trials have been marred by misinformation
and incomplete descriptions. Here, we draw together current knowledge of the general biology of
Toxorhynchites and discuss how this updated information will benefit their role in an integrated vector
management program.
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1. Introduction

Mosquitoes are responsible for the transmission of numerous pathogens which cause significant
mortality and morbidity in both humans and animals, as well as substantial economic losses in many
parts of the world. Rising global temperatures coupled with increasing travel and trade have led
to the expansion of the geographical range of a number of important vector species. This in turn
has contributed to the emergence or reemergence of mosquito-borne pathogens in new areas and
communities. To date, a large number of mosquito-borne infections lack effective vaccines or specific
antiviral therapies, and so vector control strategies play a vital role in their regulation. Many of these
control methods are heavily reliant on the use of insecticides. Resistance to the four commonly used
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classes of insecticides—pyrethroids, carbamates, organophosphates and organochlorines—is now
known to be extensively widespread and has facilitated a rise in the occurrence of these diseases [1–4].
In addition, concerns over environmental damage and negative effects on non-target organisms, not to
mention sustainability and cost issues, have led to a drive to develop novel vector control strategies to
prevent a substantial increase in the incidence of infections [5–8].

Biological control methods which directly target the mosquito therefore represent an important
alternative for the reduction or elimination of mosquito-borne diseases [9]. One promising
method is the employment of natural enemies which feed on the mosquitoes’ aquatic life stages.
This includes mosquitoes within the genus Toxorhynchites which may prove to be a useful tool.
Unfortunately, limited studies have been performed to date, which have provided insufficient evidence
for us to fully benefit from their use. Expanding our knowledge of their behavior, as well as their
general biology, will not only aid their practical application as a biological control agent but can also be
used to improve our understanding of the biology of blood feeding species. This article serves to build
upon what has been previously described on Toxorhynchites [10–12] by expanding on recent updates of
our current understanding of their biology and potential role in controlling mosquito-borne infections.

2. General Biology

Toxorhynchites are commonly referred to as ‘elephant mosquitoes’, or ‘mosquito eater’, partly due
to their size but also because of their trunk-like proboscis, which is large and curves downward to a
point to aid consuming nectar [12]. This distinct shape is adapted to feeding on sugar and does not
allow the females to consume a bloodmeal [13]. Both sexes are phytophagous and feed exclusively
on nectar and other sugary substances. As a result, they are not involved in the transmission of
pathogens to humans or animals and are therefore not considered to be of medical importance. Instead,
Toxorhynchites larvae prey on other mosquito larvae, notably Aedes species which spread high-profile
public health pathogens, such as Zika (ZIKV), dengue (DENV), chikungunya (CHIKV) and yellow
fever (YFV) viruses [14]. In stark contrast to the behavior of the placid adults, the larvae are voracious
predators and are described as consuming large quantities of living and non-living prey, allowing them
to acquire all the necessary proteins and fats for successful oogenesis in adulthood [15]. Toxorhynchites
are not the sole example of non-blood feeding mosquitoes. Malaya and Topomyia are also nectivorous
and as a result do not exhibit host-seeking behavior [16]. However, due to their feeding preferences,
neither have any benefits as biological control agents. Toxorhynchitine species are active during the
day and are largely found in the tropics, although a few species are present in Asia, North America,
Fiji and the Samoan Islands [11]. The majority of species are forest-dwelling, although Tx. splendens
has been shown to inhabit coastal regions [17].

3. Taxonomic Classification

Toxorhynchites is the only genus within the Toxorhynchitini tribe and consists of approximately
90 species across four subgenera: Toxorhynchites (51 sp.), Lynchiella (16 sp.), Afrorhynchus (19 sp.) and
Ankylorhynchus (4 sp.) [10,18–27]. Although Toxorhynchites are restricted to the Old World, Lynchiella
and Ankylorhynchus are present in the New World, while Afrorhynchus are found in Africa. Members
of the genus are morphologically similar to each other despite their wide geographical distribution,
making identification at the species level very difficult [28]. This, combined with a lack of taxonomic
information [11], has led to some species being described on more than one occasion under different
names. Misidentification of species has had significant consequences on their success as a biological
control tool (discussed in Section 8). Furthermore, the phylogenic relationships of Toxorhynchites
have not been fully determined [20,29–31]. Although it was initially suggested that Toxorhynchites
is an independent subfamily within Culicidae [32], subsequent reports placed it somewhere within
the Culicinae subfamily [29,33–40]. It would be interesting to understand if hematophagy was lost
in Toxorhynchites or was an adaptation that arose in specific lineages after they diverged. As blood
feeding is believed to have been independently acquired and lost on several occasions in dipterans,
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it is not straightforward to suggest the correct order of events with presently available information [41].
Establishing the key genes involved in the evolution of a non-biting lifestyle could provide an alternative
approach to mitigating disease transmission.

