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Osteoarthritis (OA) is the most common type of arthritis, a disease that affects the entire

joint. The relative involvement of each tissue, and their interactions, add to the complexity

of OA, hampering our understanding of the underlying molecular mechanisms, and the

generation of a disease modifying therapy. The synovium is essential in maintaining

joint homeostasis, and pathologies associated with the synovium contribute to joint

destruction, pain and stiffness in OA. MicroRNAs (miRNAs) are post-transcriptional

regulators dysregulated in OA tissues including the synovium. MiRNAs are important

contributors to OA synovial changes that have the potential to improve our understanding

of OA and to act as novel therapeutic targets. The purpose of this review is to

summarize and integrate current published literature investigating the roles that miRNAs

play in OA-related synovial pathologies including inflammation, matrix deposition and

cell proliferation.
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INTRODUCTION

Osteoarthritis (OA) is the most common chronic debilitating disease imposing a significant
socioeconomic burden and affecting the quality of life of millions of people worldwide (1). OA
affects the whole joint and involves progressive articular cartilage degradation, subchondral bone
remodeling, ectopic bone formation, ligament degeneration, menisci degradation, and synovial
inflammation and hypertrophy (2).ManyOA studies largely focus on cartilage health as it facilitates
joint movement and is highly susceptible to OA; however other tissues, notably the synovium, are
now recognized to be involved in OA pathology (3, 4). OA alters the homeostatic functions of cells
residing in the synovium, but we are only starting to elucidate the underlying gene expression and
regulatory mechanisms responsible, and how these changes contribute to disease progression. Gene
expression profiles of the synovium are also altered during OA, which is accomplished by multiple
regulatory mechanisms. At the post-transcriptional level, gene transcripts are regulated by a class of
small non-coding RNAs calledmicroRNAs (miRNAs). A singlemiRNA can target a large number of
transcripts contributing to tissue specific gene expression (5). The complex network ofmiRNAs that
regulate the pathophysiology of cartilage degeneration during OA has been previously reviewed (6);
however, very little is known regarding the role of miRNAs in regulating synovial gene expression
during OA. In this review, we summarize the contributions of the synovium to OA pathology and
how focusing on the role of miRNAs in regulating the activity of fibroblast-like synoviocytes (FLS)
warrants further study to further elucidate mechanisms contributing to OA pathologies.
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CELLULAR INTERACTIONS IN THE OA
SYNOVIUM

The synovium is a loose connective tissue that encapsulates the
joint and aids in maintaining joint homeostasis through the
functions of its resident cells: synovial macrophages and the
more abundant FLS [reviewed in (3, 4)]. FLS are mesenchyme-
derived cells that share characteristics with other fibroblasts,
such as the expression of collagens IV and V, vimentin and
CD90, but also show unique expression that differentiates them
from other resident fibroblasts, notably cadherin-11 expression
by FLS in the synovial lining (7). In healthy synovium, FLS are
the major source of extracellular matrix (ECM) and synovial
fluid, while resident macrophages remove metabolites and
products of matrix degradation (4). As OA progresses, the
synovium undergoes hyperplasia, sublining fibrosis, increased
vascularization, and increased cell proliferation, migration and
invasion (3).

In the context of OA, FLS are the major contributors to the
observed excessive synovial ECM deposition and fibrosis (8).
While they are involved in the production of proinflammatory
and profibrotic mediators, resident synovial macrophages also
respond and contribute to OA progression and inflammatory
responses (9). Accumulation of macrophages in the synovium
is a defining characteristic of synovitis, notably adjacent to
areas of cartilage degradation (10, 11). Macrophages are highly
plastic cells; and although a broad spectrum of activated
states exists, macrophages are generally classified as pro-
inflammatory (M1) and inflammatory resolving (M2) (12). In
healthy conditions, macrophages are thought to be in an M2-
like phenotype that maintains tissue homeostasis and repair
(13). Inflammatory mediators, such as interleukin 1β (IL-1β) and
tumor necrosis factor α (TNF-α), as well as catabolic enzymes,
such as matrix metalloproteases (MMPs) and a disintegrin and
metalloproteinase with thrombospondinmotifs (ADAMTSs), are
produced by synoviocytes and secreted into synovial fluid in
quantifiable levels (9). These changes contribute to the excessive
ECM deposition and increased synovial thickness detected in OA
patients and animal models, and impact joint integrity.

