
Pooled Sample-Based GWAS: A Cost-Effective Alternative
for Identifying Colorectal and Prostate Cancer Risk
Variants in the Polish Population
Pawel Gaj1, Natalia Maryan1, Ewa E. Hennig1,2, Joanna K. Ledwon1, Agnieszka Paziewska1,

Aneta Majewska1, Jakub Karczmarski2, Monika Nesteruk1, Jan Wolski3, Artur A. Antoniewicz4,

Krzysztof Przytulski1,2, Andrzej Rutkowski5, Alexander Teumer6, Georg Homuth6, Teresa Starzyńska7,
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Abstract

Background: Prostate cancer (PCa) and colorectal cancer (CRC) are the most commonly diagnosed cancers and cancer-
related causes of death in Poland. To date, numerous single nucleotide polymorphisms (SNPs) associated with susceptibility
to both cancer types have been identified, but their effect on disease risk may differ among populations.

Methods: To identify new SNPs associated with PCa and CRC in the Polish population, a genome-wide association study
(GWAS) was performed using DNA sample pools on Affymetrix Genome-Wide Human SNP 6.0 arrays. A total of 135 PCa
patients and 270 healthy men (PCa sub-study) and 525 patients with adenoma (AD), 630 patients with CRC and 690 controls
(AD/CRC sub-study) were included in the analysis. Allele frequency distributions were compared with t-tests and x2-tests.
Only those significantly associated SNPs with a proxy SNP (p,0.001; distance of 100 kb; r2.0.7) were selected. GWAS
marker selection was conducted using PLINK. The study was replicated using extended cohorts of patients and controls. The
association with previously reported PCa and CRC susceptibility variants was also examined. Individual patients were
genotyped using TaqMan SNP Genotyping Assays.

Results: The GWAS selected six and 24 new candidate SNPs associated with PCa and CRC susceptibility, respectively. In the
replication study, 17 of these associations were confirmed as significant in additive model of inheritance. Seven of them
remained significant after correction for multiple hypothesis testing. Additionally, 17 previously reported risk variants have
been identified, five of which remained significant after correction.

Conclusion: Pooled-DNA GWAS enabled the identification of new susceptibility loci for CRC in the Polish population.
Previously reported CRC and PCa predisposition variants were also identified, validating the global nature of their
associations. Further independent replication studies are required to confirm significance of the newly uncovered candidate
susceptibility loci.
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Introduction

Cancers are highly heterogeneous, polygenic disorders that arise

in a multi-step process involving the selection of successive cellular

clones and result from genetic as well as specific environmental

factors. In the former case, both high-penetrance mutations and

low-penetrance polymorphisms may determine a patient’s defense

and adaptive mechanisms against exposure to carcinogenic

factors, determining susceptibility to this disease. However, the

effect of common low-penetrance risk determinants is small when

in isolation, increasing susceptibility only through the cumulative

effect associated with the occurrence of multiple risk variants [1].

The association between allele frequency and susceptibility to

disease can be studied by focusing on individually selected variants

or, instead, on the position of over a million DNA variants, using

single nucleotide polymorphism (SNP) microarray technology.

Microarray platforms used by genome-wide association studies

(GWAS) represent a relatively mature technology that allows
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scanning the entire genome to detect potential associations with

disease without prior knowledge of their position or biological

function. In theory, as a consequence of linkage disequilibrium

(LD) between SNPs at a given locus, a high proportion of all

diversity could be captured by genotyping a relatively smaller

subset of markers (the so-called tagging SNPs) [2–5].

To date, over 1,000 susceptibility loci, usually of small or

modest effect and accuracy from low to moderately high, have

been identified by GWAS [6]. However, each of these studies,

including over 50 GWAS performed with cancer patients,

identified only a few risk variants when analyzed separately.

Moreover, many studies have not been replicated [7,8]. The

difficulties in the identification of genetic risk factors associated

with heterogeneous and polygenic diseases, such as sporadic

cancers, may be explained by the limitations of the methodology.

Commercially available SNP array platforms have been optimized

for studying diseases or traits based on the assumption that

common diseases would be associated with common variants [9].

Since loci with a high effect size have been efficiently removed

from the human population by natural selection, the identification

of a common polymorphic susceptibility locus strongly associated

with a disease, with odds ratio (OR) over 2 [10], is unlikely. Even

though the identification of SNPs of low minor allele (MA)

frequency have improved with the use of last generation chips, and

higher probe densities enabled the study of variants with a low

degree of heterozygosity, the detection of rare variants remains

highly demanding in terms of statistical power [7,8,11–14].

Prostate cancer (PCa) and colorectal cancer (CRC) are the most

common types of cancers in the Polish population, and the leading

cause of cancer-related morbidity and mortality [15]. Most CRCs

are sporadic, and only a small proportion occurs in the course of

highly penetrating hereditary syndromes, such as Lynch syn-

drome, familial adenomatous polyposis and other polyposis

syndromes mediated by rare germline mutations in the DNA

mismatch repair gene and in the adenomatous polyposis coli (APC)

gene [16]. PCa predisposition mediated through rare mutations in

some candidate genes, such as the BRCA2, also explain less than

10% of the relative familial risk [17]. Therefore, it is possible that a

substantial proportion of heritable cancer risk is explained by a

combination of common low-penetrance variants of modest

effects. For example, genetic variation in 14 and 21 independent

susceptibility loci, validated in unrelated populations, may explain

approximately 8% and 13.5% of the heritability risk of developing

CRC and PCa, respectively [16,18]. These results show, however,

that most inherited variation associated with the risk of developing

either cancer type remains to be determined.

A comprehensive analysis of variants conferring genetic

susceptibility to CRC and PCa based on GWAS has not been

conducted in the Polish population yet. A major cause for this lack

of studies is the high cost of the SNP microarray technology,

particularly considering that new loci identified by GWAS have

been associated with progressively smaller effect sizes, demanding

an increase in the statistical power (namely sample size) of GWAS.

An alternative approach using pooled DNA samples has been

developed [19]. Although the non-standard use of SNP arrays

makes it necessary to take additional precautions into account

[19,20], this approach substantially reduces research costs. It is

important to consider, however, that a higher technical variation

associated with the DNA pooling approach may mask the weakest

associations. Thus, researchers have to trade between accuracy of

genetic risk prediction and cost of their research.

In this study, we describe a pooled DNA sample-based GWAS

as a cost-effective alternative to identify genetic variants of

moderate effect associated with CRC and PCa in the Polish

population. Pooled DNA samples were processed using micro-

array technology, and GWAS was employed as a genetic variance

filtering approach. The technical validation of the GWAS results

and the replication studies on individual DNA samples was

conducted using much cheaper PCR-based genotyping technol-

ogy.