4. Development

4.1. Eggs

Toxorhynchites females are autogenous and acquire all the protein required for oogenesis and
vitellogenesis during their larval stages. Their follicles (oocytes) are continually produced and develop
at separate times, which allows the female to be able to oviposit as soon as she discovers a suitable
ovipositing site [42,43]. All species produce eggs that are similar in appearance (Figure 1a) [19].
These eggs are bright-white or yellowish, oval-shaped [10,44] and are laid on the surface of water in
both natural and artificial containers, including tree cavities or man-made water containers, such as
disused tires or flowerpots [43,45]. In this way, Toxorhynchites are not searching directly for prey but
rather a suitable ovipositing site. Virtually any container which is able to hold water will make a
suitable habitat, provided that it is partly shaded. Importantly, these oviposition sites are also used
by other mosquito species, including disease vectors [46–49]. The female lays her eggs individually
mid-flight into small batches and they will incubate for 40–60 h depending on relative temperature
and humidity. The eggs have a water-resistant coating surrounding a hydrophilic interior and must
maintain contact with water as they cannot endure desiccation. Females must distribute their eggs
widely in order to minimalize the risk of cannibalism amongst her offspring and ensure that adequate
prey is available [50,51]. While this natural behavior is beneficial for targeting a greater number of
vector breeding sites, cannibalism is a considerable cause of mortality in some Toxorhynchites species
and is a key factor to be considered when exploiting them as a biological control tool [10,52,53].
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4.2. Larvae

The instars of all Toxorhynchites species are voracious predators and will prey on any larvae or
other similarly sized aquatic organisms sharing the same water source (Figure 1b). Primarily, this is
thought to consist of the larvae of other mosquito species, as well as Chironomidae and Tipulidae larvae,
dragonfly nymphs and aquatic worms [54–56]. However, they will also feed on the larvae and pupae
of their own species, particularly when other food supplies are few or absent [11,57]. Larval feeding
rates vary depending on a variety of biotic (prey size and abundance) and abiotic (water temperature
and sunlight levels) factors; however, during their maturation, a single larva may consume up to
5000 prey larvae [10,12]. Toxorhynchites larvae are opportunistic hunters and do not search for their prey.
Instead, they use mechanoreceptors to detect the presence of their prey. Once within range, the larvae
will actively swim towards it and seize it in their powerful mandibles before consuming it [58,59].
Their mandibles have comb-like extensions which they use to grip onto prey. Although early instar
larvae require live food to stimulate a feeding response, fourth instar larvae will also feed on immobile
detritus. Incidences of prepupal killing when fourth instar larvae on the edge of pupation kill prey
but do not eat it have also been documented (reviewed in [11]). It is hypothesized that this decreases
the number of potential predators in their vicinity prior to transitioning into the vulnerable pupal
stage [60]. Other non-lethal affects have also been observed. For example, the presence of predatory
larvae during early developmental stages of Ae. aegypti larvae resulted in decreased development
rates, shortened adult lifespans [61] and the production of fewer eggs [62]. The presence of predators
in oviposition sites has been shown to have species-specific behavioral effects. While Aedes species
were observed to be unaffected, Culex species showed strong behavioral avoidance of sites containing
predators [63–65]. In addition, studies by Juliano and colleagues have noted that Ae. triseriatus have
developed adaptations to protect themselves from predation by minimizing their movements and
decreasing their foraging behavior in the presence of Tx. rutilus [66]. Fully understanding these effects
on population dynamics will be important for their implementation as a biological control strategy.