In the synovial fluid of patients with knee OA, the
balance of M1 and M2 macrophage markers is skewed
toward a pro-inflammatory state, and the degree of the shift
is positively associated with the OA severity (14). In the
OA synovium, the majority of macrophages possess pro-
inflammatory profiles, driving responses that promote synovitis
and osteophyte formation (10, 11, 15). In addition to modulating
local inflammatory responses, activated macrophages secrete
various MMPs and ADAMTSs, which remodel the synovial
matrix, and enhance fibrosis-promoting activities of FLS (16).
The master driver of fibrosis is transforming growth factor-
beta 1 (TGF-β1) as it stimulates FLS expression of other
profibrotic mediators, including α-smooth muscle actin (α-
SMA), vascular endothelial growth factor (VEGF), procollagen-
lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2), tissue inhibitors
of metalloproteinases-1 (TIMP-1), and collagen type I, as well
as OA FLS proliferation and migration (17). FLS in turn
influence macrophage activity (18). Thus, interactions of FLS

withmacrophages can also contribute to the pathological changes
in the synovium during OA and is an important consideration for
future studies.

miRNA BIOGENESIS AND FUNCTION

MicroRNAs (miRNAs) are single stranded endogenous small
non-coding RNA molecules of 21–24-nucleotide (nt) length that
are transcribed by RNA polymerase II. MiRNAs are expressed
in polyadelynated and capped nascent transcripts ∼ 200 nt (pri-
miRNA) with hairpin structures. Pri-miRNAs are recognized
by DiGeorge syndrome critical region gene 8 (Dgcr8, an RNA
binding protein) and cleaved into ∼70 nt stem loop precursors
(pre-miRNA) in the nucleus by Drosha, a nuclease of the
RNase III family, and transported to cytoplasm by Exportin
5. Pre-miRNAs are processed into miRNA duplexes in the
cytoplasm by the enzyme Dicer. One strand (mature miRNA)
asymmetrically assembles into the Argonaute (AGO) protein of
the RNA-induced silencing complex (RISC) and the other one is
destroyed. Mature miRNAs then bind mRNAs of target genes in
a sequence-specific manner via “seed” sequences, 2–8 nucleotides
from the 5′ end of miRNAs, usually resulting in cleavage of
target mRNAs or translational repression [reviewed in detail
in (19, 20)].

miRNAs IN OA SYNOVIAL PATHOLOGY

OA studies to date mostly focus on the role of miRNAs in
regulating cartilage maintenance and degradation. However,
miRNAs also regulate other aspects of OA, including synovial
pathology. This is an understudied area and consequently, much
less is known. For the purpose of this review, we searched
PubMed using “Osteoarthritis + synovium + miRNA” and
“Osteoarthritis + synovitis + miRNA” for studies published
until March 2020. A total of 83 articles were identified. Thirty-
five articles focused exclusively on articular cartilage or tissues
other than synovium or on OA symptoms, rather than synovial
pathologies, leaving 48 articles relevant to this review.

Considering FLS as essential participants in joint homeostasis

and contributors to OA synovial pathology, it is not surprising

that OA FLS show differential miRNA profiles. Recently, deep

sequencing identified 245 differentially expressed genes in OA

FLS and bioinformatics analyses highlighted “ECM organization

and altered cellular movement” as one of the most enriched OA

FLS functions connected to the differentially expressed genes

and miRNA network (21). OA FLS also exhibit an independent

miRNA signature from rheumatoid arthritis (RA) FLS, negatively
correlating to the expression levels of their putative target genes
(22). Elevated levels of miR-625 and miR-124 in OA FLS are
associated with decreased expression of their target genes, while
miR-155b andmiR-203 are expressed at lower levels concomitant
with higher expression of their target genes (22). In addition
to in vitro studies, animal models aid in the understanding of
differentially expressed miRNAs in OA synovium. Kung et al.
found 394 miRNAs transiently expressed at 1 vs. 6 weeks in
the synovium of the destabilization of the medial meniscus
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TABLE 1 | Role of some miRNAs in the synovial pathology during OA.

MiRNA Species/model

system

Role in OA References

miR-181c Human

OA FLS

Suppresses expression of

MMP13, IL-6, and IL-8 and

targets OPN to reduce FLS

proliferation.

(24)

miR-770 Human

OA FLS

Suppresses proliferation of

OA FLS.

(25)

miR-26a-5p Human

OA FLS

Targets COX2 to reduce

Bcl-2, IL-6, TNF-α, and IL-8

expression.

(26)

Rat instability

model of OA

Alleviates synovial

inflammation.

miR-146a Human

OA FLS

Dampens IL-1β signaling. (27–29)

Mouse

Knockout

Exhibits synovial hyperplasia. (30)

miR-122 Human

OA FLS

Reduces IL-1α levels. (31)

miR-381a-3p Human

OA FLS

Targets IκBα to enhance

NF-κB activity.

(32)

Rat

MIA

Upregulates in the synovium

of MIA rats.

miR-34a

miR-146a

miR-181a

Human

OA FLS

Promote inflammatory

mechanisms and oxidative

stress.