Materials and Methods

Ethics Statement
All enrolled patients and control subjects were Polish Cauca-

sians recruited from two urban populations, Warsaw and Szczecin.

The study was approved by the local ethics committee (Medical

Center for Postgraduate Education and Cancer Center, Warsaw,

Poland), and all participants provided written informed consent.

The study protocol conforms to the ethical guidelines of the 1975

Declaration of Helsinki.

Studied subjects
GWAS cohorts comprised: (1. AD/CRC sub-study) 525

patients (270 females and 255 males) diagnosed with colorectal

adenomas (AD), 630 patients (240 females and 390 males)

diagnosed with CRC and 705 healthy individuals (420 females

and 285 males), and (2. PCa sub-study) 285 male patients

diagnosed with PCa and 285 healthy men.

Larger cohorts of cases and controls were enrolled in a

replication study, including: (1. AD/CRC sub-study) 945 (509

females and 436 males) patients with AD, 889 (352 females and

537 males) patients with CRC and 2188 (1542 females and 646

males) healthy individuals, and (2. PCa sub-study) 447 patients

with PCa and 800 healthy men controls. The median age at

diagnosis for AD, CRC and PCa was 60 years (range: 36–85), 64

years (range: 29–89) and 67 years (range: 42–83 years),

respectively. Sample sizes and the age distribution of each group

are shown in Table 1.

Allelotyping GWAS
Genomic DNA was extracted from whole blood treated with

EDTA using the QIAamp DNA Mini Kit (Qiagen, Germany),

following the manufacturer’s protocol. Before pooling, DNA

sample concentrations were measured based on their fluorescent

intensity using Quant-iTTM PicoGreen dsDNA Kit (Invitrogen,

United Kingdom). To determine DNA quality with precision, the

260 nm/280 nm absorbance ratio of each sample was also

measured using a NanoDrop 1000 spectrophotometer (Thermo

Fisher Scientific Inc., USA), and samples were run on a 1%

agarose gel to determine DNA integrity visually.

DNA samples that passed quality control tests were combined

mixing equimolar concentrations according to patient diagnose to

obtain 15-DNA sample pools. Pooled DNA samples were then

brought to a final concentration of 50 ng/ml in Tris-EDTA buffer

(pH = 8), with concentrations of Tris and EDTA not exceeding

10 mM and 0.1 mM, respectively. In the AD/CRC sub-study, a

total of 35, 42 and 47 DNA pools were prepared for AD, CRC

and controls, respectively, whereas in the PCa sub-study, a total of

19 and 19 DNA pools for both PCa and controls, respectively. To

reduce the influence of experimental variation, DNA pools were

subdivided into triple technical repeats and assayed independently,

using separate microarrays, on the Affymetrix Genome-Wide

Human SNP Array 6.0. Microarray genotyping experiments and

the extraction of probe set signal intensities were performed using

ATLAS Biolabs GmbH (Berlin, Germany).

Colorectal and Prostate Cancer Pooled DNA GWAS
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Individual genotyping
For the technical validation of GWAS findings and for the

replication study, individual patients were genotyped using

TaqMan SNP Genotyping Assays (Life Technologies, USA),

SensiMixTM II Probe Kit (Bioline Ltd, United Kingdom), and a

7900HT Real-Time PCR system (Life Technologies, USA).

Statistical analyses – allelotyping GWAS
The intensity of each SNP was calculated as the relative allele

signal (RAS) for each microarray, such that: RAS = A/(A+B),

where A and B are the probe set intensity values of alleles A and B,

respectively, according to the Affymetrix coding [21,22]. The

intensity of A and B was obtained from the Affymetrix Birdseed v2

algorithm. Mean RAS values were next calculated for each DNA

pool to account for the three technical repeats. Prior to conducting

the association tests, a principal component analysis (PCA) for all

arrays was performed based on RAS values. Pools identified as

outliers by plotting the first two principal components were

excluded from further analyses.

To detect significant differences in allele frequency between

PCa and the control group a combination of two statistical

approaches was used. Firstly, between-group differences in RAS

were tested using Student’s t-tests to take into account RAS

variation among pools representing each group [23]. Secondly,

mean RAS values of all arrays in the patient and control group

were calculated and significant differences in allele frequency were

tested using a x2-test with one degree of freedom [24]. Since this

test compares mean allele frequencies between groups without

taking into account the high technical complexity of the

allelotyping approach, it could lead to a higher number of false

positive and false negative results. Conversely, the t-tests could be

too sensitive to detect differences between groups if technical

variation among pools is low. Thus, differences in allele frequency

might be too small to be validated by individual genotyping. A

combined statistical approach therefore provides a more accurate

means to test for significant differences as compared to each test

alone.

Candidate SNPs for individual genotyping were selected by

combining the results from both the t-test and x2-test, using the

clumping algorithm in the PLINK v1.06 software (http://pngu.

mgh.harvard.edu/purcell/plink) [25]. Those loci for which there

was an SNP (p,0.001) and at least one correlated proxy SNP

(r2.0.7) within a 100-kb region (p,0.001, x2-test) were considered

as positive results. Proxy SNPs were determined based on LD data

obtained from 4100 individually genotyped Caucasian subjects

from West-Pomerania in the SHIP cohort, using the Affymetrix

Human SNP Array 6.0 [26,27].

Statistical analyses – individual genotyping
Technical validation of those candidate SNPs selected by the

pooled-DNA GWAS was performed by individual genotyping of

the same experimental cohorts. TaqMan genotyping data was first

subjected to quality control procedures, including thresholds for

maximum individual missingness for each of the SNPs ,0.05,

maximum genotype missingness for each of the individuals ,0.05

and the Hardy-Weinberg disequilibrium ,0.001 for the control

group. GWAS candidate associations were validated using the

allelic x2-test (PLINK v1.07 software). SNPs with p-values ,0.01

were eligible for further analyses. High levels of concordance in

allele frequency differences between case and control groups

validated the accuracy of the GWAS screening process, including

the equimolar pool construction and the statistical approach for

selection of candidate SNP associations.

Validated GWAS-derived SNPs and literature-selected SNPs

(Table S1) were further analyzed by individual genotyping in the

extended AD, CRC and PCa cohorts (Table 1). The binomial

logistic regression model was used, using R software, to investigate

associations in the context of additive gene action model for all the

subjects enrolled in the study. A logistic regression analysis was

also performed for PCa patients to determine whether any of the

assayed SNPs was associated with early (,65 years of age) PCa

onset. Benjamini-Hochberg correction was used for multiple

comparisons.

Table 1. Group statistics of the GWAS and the replication study cohorts.