Larval development is dependent on a variety of variables, such as temperature, light and
prey density (reviewed in [10]). Decreases in these factors result in lengthened larval development,
which allows fourth instar larvae to overwinter until more favorable conditions arise. Developmental
timelines for each life stage have been described elsewhere [10,11]. Further to this, recent research has
shown that Toxorhynchites larvae need a living gut microbiota to develop past the first instar stage and
that these bacterial communities are consistent to those of their prey [67]. Larvae that fail to acquire
these microbes exhibit developmental defects consistent with nutritional deficiencies.

4.3. Adults

Adults are colorful and exceptionally large with a wingspan of approximately 12 mm in size
(Figure 1c,d) [59]. Their bodies are covered in iridescent scales of various colors with tufts of colored
setae on their abdomens. With the exception of oviposition behavior [68–73], very little has been done
to understand the biology of Toxorhynchites species adults in the wild. Oviposition behavior has been
observed in a number of species (reviewed in [10]). The female lays her eggs following the completion
of a distinctive flight pattern consisting of a series of vertical, oval loops that decrease in size as she
nears the oviposition site. The eggs are laid individually, and the process is either repeated or the
female departs. As they do not need to land in order to oviposit, Toxorhynchites are able to lay eggs in
containers with obstructed openings which do not allow easy access to the surface of the water. It is
also likely that aerial oviposition will reduce the likelihood of predation [43].
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It is known that the pupal stage generally lasts between 3–7 days, following which the adults
emerge during the day. However, it varies depending on species, whether this is protogynous
(females emerge before males) [74] or protandrous (males emerge before females) [75]. Little is known
about nectar source preference, such as flower species, color or shape, or whether the adults play a
role in pollination. A study by Godoy and colleagues investigated the morphology of the midgut
of Tx. theobaldi. They demonstrated that in both sexes, the midgut strongly resembled that of male
hematophagous mosquito species and was adapted to high sugar diets [76]. Similarly, the salivary
glands of both sexes of Tx. splendens are morphologically and biochemically similar, which is unlike
those of hematophagous species that display sexual dimorphisms [77]. Their salivary glands also
appear morphologically distinct to those of Aedes, Anopheles and Culex species and comparisons of
transcriptomic data have identified key proteins which are notably absent in Toxorhynchites, indicating
their potential role in blood feeding [77,78]. As the salivary glands are key organs in the transmission
of mosquito-borne infections, furthering our understanding of the function of these proteins through
comparisons to non-hematophagous mosquitoes will be useful in informing new approaches to disease
control, such as the development of resistant transgenic vector species. Further to this, a histological
study by Pascini and colleagues investigated the distribution and developmental differences of the
fat body in Tx. theobali [79]. This information adds to our understanding of their physiology and the
involvement of the fat body in metabolic activities in Toxorhynchites species, which may be used to aid
mass rearing programs.

5. Olfaction

Mosquito behavior is largely driven by the detection of odorants signaling the location of animal
or plant hosts, as well as suitable oviposition sites [71,80–83]. Despite their highly divergent biology,
recent studies have indicated that Tx. amboinensis and Ae. aegypti share a number of chemosensory and
olfactory genes [84], including functional orthologs of odorant receptors, such as indolergic receptors,
OR2 and OR10 [85], (R)-1-octen-3-ol receptor, OR8 [86], and sulcatone receptor, OR4 [87]. Sulcatone has
previously been suggested to be involved in human host sensing through OR4 in Ae. aegypti [88].
However, TambOR4 function in Tx. amboinensis suggests that it may also have a role in the detection
of plant-based sulcatone compounds. Similarly, indole and skatole are considered to be oviposition
odorants for multiple species, including Ae. aegypti [89], An. gambiae [90] and Cx. quinquefasciatus [91],
as well as having roles in animal-host [92] and plant-host [93] attraction. TaOR2 and TaOR10 have been
shown to be highly conserved to those present in their hematophagous counterparts, demonstrating
that indole and skatole play multiple roles across a range of mosquito families. Information gathered
about olfactory and chemosensory cues in non-blood feeding mosquitoes will provide insights into the
signaling pathways involved in blood feeding behavior and help inform the development of improved
vector repellent compounds or those that may influence oviposition site selection.