GWAS validation Replication study

Enrolled After TaqManH filtration Enrolled After TaqManH filtration

N Range Median N Range Median N Range Median N Range Median

PCa 135 45–83 67 118 45–83 58 447 42–83 67 419 42–83 67

AD 525 27–85 59 476 27–85 59 945 32–85 60 856 36–85 60

AD (F) 270 28–85 58 242 28–85 58 509 32–85 60 454 40–85 60

AD (M) 255 27–85 60 234 27–85 60 436 36–85 61 402 36–85 61

CRC 630 29–86 65 598 29–86 65 889 28–89 64 840 29–89 64

CRC (F) 240 29–86 63 234 29–86 63 352 29–89 63 341 29–89 63

CRC (M) 390 32–84 66 364 32–84 66 537 28–85 65 499 30–85 65

Control - PCa 270 27–81 55 261 27–81 55 800 27–86 59 772 27–86 59

Control - AD/CRC 690 27–81 57 669 27–81 57 2188 21–87 58 1981 21–87 58

Control - AD/CRC (F) 420 40–77 58 408 40–77 58 1542 21–87 58 1399 21–87 58

Control - AD/CRC (M) 270 27–81 55 261 27–81 55 646 24–82 57.5 582 24–82 57

The GWAS validation panel indicates numbers of patients (N) enrolled in the GWAS, after excluding microarrays that did not meet quality control criteria based on the
PCA results. The ‘Range’ and ‘Median’ values regard age of cases and controls in respective groups. Both GWAS validation and replication analyses were done using
respective individual patient TaqManH genotyping. The TaqManH genotyping data was subjected to a quality filtration using the 5% threshold of per-individual
maximum genotype missingness (see ‘Statistical analyses – individual genotyping’).
doi:10.1371/journal.pone.0035307.t001
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The heterogeneity among study populations was assessed with

the I2 and p-value of the Cochran’s Q statistic. For meta-analyses,

pooled-OR values with 95% confidence intervals (CI) were

calculated using meta function of STATA version 11. Their

significance was assessed by Z test and p,0.05 was considered

significant.

Results

Pooled-DNA allelotyping GWAS and individual DNA
validation of the GWAS findings

The GWAS was carried out using pooled 15-DNA samples and

the Affymetrix Genome-Wide Human SNP Array 6.0. The

following outliers, identified by the PCA results, were excluded

from the further analyses: 1) one pool representing 15 control male

subjects in the AD/CRC sub-study and 2) 10 pools representing

150 PCa patients and one pool representing 15 controls, in the

PCa sub-study. A reason why so many of PCa patient pools had to

be rejected from further consideration is not clear. It can only be

speculated that some pre-analytical variability, such as discreet

changes in DNA quality and/or DNA microarray hybridization

could affect the final results of the allelotyping experiments.

The pooled-DNA GWAS revealed 44 candidate SNPs associ-

ated with either AD, CRC or PCa, of which two were repeated in

two unrelated comparisons. Considering SNP population frequen-

cies of 0.2–0.5, our AD/CRC GWAS reached a power ranging

from 98.6% to 99.8% and from 43% to 64% to detect effect size of

OR = 2.0 and 1.5, respectively, at a= 1E-03, as estimated

according to Dupont et al. [28] (Figure S1).

Next, the GWAS-selected SNPs were validated by genotyping

of individual DNA samples using TaqMan SNP Genotyping

Assays. Five candidate SNPs (rs2557030, rs2557227, rs2574608,

rs2755895, rs7583683) were excluded from further statistical

analysis due to significant deviations (p,0.001) from the Hardy-

Weinberg equilibrium detected in the healthy control group.

Although TaqMan genotyping-derived MA frequencies deviated

slightly from the RAS values for MA obtained in the microarray

experiment, there was an agreement in the direction of differences

(OR) in the allele frequencies of the case and controls groups as

shown by the allelic x2-test (with p,0.01) for 30 out of 39

candidate SNPs: 24 associated with AD or CRC (one SNP,

rs6702619, was identified in two separate comparisons) and six

SNPs associated with PCa (Table 2).

Replication study for GWAS-selected SNPs
Table 1 shows demographic details of subjects enrolled at the

replication study. When a logistic regression was used to determine

the significance of the association between the 30 GWAS-selected

SNPs, using case or control as the dependent variable and

appropriately coded TaqMan genotypes as independent variables,

17 SNPs were significantly (p,0.05) associated with AD or CRC

in additive model of inheritance (Table 3). Seven of those SNPs

remained significantly associated after multiple testing adjustment.

The MA of three variants was associated with increased CRC

susceptibility, whereas for four variants MA was associated with a

decreased risk. When allele frequencies between cases and control

subjects were assessed with the x2-test corrected p-value, significant

differences were observed for 13 SNPs (Table 3).

The statistical evidence for heterogeneity between allele

frequencies across validation and replication study groups was

assessed by the Q-test p-value. Of 30 GWAS-selected SNPs, 14

revealed overall low heterogeneity (p.0.1). Among them,

significant associations in replication study cohorts were appar-

ently more frequent, regardless the statistic used to determine the

significance of association (Table 3). Lack of heterogeneity may be

considered as a criterion of credible replication [29].

Six of the significantly associated SNPs were located within

intronic gene regions: BTBD9 (BTB/POZ domain-containing

protein 9), FAM108C1 (abhydrolase domain-containing protein),

PRKCA (protein kinase C a; PKCa), ADAMTS19 (a disintegrin and

metalloproteinase with thrombospondin motif, member 19),

BMP6 (bone morphogenetic protein 6) and ARHGAP6 (Rho

GTPase-activating protein 6) (Table 3).

Replication study of literature-selected SNPs
Thirty four and nine additional SNPs, previously shown to be

associated with CRC [16,30–45] and PCa [46–62] risk in various

populations (Table S1), respectively, were also selected for the

replication studies conducted using the same extended groups of

cases and controls (Table 1). One SNP (rs6983267 at 8q24.21) was

common for both tumor localizations. One SNP (rs10411210) was

excluded from further analyses based on the result of the Hardy-

Weinberg equilibrium test (p,0.001). Four other SNPs

(rs36053993, rs2243250, rs2032582 and rs1057911) were also

excluded from the logistic regression as they demonstrated at least

a partial LD with other SNPs in the same region. They were

therefore assigned with tagging SNPs, based on a SNP’s lowest

individual missingness ratio and the least significant Hardy-

Weinberg test result for the control groups.

The association of 14 literature-selected variants with AD or

CRC and four literature-selected variants with PCa was confirmed

(p,0.05) in additive model of inheritance (Table 4). The

association of the common SNP rs6983267 was confirmed for

both the AD and PCa groups of patients. Strikingly, SNP

rs1800894 (IL10) was associated in the opposite direction with

AD and CRC susceptibility (Table 4). The MA of the remaining

10 variants was associated with an increased risk and six variants

with a decreased risk of PCa, CRC and/or AD. Of these 17

variants, five (rs1800894, rs16892766, rs6983267, rs1859962 and

rs4939827) remained significant after correction for multiple

comparisons. When allele frequencies between cases and control

subjects were assessed with the x2-test corrected p-value, significant

differences were observed in 11 comparisons for seven indepen-

dent SNPs (Table 4).

To validate the global nature of these associations, between-

dataset heterogeneity was tested. In the meta-analysis we included

three SNPs associated with CRC and four SNPs associated with

PCa susceptibility in our replication study for which associations

were found with the same phenotype in at least four other studies.

A random-effects model was used to calculate the pooled-OR

values. As shown in Table 5, lack of demonstrable heterogeneity

(Q p-value of less than 0.1) was noted across datasets representing

three out of seven SNPs, and all pooled-ORs were significant

(p,0.001).

To check whether any of the studied variants was associated

with an early age of PCa onset, we performed a logistic regression

analysis including cases only, with a binary indicator for age

(below or above 65 years of age, coded as 1 and 0, respectively) at

PCa diagnosis and the studied SNPs as independent variables.

There were 171 patients diagnosed at age 65 or earlier and 247

patients older than 65. Two SNPs were significantly associated

with age at PCa diagnosis (Table S2): rs1934636 and rs6983267.

The former, a GWAS-selected SNP, was more frequent in the

group of older patients (OR = 0.6, 95% CI 0.39–0.93, p = 2.18E-

02), considering the dominant gene action model. Conversely, the

rs6983267 variant was associated with a younger patient age in the

age-stratified analysis; OR = 1.40, 95% CI 1.01–1.95, p = 4.44E-

02).

Colorectal and Prostate Cancer Pooled DNA GWAS
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Discussion

Pooled DNA-based GWAS utility
It is generally accepted that well-designed GWAS should be

conducted with groups of at least 1,000 patients and 1,000

controls, even though appropriate levels of statistical power to test

for genetic associations (at p,5E-08) often relate to higher effect

sizes [14]. These GWAS significance thresholds result from the

requirement to correct for multiple comparisons and are aimed at

minimizing the number of false positive findings [8]. However,

Table 2. Pooled-DNA allelotyping GWAS and technical validation of GWAS selections using individual patient TaqMan genotyping.

G1 vs. G2 dbSNP IDa Region MA Pooled-DNA GWAS GWAS – technical validation

F1 F2 OR (95% CI) p-value (t-test) p-value (x2) F1 F2 OR (95% CI) p-value (x2)

PCa vs. N rs1934636 1q32.2 C 0.464 0.356 1.57 (1.03–2.38) 1.31E-04 3.15E-03 0.373 0.233 1.96 (1.24–3.10) 4.50E-05

rs12629904 3q13.31 T 0.196 0.13 1.63 (0.94–2.84) 1.25E-04 1.39E-02 0.079 0.03 2.77 (1.07–7.22) 2.58E-03

rs1733329 3q13.33 T 0.347 0.284 1.34 (0.86–2.08) 1.41E-04 6.78E-02 0.332 0.23 1.66 (1.04–2.65) 2.37E-03

rs1430579 4q31.21 C 0.408 0.279 1.78 (1.15–2.75) 2.42E-04 2.26E-04 0.341 0.211 1.93 (1.21–3.10) 9.10E-05

rs667472 12p13.32 A 0.364 0.248 1.74 (1.11–2.71) 3.13E-04 5.37E-04 0.214 0.13 1.82 (1.05–3.17) 2.95E-03

rs11616166 12p12.3 G 0.289 0.174 1.93 (1.19–3.14) 1.42E-05 1.53E-04 0.142 0.061 2.55 (1.25–5.17) 2.01E-04

AD vs. N rs6762970 3p12.3 A 0.43 0.497 0.76 (0.61–0.96) 1.74E-05 9.29E-04 0.402 0.487 0.71 (0.56–0.90) 5.75E-05

AD vs. N (F) rs7631421 3p14.1 C 0.361 0.452 0.68 (0.50–0.94) 2.26E-05 8.72E-04 0.259 0.344 0.67 (0.47–0.95) 1.49E-03

rs2128834 3p22.1 G 0.183 0.242 0.7 (0.48–1.03) 2.77E-05 9.83E-03 0.116 0.206 0.51 (0.32–0.80) 3.31E-05

AD vs. N (M) rs11876485 18q11.2 T 0.157 0.211 0.7 (0.45–1.09) 8.96E-06 2.52E-02 0.122 0.169 0.68 (0.41–1.14) 3.54E-02

rs5975081 23q25 G 0.365 0.246 1.76 (1.21–2.57) 2.56E-04 2.89E-05 0.171 0.096 1.94 (1.14–3.31) 1.35E-02

CRC vs. N rs6702619b 1p21.2 T 0.446 0.517 0.75 (0.61–0.93) 5.77E-07 2.39E-04 0.425 0.502 0.73 (0.59–0.92) 1.13E-04

rs7611300b 3q26.33 A 0.28 0.223 1.36 (1.06–1.74) 1.63E-06 7.11E-04 0.018 0.013 1.39 (0.57–3.42) 3.32E-01

rs13219695 6p21.2 G 0.321 0.387 0.75 (0.60–0.94) 8.14E-06 3.79E-04 0.109 0.169 0.6 (0.43–0.83) 1.59E-05

rs2799652 6q16.1 A 0.499 0.434 1.3 (1.05–1.61) 2.35E-05 9.04E-04 0.338 0.276 1.34 (1.05–1.70) 6.89E-04

rs879872 11p15.5 T 0.272 0.214 1.37 (1.07–1.77) 1.14E-11 4.44E-04 0.026 0.018 1.46 (0.86–3.12) 1.76E-01

rs7171423 15q25.1 C 0.338 0.272 1.37 (1.08–1.73) 3.60E-05 2.27E-04 0.192 0.135 1.52 (1.13–2.06) 9.99E-05

rs3803820 17q24.2 G 0.335 0.272 1.35 (1.07–1.71) 2.36E-04 4.24E-04 0.125 0.085 1.54 (1.07–2.21) 1.15E-03

rs12689028 23p22.31 C 0.334 0.271 1.35 (1.07–1.71) 1.19E-08 4.88E-04 0.044 0.053 0.82 (0.49–1.38) 3.66E-01

rs912956 23p11.1 C 0.437 0.374 1.3 (1.04–1.62) 1.93E-07 9.49E-04 0.247 0.2 1.31 (1.01–1.71) 1.47E-02

rs5987543 23q22.2 C 0.411 0.348 1.31 (1.05–1.63) 8.02E-05 9.11E-04 0.161 0.127 1.32 (0.96–1.81) 4.05E-02