6. Interactions with Viruses

Toxorhynchites are considered suitable for release to control medically important vector species due
to their nectarivorous nature and lack of blood feeding behavior. As a result, they are not considered
to increase the risk of mosquito-borne disease transmission. However, in nature, they may come
into contact with arboviruses through ingestion of vertically infected larvae [94], although it is as yet
unknown if these could be transstadially transmitted into the adult life stage. Several species have been
shown to be susceptible to infection by key arboviruses following intrathoracic inoculation of adults.
In particular, flaviviruses, such as all four DENV serotypes, ZIKV, YFV, St. Louis encephalitis virus
(SLEV) and Japanese encephalitis virus (JEV), can be effectively propagated in vivo in Tx. amboinensis,
Tx. splendens, Tx rutilus and Tx. brevipalpis [95–98]. Furthermore, it has been noted that DENV-2 and
JEV disseminated to the salivary glands of Tx. splendens, which were susceptible to infection [98].
Tx. amboinensis have also demonstrated the capacity to replicate other arboviruses in vivo [99],
including alphaviruses (Ross River virus [100], CHIKV and Venezuelan encephalitis virus [101]) and
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bunyaviruses (La Crosse, Keystone and San Angelo viruses [95]), as well as displaying susceptibility to
rhabdoviruses (vesicular stomatitis virus [102]) and the true insect virus, Nodamura virus [103]. Due to
the success of propagating arboviruses in Toxorhynchites in vivo¸ a number of in vitro derived cell lines
were established from Tx. amboinensis which proved to be as efficient for viral replication. These include
TRA-171 (larvae), TA-9 (larvae), TRA-284 (larvae) and TA-42 (eggs) derived cell lines [104–114].

In many cases, viruses were able to replicate in Tx. amboinensis both in vivo and in their derived cell
lines as well as, or better than, they did in vector species or mammalian systems [95,97,99,101,107–109,115].
As a result, they have been selected as the system of choice for the detection of dengue during the
manufacture of vaccine candidates [116,117] in addition to having a role in the surveillance of ongoing viral
outbreaks through their use as a sensitive insect bioassay, permitting recovery of clinical samples [118–120].
Previous work has also investigated their immune responses to infection. Similar to what has been
observed in vector species, the Tx. amboinensis- derived cell line, TRA-171, demonstrated an active antiviral
RNA inference pathway which produced 21 nt viral-derived small RNAs in response to infection with
Semliki Forest virus (SFV) [121], while cell death was evident following DENV infection of TRA-171
cells [106,115] and Tx. splendens larvae [122].

Furthermore, Toxorhynchites are also known to be infected by insect specific viruses [121].
These include densoviruses which have been detected both in vivo [123] and in vitro [124]. As this is a
comparatively new area of research, there are still a number of unknowns that need to be investigated.
For example, understanding how these viruses interact with their host, in particular, the host’s
antiviral immune responses, will be a key area of study to establish their potential impact on pathogen
transmission and vector competence in medically relevant species. Toxorhynchites may provide a useful
and safer in vivo system to answer some of these outstanding questions.

7. Interactions with Bacteria

Studies investigating the survival of larvae in changing water quality suggested variations between
the tolerances of different species. Tx. rutilus septentrionalis larvae died in sewage-contaminated water [46],
while laboratory tests demonstrated that Tx. brevipalpis is susceptible to bacterial infections [47].

Interestingly, Ae. aegypti preferentially oviposited in containers where Toxorhynchites were located
due to the presence of strong bacterial cues [125]. Findings suggest that despite the danger of predation
on their offspring, Ae. aegypti choose aquatic habitats where bacterial food for larvae is plentiful.
The feeding activities or killing behavior of Toxorhynchites can directly or indirectly increase bacterial
abundance in oviposition sites through decreasing larval predation on bacteria in that habitat, as well
as adding victim body parts which act as substrates for bacteria to feed on. This feature provides
further support for the use of Toxorhynchites in the control of Aedes species.