CRC vs. N (F) rs9283670 4p13 C 0.346 0.26 1.51 (1.07–2.12) 1.41E-04 9.24E-04 0.109 0.065 1.76 (1.00–3.11) 5.85E-03

rs17165506 7p21.3 G 0.293 0.202 1.64 (1.14–2.36) 3.41E-06 1.82E-04 0.154 0.081 2.07 (1.25–3.41) 5.54E-05

rs441261 7p14.3 G 0.32 0.268 1.29 (0.91–1.82) 4.92E-06 4.47E-02 0.224 0.12 2.12 (1.38–3.25) 1.06E-06

CRC vs. N (M) rs12994941 2p21 C 0.446 0.349 1.5 (1.09–2.07) 2.69E-05 4.17E-04 0.242 0.165 1.62 (1.08–2.42) 1.09E-03

rs7611300b 3q26.33 A 0.283 0.201 1.57 (1.08–2.27) 1.74E-06 7.35E-04 0.019 0.016 1.19 (0.35–4.06) 6.23E-01

rs40972 5q23.3 T 0.196 0.245 0.75 (0.52–1.09) 2.11E-05 3.09E-02 0.065 0.131 0.46 (0.27–0.80) 8.18E-05

rs13192135 6p24.3 G 0.253 0.302 0.78 (0.55–1.11) 3.82E-06 5.08E-02 0.019 0.06 0.3 (0.12–0.75) 2.02E-04

rs5978435 23p22.2 C 0.493 0.592 0.67 (0.49–0.92) 9.16E-06 3.88E-04 0.377 0.251 1.81 (1.27–2.57) 9.68E-04

CRC vs. AD rs7533097 1p31.3 C 0.685 0.749 0.73 (0.51–1.03) 2.16E-04 6.91E-04 0.142 0.093 1.61 (1.10–2.37) 5.66E-04

rs6702619b 1p21.2 T 0.446 0.528 0.72 (0.57–0.91) 3.29E-08 8.96E-05 0.425 0.533 0.65 (0.51–0.83) 6.62E-07

rs9848984 3p26.3 C 0.676 0.754 0.68 (0.53–0.88) 1.19E-04 3.52E-05 0.077 0.04 2 (1.16–3.46) 3.89E-04

rs11742611 5q11.2 G 0.516 0.58 0.77 (0.61–0.97) 1.09E-04 2.00E-03 0.416 0.514 0.67 (0.53–0.86) 7.10E-06

rs10814948 9p24.2 T 0.702 0.634 1.36 (1.06–1.74) 1.87E-08 4.84E-04 0.252 0.346 0.64 (0.49–0.83) 2.47E-06

rs1147451 14q23.3 T 0.681 0.621 1.3 (1.02–1.66) 5.12E-05 2.26E-03 0.287 0.368 0.69 (0.53–0.89) 6.72E-05

rs5990890 23p22.12 G 0.672 0.732 0.75 (0.58–0.97) 1.58E-04 1.81E-03 0.126 0.086 1.53 (1.03–2.29) 1.23E-02

CRC vs. AD (F) rs16860868 3q13.2 C 0.67 0.749 0.68 (0.48–0.96) 4.06E-05 5.67E-03 0.282 0.17 1.92 (1.24–2.98) 3.62E-05

CRC vs. AD (M) rs6972867 7p12.2 C 0.543 0.623 0.72 (0.52–0.99) 5.19E-08 4.35E-03 0.239 0.153 1.74 (1.13–2.67) 3.55E-04

rs7321756 13q31.2 G 0.271 0.185 1.64 (1.12–2.39) 1.59E-05 3.57E-04 0.865 0.929 0.49 (0.27–0.88) 4.73E-04

Technical validation was performed by individual typing of DNA samples from the same study cohorts used for pooled-DNA GWAS. The allele frequency distribution and
x2-test p-values were taken into account. G1 vs. G2; compared groups of cases and controls, respectively, MA; minor allele (+) strand, F1, F2; frequency of MA in the case
and control groups, respectively, OR; odds ratio, CI; confidence interval, N; control, PCa; prostate cancer, AD; adenoma, CRC; colorectal cancer, F; female, M; male.
a/SNP identifier based on NCBI SNP database;
b/SNP identified in two independent comparisons.
doi:10.1371/journal.pone.0035307.t002
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exceedingly restrictive statistical criteria may, in turn, produce

false negative results [11–13]. Indeed, those significant associations

from independent replication studies were not ranked in the top

1,000 SNPs in the initial GWAS [46]. Thus, the use of stringent

criteria may prevent the detection of subtle associations and

account for missing heritability [14]. It is also recognized that

there is certain level of heterogeneity in the GWAS results, which

may arise due to the different genetic background (population

stratification) of geographically distinct populations [41,63,64], or

because of the bias introduced by population admixture effects

[65,66]. Although few CRC susceptibility loci (as 8q24.21, 8q23.3

or 18q21.1) have been replicated in a number of studies [41], it is

symptomatic that some of the identified associations reflect

between-populations differences in tumor sub-site, age of CRC/

AD onset, sex or smoking status within the groups studied [41].

Thus, large cohort studies can ignore some sub-population-specific

risk variants, so genome-wide genotyping should be also

conducted in smaller cohorts. Conversely, studies with lower

sample sizes typically reveal a smaller fraction of the heritability of

a complex disease by failing to detect associations that do not

reach statistical significance [7].

Since the final GWAS results depend on many factors, each

associated with a different stage of the experimental procedure,

their analysis and interpretation are often challenging. It is

Table 3. The GWAS-selected SNPs association with AD, CRC or PCa, considering allelic and additive models.

Allelic Additive model
Meta-
analysis

G1 vs. G2 dbSNP IDa Region Geneb MA F1 F2 OR (95% CI) p-value
p-
valuecor. OR (95% CI) p-value

p-
valuecor.

I2(%) (Q
p-value)

PCa vs. N rs1934636 1q32.2 KCNH1 (intron) C 0.290 0.245 1.26 (1.04–1.52) 1.76E-02 5.27E-02 1.14 (0.93–1.41) 2.09E-01 3.93E-01 81.2 (0.0212)

rs12629904 3q13.31 intergenic T 0.059 0.045 1.33 (0.92–1.94) 1.32E-01 2.83E-01 1.37 (0.92–2.05) 1.21E-01 3.03E-01 69.5 (0.0703)

rs1733329 3q13.33 FSTL1 T 0.262 0.238 1.14 (0.94–1.38) 1.88E-01 3.14E-01 1.17 (0.94–1.44) 1.55E-01 3.32E-01 73.6 (0.0517)

rs1430579 4q31.21 UCP1 C 0.264 0.242 1.12 (0.92–1.36) 2.45E-01 3.67E-01 1.07 (0.88–1.32) 4.92E-01 6.70E-01 87 (0.0055)

rs667472 12p13.32 KCNA5 A 0.160 0.167 0.95 (0.75–1.19) 6.58E-01 7.59E-01 0.96 (0.75–1.24) 7.56E-01 8.76E-01 87 (0.0056)

rs11616166 12p12.3 AEBP2 (intron) G 0.080 0.069 1.18 (0.85–1.62) 3.23E-01 4.40E-01 1.05 (0.73–1.51) 7.93E-01 8.76E-01 84.3 (0.0116)

AD vs. N rs6762970 3p12.3 CNTN3 A 0.418 0.450 0.88 (0.78–0.99) 2.81E-02 2.23E-01 0.85 (0.74–0.97) 1.79E-02 1.35E-01 76.8 (0.0379)

AD vs. N (F) rs7631421 3p14.1 MITF C 0.306 0.322 0.93 (0.79–1.10) 3.67E-01 8.03E-01 0.9 (0.75–1.10) 3.06E-01 8.91E-01 78.6 (0.0307)

rs2128834 3p22.1 ULK4 (intron) G 0.148 0.178 0.81 (0.65–0.99) 4.07E-02 3.56E-01 0.86 (0.68–1.09) 2.16E-01 8.91E-01 82.1 (0.0182)

CRC vs. N rs6702619 1p21.2 PALMD T 0.455 0.482 0.9 (0.80–1.01) 6.22E-02 2.36E-01 0.89 (0.78–1.01) 7.39E-02 2.10E-01 75.4 (0.0439)

rs13219695 6p21.2 BTBD9 (intron) G 0.117 0.153 0.73 (0.62–0.87) 3.82E-04 7.26E-03 0.71 (0.58–0.86) 4.39E-04 1.49E-02 42.6 (0.1869)

rs2799652 6q16.1 FUT9 A 0.337 0.300 1.19 (1.05–1.34) 6.04E-03 3.28E-02 1.19 (1.03–1.36) 1.49E-02 1.01E-01 24.1 (0.2509)

rs7171423 15q25.1 FAM108C1
(intron)

C 0.176 0.146 1.26 (1.08–1.47) 3.88E-03 2.46E-02 1.26 (1.06–1.50) 8.39E-03 9.51E-02 52.6 (0.1465)

rs3803820 17q24.2 PRKCA (intron) G 0.121 0.094 1.32 (1.10–1.58) 2.87E-03 2.18E-02 1.27 (1.03–1.56) 2.24E-02 1.27E-01 0 (0.3525)

CRC vs. N (F) rs9283670 4p13 PHOX2B C 0.094 0.081 1.17 (0.87–1.57) 2.89E-01 5.78E-01 1.16 (0.83–1.62) 3.99E-01 7.94E-01 60.5 (0.1117)

rs17165506 7p21.3 TMEM106B G 0.132 0.107 1.28 (0.99–1.64) 5.88E-02 2.35E-01 1.33 (1.00–1.76) 4.68E-02 1.87E-01 78.3 (0.0319)

rs441261 7p14.3 SLC25A5 G 0.202 0.150 1.44 (1.16–1.78) 8.70E-04 1.57E-02 1.39 (1.09–1.78) 8.18E-03 9.88E-02 75.9 (0.0419)

CRC vs. N (M) rs12994941 2p21 RPS12 C 0.233 0.214 1.12 (0.91–1.37) 2.95E-01 7.65E-01 0.98 (0.78–1.24) 8.72E-01 9.14E-01 76.3 (0.0402)

rs40972 5q23.3 ADAMTS19
(intron)

T 0.072 0.123 0.55 (0.41–0.74) 7.82E-05 2.81E-03 0.55 (0.39–0.77) 4.87E-04 1.56E-02 0 (0.4839)

rs13192135 6p24.3 BMP6 (intron) G 0.021 0.040 0.52 (0.31–0.88) 1.35E-02 9.74E-02 0.47 (0.26–0.84) 1.07E-02 9.03E-02 31.4 (0.2272)

rs5978435 23p22.2 ARHGAP6
(intron)

C 0.362 0.280 1.46 (1.13–1.89) 4.25E-03 5.10E-02 1.22 (1.05–1.41) 1.13E-02 9.03E-02 0 (0.3379)

CRC vs. AD rs7533097 1p31.3 SGIP1 C 0.135 0.097 1.45 (1.17–1.80) 6.30E-04 1.23E-02 1.41 (1.10–1.80) 6.85E-03 4.80E-02 0 (0.5462)

rs6702619 1p21.2 PALMD T 0.455 0.507 0.81 (0.71–0.93) 2.32E-03 2.03E-02 0.79 (0.68–0.93) 4.43E-03 3.87E-02 75.2 (0.0446)

rs9848984 3p26.3 CHL1 C 0.070 0.046 1.54 (1.15–2.07) 3.64E-03 2.03E-02 1.75 (1.24–2.48) 1.63E-03 2.61E-02 7 (0.2997)

rs11742611 5q11.2 PELO G 0.433 0.484 0.81 (0.71–0.93) 2.89E-03 2.03E-02 0.86 (0.73–1.00) 5.35E-02 2.08E-01 64.3 (0.0944)

rs10814948 9p24.2 GLIS3 T 0.261 0.316 0.76 (0.66–0.89) 4.49E-04 1.23E-02 0.75 (0.63–0.90) 1.54E-03 2.61E-02 54.1 (0.1401)

rs1147451 14q23.3 FUT8 T 0.294 0.346 0.79 (0.68–0.91) 1.07E-03 1.39E-02 0.8 (0.68–0.95) 1.16E-02 6.77E-02 13.6 (0.2819)

CRC vs. AD (F) rs16860868 3q13.2 WDR52 C 0.257 0.195 1.42 (1.12–1.80) 3.67E-03 1.15E-01 1.31 (1.00–1.71) 4.65E-02 3.24E-01 55.4 (0.1345)

CRC vs. AD (M) rs6972867 7p12.2 ZPBP C 0.243 0.174 1.53 (1.21–1.93) 3.38E-04 1.18E-02 1.62 (1.22–2.14) 8.36E-04 2.59E-02 0 (0.5176)

rs7321756 13q31.2 SLITRK5 G 0.131 0.101 1.35 (1.00–1.81) 4.74E-02 2.37E-01 1.28 (0.91–1.81) 1.51E-01 4.25E-01 63.4 (0.0986)

Bold denotes significant association (p,0.05). G1 vs. G2; compared groups of cases and controls, respectively, MA; minor allele (+) strand, F1, F2; frequency of MA in the
case and control groups, respectively, OR; odds ratio, CI; confidence interval, N; control, PCa; prostate cancer, AD; adenoma, CRC; colorectal cancer, F; female, M; male.
a/SNP identifier based on NCBI SNP database;
b/NCBI ID of genes localized in proximity to the SNPs of interest (source: HapMap).
doi:10.1371/journal.pone.0035307.t003
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essential to realize that the GWAS results reflect, at best, the

differences in the genetic material of the cases and controls used

for analysis. Although this may seem obvious, it emphasizes one of

the most fundamental conditions required for a successful GWAS.