8. Control Measures

Toxorhynchites have periodically been suggested throughout the 20th century as a potential
alternative method for the control of vector species with numerous report findings in their favor
(Table 1), while others showed less promising results [68,126–130]. Successful control of disease
transmission, in particular by diurnal species, such as Ae. aegypti and Ae. albopictus, is challenging on a
number of levels, and many traditional chemical control methods are increasingly recognized as being
excessively labor intensive, expensive and unsustainable [5,131,132]. Furthermore, the unregulated
use of insecticide products has since led to widespread development of resistance [1,2,4]. In the field,
Toxorhynchites may provide an appealing alternative to the use of chemicals, particularly in domestic
water storage containers.
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Table 1. Toxorhynchites species used successfully as biological control agents.

Species
(Subgenus)

Geographical
Range

Oviposition
Preferences Target Species

Examples of
Successful

Application

Tx. splendens
(Toxorhynchites) Asia, Oceania

Artificial containers
Tree holes

Cut bamboo
Leaf axils

Ae. aegypti
Ae. albopictus

Cx. quinquefasciatus
[133–136]

Tx. amboinensis
(Toxorhynchites)

Asia, Oceania,
North America

Artificial containers
Tree holes

Cut bamboo
Leaf axils

Ae. polynesiensis
Ae. aegypti [137–140]

Tx. rutilus rutilus
(Lynchiella) North America

Artificial containers
Tree holes

Bromeliads

Ae. aegypti
Cx. quinquefasciatus [50,141,142]

Tx. brevipalpis
(Toxorhynchites) Africa

Artificial containers
Leaf axils
Tree holes

Ae. aegypti [49,143]

Tx. brevipalpis
conradti

(Toxorhynchites)
Africa

Artificial containers
Leaf axils
Tree holes

Ae. africanus [144]

Tx. moctezuma
(Lynchiella)

Central
America

Tree holes
Cut bamboo Ae. aegypti [145–147]

Previous studies have demonstrated the importance of identifying the most suitable species
for the control of the target pest species to achieve successful levels of eradication under defined
conditions (reviewed in [11–13,28]). For example, during laboratory experiments, Tx. splendens has
shown preferential predation against Ae. aegypti larvae compared to Ae. albopictus or An. sinensis [58]
but will feed on Cx. quinquefasciatus when no other prey is available [148]. Alternatively, Nyamah and
colleagues showed during field trials that Tx. splendens will preferentially feed on Ae. albopictus over
Cx. fuscocephala [136]. The prey species involved will have implications for the target oviposition sites,
and selection of a suitable predator which utilizes the same sites will be vital for the success of the
program [149]. Studies will also be required to investigate the mortality rate of preoviposition adult
females to understand their own susceptibility to predators in target areas, as well as determining
their ability to overwinter within those environments. It is known that their use may be limited in
temperate regions due to the cooler air and water temperatures. Egg laying, larval development and
feeding are affected at low temperatures, which will inhibit their use in certain climates [150,151].
Certainly, the implementation of native Toxorhynchites species would be preferable where possible to
ensure stability within the environment and to minimize the concerns associated with the release of
alien species.