Therefore, precise diagnostic criteria must be employed to obtain

homogenous groups, as a nonrandom distribution of individuals

with traits governed by strong genetic determinants, such as single-

gene mutations, will strongly bias the final GWAS outcome.

Although our pooled DNA-based GWAS represent studies with

small sample size, they identified 30 SNPs significantly overrep-

resented in the studied groups (Table 2), which were further

validated by TaqMan genotyping of the individual DNA samples.

The replication studies selected 17 candidate risk variants

associated with CRC, considering additive model of inheritance

(Table 3). These associations had not been previously reported.

Seven of them remained significant after correction for multiple

hypothesis testing.

Although not all GWAS-selected susceptibility SNPs will have a

direct functional association with a cancer phenotype, a careful

analysis of the GWAS results showed that those SNPs located in

intronic regions or in the LD blocks with nearby genes have a

potential to influence cancer development (Table 3). Noteworthy,

several candidate susceptibility genes (PRKCA, BMP6, ADAMTS19,

ARHGAP6, FUT9/8, FAM108C1, CHL1, BTBD9 and WDR52) are

involved in the actin cytoskeleton arrangement, cell adhesion and

cell motility processes, which are important for cancer invasion

and metastasis.

The rs3803820 located in the PRKCA gene (17q24.2) was

selected in the CRC sub-study, showing OR = 1.27 (p = 2.24E-02).

Other candidate SNP rs13192135, which showed a strong effect

size of OR = 0.47 (p = 1.07E-02) in the CRC male group, is

located at 6p24.3 in the intronic region of the BMP6 gene.

Similarly, strong association with both AD and CRC risk, of the

known rs4939827 variant of SMAD7 gene was indicated in the

present study (Table 4). This is in agreement with several previous

studies showing association of genetic variation in the BMP/Smad

pathway-related genes with CRC risk [32,33,67].

The rs9848984 SNP at 3p26.3, downstream to the close

homolog of L1 (CHL1) gene, is located in the LD block involving

the 39-end of the gene. CHL1 is involved in cancer growth and in

the metastasis of different human cancers, including colon and

breast cancers [68]. The observation that both mRNA and protein

levels of ARHGAP6 were elevated in the CRC tissue and cell lines

suggests that it may serve as a biomarker for the development and

progression of CRC [69]. Similarly, a high level of metalloprotease

ADAMTS19 expression was observed in several tumor tissues and

cell lines [70]. In turn, FAM108C1 activity was shown to predict

the development of distant metastases [71].

The rs2799652 SNP was found in the promoter region of the

alpha-(1,3)-fucosyltransferase (FUT9) gene, responsible for the

biosynthesis of the Lewis X antigen, a cancer-associated antigen

expressed preferentially in premalignant colon polyps [72]. FUT8,

in turn, is responsible for modulation of E-cadherin function [73].

Previous studies showed that FUT8 and E-cadherin expression

levels were significantly higher in primary CRC samples and that

E-cadherin core fucosylation enhanced cell-cell adhesion in colon

carcinoma [74]. Both FUT9 and downstream to FUT8 gene

variations were shown to be associated with CRC risk in this study

(Table 3). Interestingly, our replication study revealed also

association between the intronic sequence variation (rs9929218)

in the E-cadherin gene (CDH1) and AD risk, especially in males

(Table 4).

We replicated previously reported associations between four

PCa and 14 AD/CRC risk variants in our Polish-based cohorts.
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Four SNPs (rs1859962, rs7931342, rs1447295 and rs6983267)

were widely reported as PCa risk variants in Caucasian, African or

Asian populations [46,48–51,55–58], and can be considered

global markers of PCa susceptibility. In the case of CRC, 11

susceptibility loci were reported often in previous studies [41].

Seven of these loci were replicated in the present study: 8q23.3,

8q24.21, 11q23.1, 15q13.3, 16q22.1, 18q21.1, 20p12.3. In a

Swedish-based cohort study, five of the same 11 loci showed a

significant OR [42]. The lack of confirmation of loci 11q23.1,

16q22.1 and 20p12.3 in the Swedish study may have resulted from

their association with cancer risk mostly in men, unlike in woman,

and/or because they are associated with AD rather than CRC

risk, as indicated by our findings (Table 4).

Interestingly, the stratified analyses revealed that the rs4939827

(18q21.1) variant’s association was limited to women only

(OR = 0.6, 95% CI 0.42–0.88, p = 0.007) [75], indicating that

common genetic variants in SMAD7 may confer susceptibility to

colon cancer particularly among women. In another study,

rs9929218 at 16q22.1 (CDH1) was most strongly associated with

risk in male than in female subjects [41]. Similarly in this study,

rs4939827 was associated both with AD risk (OR = 0.76,

p = 1.54E-03) and CRC risk (OR = 0.78, p = 9.26E-03) among

female patients, whereas rs9929218 was associated with AD risk in

men (OR = 0.77, p = 3.48E-02) (Table 4). Additionally, among

females only at least two significant association were observed for

rs1800894 (1q32, IL10), rs822395 (3q27.3, ADIPOQ) and

rs1057910 (10q23.33, CYP2C9). Conversely, among males, at

least two associates were shown for the rs4779584 (15q13.3)

variant. Our results support the notion that specific variants serve

as gender-specific markers predisposing to CRC.

SNPs rs1447295 and rs6983267 are located at the 8q24 region.

Several studies have identified 8q24 as an important region

associated with risk for various cancers, including prostate, breast,

colon, ovarian and bladder cancers [62,76–78]. To date, all

susceptibility markers within 8q24 were located at five distinct LD

blocks [53]. SNP rs1447295 is located at block 5 (previously

referred as susceptibility region 1) and was shown to increase PCa

risk in various populations with an OR ranging from 1.21 to 1.81,

[47,48,57–60]. Its rare allele A was also shown to be associated

with an increased risk for prostate-specific antigen (PSA)

recurrence in patients receiving radical prostatectomy

(OR = 1.56, 95% CI 1.14–2.21) [79]. In fact, a meta-analysis of

this SNP supported previously GWAS-reported associations [80].

Among the polymorphisms in block 4 (region 3) at 8q24,

rs6983267 has been consistently identified in many studies, with

an OR ranging from 0.65 to 1.42 [46,47,49–51,57,59,81,82],

therefore the strongest association with PCa risk in this LD block

[53,83]. It has also been associated with CRC and ovarian cancer

[76]. Recently, a meta-analysis showed an allelic and genotypic

association of the rs6983267 polymorphism with CRC risk among

Asians, Europeans, and Americans with a European ancestry [82].