Appropriate application of Toxorhynchites as a biological control method has been rare due to
several restrictions which have limited their practical use. Toxorhynchites do not reproduce to sufficient
numbers under natural circumstances to keep vector populations under control. Population numbers
of Toxorhynchites are lower than those of their prey due to the production of significantly fewer
eggs, the survival of which declines with the increasing age of the female, as well as an increased
larval development time [152–155]. This is further compounded by the risk of cannibalism between
offspring [59]. Therefore, any initiatives require populations to be boosted by locally rearing and
regularly releasing additional individuals. Their lack of commercial availability and being hard to rear in
large numbers in-house [12,75,156] has made this particularly challenging (Figure 2). Although studies
have shown successful results by rearing them individually to prevent cannibalism [53,152] which has
overcome some of the difficulties of communal rearing, other hurdles still remain. For instance,
large-scale enterprises are costly and difficult to maintain. Encouraging naturally maintained
populations by seeding colonies in optimal habitats may also help bolster release numbers and
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provide a more uniform distribution across the target area. Another factor which influences their
efficacy is the density of prey available. In cases of low prey density, Tx. splendens, Tx. amboinensis and
Tx. rutilus demonstrated reduced prey consumption compared to higher prey densities, despite the
observation of a higher predatory activity [157–159]. It has been suggested that Toxorhynchites ‘stock-rear’
their prey, allowing them to conserve limited food supplies which would render them unsuitable as a
biological control tool when prey availability is low [160]. Indeed, the risk of disease transmission may
increase if this form of predation results in the selected survival of stronger adults [161]. The shape,
size and type of container was also a factor which affected the number of prey consumed and may
influence their efficacy in different urban and sylvatic environments [158,159]. In particular, this will
affect the success of releasing sylvatic, tree-dwelling species into urban environments [68].Insects 2020, 11, x 9 of 17 
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It has been recognized that the mere presence of predators can influence prey survival, both through
lethal (killing/ consumption) and non-lethal (phenotypic alterations detrimentally affecting prey fitness)
means [61]. However, the sole use of predatory mosquitoes rarely results in absolute eradication of
target populations and has led to studies investigating their use in combination with other control
methods (reviewed in [11,162]). While most chemical insecticides are lethal to both Toxorhynchites as well
as vector species, appropriately timed releases after treatment can maximize the benefits of both control
methods [156]. For instance, Ae. aegypti numbers showed a greater decrease following the regular
release of Tx. amboinensis adult females into a region treated with ultra-low-volume (ULV) malathion
pesticide than if either approach was used in isolation [139,163,164]. Further promising strategies
have investigated combining Toxorhynchites with other biocontrol agents, such as the intracellular
bacteria, Wolbachia [165], the entomopathogenic fungus, Metarhizium brunneum [166], an acetogenin
derived from Annona mucosa seeds [167] or silver nanoparticles biosynthesized from Berberis tinctoria
leaf extract [168]. Indeed, as alternative genetic control strategies also become more widespread,
it has also been useful to show that Toxorhynchites can be successfully employed in combination
with the release of transgenic mosquitoes [169]. This is in contrast to data that has indicated that
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some Toxorhynchites species are negatively affected by Bacillus thuringiensis israelensis (Bti) and Bacillus
sphaericus (Bs) biolarvicides [11,170], so this combination is not recommended as part of an integrated
control program.

9. Conclusions

The need to develop safe, sustainable and environmentally friendly control strategies is key to
controlling the spread of mosquito-borne diseases. Previous studies have produced mixed results in
favor of the use of Toxorhynchites as a biological control agent and there is still much to be done to
understand their capacity to sustainably prevent outbreaks of disease through the control of medically
important vector populations in field situations. While it is clear that Toxorhynchites are not a universal
solution, under the correct conditions they have been shown to be very effective. However, more work
is required to fully recognize how their use can be optimized, particularly in urban situations. In order
to establish a sustainable and effective biological control program, it is important to fully understand
the biology of both the control agent as well as the target species. It is vital that the appropriate
species of Toxorhynchites is identified, as not only will it need to establish itself successfully within the
same environment, but it must also have a preference for the consumption of the target population.
This can only be achieved through filling in the blanks that exist in our understanding of predator–prey
relationships, oviposition cues, nectar sources and population dynamics of Toxorhynchites.

Indeed, expanding our knowledge of their biology may provide vital clues into the biology of
vector species. Through comparisons with Toxorhynchites, we may be better placed to identify key
chemo- and odorant receptors involved in blood feeding, as well as to understand the evolution of
blood feeding behavior in vector species. Advances in these areas will be beneficial in facilitating the
development of targeted repellents or oviposition traps, which will aid in reducing mosquito-borne
diseases. Similarly, comparisons between hematophagous and sugar-feeding species will provide
insights into the biochemistry and physiology of the major organs involved in pathogen transmission,
specifically the salivary glands and the midgut, which will help further our awareness of the adaptations
specifically required for blood feeding.

Limiting numbers of natural container breeding sites has been a significant hurdle in the control
of mosquito-borne diseases and is an area where deployment of Toxorhynchites is likely to be of
most use given that it is their nature to actively seek out the habitats commonly missed with other
control methods. However, given that captive rearing is challenging and measuring the success
of Toxorhynchites efficacy in pest species control is both difficult and time consuming, their use is
a substantial commitment. Despite these logistical challenges, the data suggest that sufficiently
timed releases of Toxorhynchites under proper management may provide complete season-long control
and make the investment worth the effort, particularly as part of a multimodal, integrated vector
management program.
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