Surprisingly, this variant did not show any association with the

CRC phenotype in our study. However, it was significantly

associated with AD risk (in the whole group and among females

only) (Table 4). In our age-stratified analysis, the minor allele T of

rs6983267 was significantly associated with a younger age at PCa

diagnosis (#65 years; considering an additive mode of inheritance)

(Table S2). Accordingly, the G allele of rs6983267 was associated

with an older age at PCa diagnosis in the Swedish population [42],

and the higher PCa risk associated with this SNP was

approximately doubled in those individuals susceptible to an early

disease onset or to the development of a clinically aggressive

disease [84].

Only a few studies examine the association between rs1447295

and PCa risk and between rs6983267 and both PCa and CRC risk

in the Polish population [85–87]. In line with our results,

significant associations were observed for allele A of rs1447295

(OR = 1.3, 95% CI 1.1–1.6, p = 0.01) [85,86], and between allele

G of rs6983267 and PCa (OR = 1.43, 95% CI 1.23–1.66,

p = 1029) and CRC (OR = 1.13, 95% CI 0.93–1.37, p = 0.01) risk

[85,87].

Still, some previously reported associations with CRC and PCa

risk were not replicated in our study. This may have been a result

of a low statistical power coupled with a high genetic heterogeneity

and/or cancer complexity [8]. If so, these inconsistencies may

stem from a potential hidden stratification of our cohort, despite

the apparent homogeneity of the Polish population.

Utility of cancer risk variants revealed by GWAS
The only factor that decreases cancer-related mortality

significantly is early diagnosis. Since at the early stage of

development cancers are asymptomatic or associated with

unspecific symptoms, early diagnosis is usually accidental or

results from the participation in screening programs. Epidemio-

logical studies demonstrate that screening can be effective in a few

cancer locations, including the large bowel and prostate. However,

screening effectiveness depends not only on the availability of

Table 5. Meta-analysis of previously reported PCa and CRC associations including replication results from the present study.

Random effects Heterogeneity

dbSNP IDa
Risk
allele Phenotype OR (95% CI)

Z
p-value

Q
p-value I2 (%) No. of studies References

rs1447295 A PCa vs. N 1.45 (1.33–1.57) ,0.001 0.139 9.676 7 [47,52,57–60]

rs6983267 G PCa vs. N 1.26 (1.19–1.33) ,0.001 0.013 19.373 9 [47,52,53,57,59,61,62]

rs7931342 G PCa vs. N 1.19 (1.14–1.24) ,0.001 0.676 3.157 6 [49,55,56,61]

rs1859962 G PCa vs. N 1.24 (1.17–1.31) ,0.001 0.313 4.757 5 [47,49,52,57]

rs16892766 C CRC vs. N 1.27 (1.23–1.32) ,0.001 0.691 3.059 6 [16,36,41,42,45]

rs4779584 T CRC vs. N 1.20 (1.53–1.25) ,0.001 0.092 13.61 9 [16,35,36,41–43]

rs4939827 Cb CRC vs. N 0.84 (0.81–0.88) ,0.001 0.015 18.95 9 [16,32,33,36,42,44]

a/SNP identifier based on NCBI SNP database;
b/meta-analysis was done for minor allele (MA).
doi:10.1371/journal.pone.0035307.t005
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appropriate diagnostic tests, but also on the general acceptance of

the proposed screening methods by those who consider themselves

healthy. Colonoscopy used for CRC screening also allows

simultaneous detection and removal of ADs, but it is a rather

expensive procedure with low acceptability, especially by men

[88]. By contrast, simple and cheap detection of serum PSA is

widely accepted as a screening tool, but its predictive value is

limited by the lack of specificity and the inability to differentiate

indolent from aggressive PCa [89]. Therefore, specific but more

expensive imaging-based methods might be introduced in PCa

preventive programs. Enrolling healthy individuals with a higher

risk of cancer to screening programs would increase the

acceptance of screening exams, and therefore enhance their

effectiveness and greatly reduce healthcare costs. Currently, CRC

screening guidelines are based on age and to some extent on the

family history of screeners. These guidelines could be also

customized according to gender, race, ethnicity, smoking habits

and presence of obesity, diabetes and metabolic syndromes [90].

One of the early hopes of the GWAS approach was to enable

the development of risk prediction models that could accurately

select high-risk individuals based on their genetic profiles.

However, the proportion of risk explained by known susceptibility

variants is still small. For example, according to a recently

published meta-analysis of 30 selected SNPs associated with PCa

risk, the proportion of the total genetic variance attributed to each

SNP ranged from 0.2% to 0.9% as based on both OR and risk

allele frequency [18]. Moreover, since the relative risk conferred

by these loci is moderate or low, with ORs below 2, and new loci

identified by GWAS have had progressively smaller effect sizes,

the capacity for risk prediction in newly discovered common

marker SNPs may be diminishing [89]. The problem is further

complicated by interactions between genetic and environmental

risk factors, largely due to a lack of established guidelines or

procedures that would determine the impact of environmental

factors on humans over the span of a lifetime. Thus, the

information provided by genome-wide genotyping is often

insufficient to be clinically useful in the prediction of cancer. In

this sense, the cost of GWAS-based studies should be always

considered, especially when adequate GWAS coverage of risk

variants of small or modest effect requires larger sample sizes.

The major idea behind genomic studies is not only to enable

recognizing genetic variability associated with susceptibility to a

disease, but also to recognize the complex nature of genetic

variability underlying its pathogenesis [1]. In this regard, although

the genetic variants identified to date explain only a modest

proportion of cancer heritability, their combination with addi-

tional, newly discovered loci may have a greater, cumulative,

effect. Ideally, instead of typing all known variants, the most

informative combination of potential SNPs should be assessed.

Further research is therefore needed to enable the detection of new

susceptibility variants. Moreover, it would be beneficial if such

efforts were accompanied by an increase in the statistical power of

GWAS.

In summary, in this study we provide evidence for the utility of

pooled sample-based GWAS instead of genome-wide genotyping

of individual DNA samples as a cost-effective alternative approach

for filtering genetic variance which reached a decent statistical

power particularly for the relatively common SNP markers of

moderate effect sizes. The usefulness of pooling-based GWAS was

exemplified through the identification of SNPs associated with

CRC and PCa susceptibility in the Polish population. However,

considering the complex nature of cancer, which involves the

interaction of different genetic and environmental factors,

detecting all cancer markers present in the human genome is a

task beyond capabilities. In addition to previous findings, the risk

information provided in the present study is still not sufficient to be

used in clinical practice.
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