(33)

miR-29a Human

OA FLS

Targets VEGF and suppresses

ECM production.

(34)

Mouse

CIOA

Protects the synovium from

hyperplasia and macrophage

infiltration.

miR-338-3p Human

OA FLS

Targets TRAP-1 to regulate

TGF-β responsive genes.

(35)

miR-125 Human

HUVEC

Enhances glycolysis and

angiogenesis.

(36)

miR-128 Mouse

ACLT

Promotes synovial membrane

thickness and fibroblast

activation.

(37)

miR-101 Rats

MIA

MiR-101 inhibition reduces

cytokine expression in the

MIA rats synovium.

(38)

ACLT, anterior cruciate ligament transection; CIOA, collagenase-induced osteoarthritis;

FLS, fibroblast-like synoviocytes; HUVEC, human umbilical vein endothelial cells; OA,

osteoarthritis; MIA, monosodium iodoacetate; ECM, extracellular matrix; MMP13, matrix

metalloprotease 13; IL-6, interleukin-6; IL-8, interleukin-8; OPN, osteopontin; COX2,

cyclooxygenase-2; Bcl-2, B-cell lymphoma-2; TNF-α, tumor necrosis factor alpha; IL-

1β, interleukin-1 beta; IL-1α, interleukin-1 alpha; IκBα, inhibitor of nuclear factor kappa

B alpha; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; VEGF,

vascular endothelial growth factor; TRAP-1, TNF receptor-associated protein-1; TGF-β,

transforming growth factor-beta.

(DMM) mouse model of knee OA (23). Thus, several miRNAs
modulated in the synovium potentially contribute to joint
destruction, synovial inflammation, and fibrosis (summarized in
Table 1 and Figure 1). However, the individual and combined
contributions of these miRNAs to synovial pathology warrant
further investigation to comprehensively understand their role
and signaling mechanisms in OA.

miRNAs AND SYNOVIAL INFLAMMATION
IN OA

MiRNAs play key roles in OA-related synovial inflammation. The
expression levels of inflammatory-related miRNAs measured in
the synovium from OA patients and animal models show unique
signatures when compared to normal controls. When comparing
inflamed areas with normal areas of synovium from OA patients,
31 miRNAs are identified in an OA-specific regulatory network
comprised of 97 interactions of 38 transcription factors and
35 genes (39). Many miRNAs are upregulated during OA that
exacerbate inflammatory responses in the synovium. MiR-381a-
3p is upregulated in the synovium of both OA patients and
in the monosodium iodoacetate (MIA)-injected rat model of
OA pain; and miR-381a-3p enhances nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) activity in
cultured human OA FLS by targeting inhibitor of nuclear
factor kappa B alpha (IκBα) (32). Inhibition of miR-101 in
MIA-injected rats reduces cytokine expression in the synovium
(38). Furthermore, blocking miR-128 reduces both synovial
membrane thickness and fibroblast activation protein (FAP)-
positive FLS accumulation in the mouse anterior cruciate
ligament transection (ACLT) model of OA (37). Thus, fine-
tuning synovial inflammation through miRNA modulation is a
promising avenue of research for future OA therapeutic targets.

Some miRNAs have been shown to exhibit anti-inflammatory
effects in the synovium during OA. For instance, administration
of human bone mesenchymal stem cell-derived exosomes
overexpressing miR-26a-5p to cultured OA FLS targets
cyclooxygenase-2 (COX2), reducing B-cell lymphoma 2 (Bcl-2),
IL-6, TNF-α and IL-8 expression, and increasing Bcl-2-
associated X protein (Bax) expression and caspase cleavage,
alleviating synovial inflammation in a rat joint instability model
of OA (26). MiR-146a is highly expressed in the synovium during
OA and when knocked-down in mouse models, NOTCH1 and
IL-6 expression are increased in the synovium concomitant
with synovial hyperplasia (30). When overexpressed in OA FLS,
miR-146a decreases the expression of inflammatory mediators,
including IL-1-induced TNF receptor associated factor 6
(TRAF 6), IL-1 receptor-associated kinase 1 (IRAK 1), COX2,
IL-8, MMP13, and ADAMTS5 expression (27). Denbinobin, a
naturally occurring 1,4-phenanthrenequinone, promotes histone
acetyltransferase activity, resulting in increased miR-146a
expression and inhibition of nuclear factor (NF)-κB activity,
dampening IL-1β-elicited expression of cell adhesion molecules
and monocyte adhesion to OA FLS (28). Intriguingly, histone
deacetylase inhibitors also promote miR-146a expression in
IL-1β-treated OA FLS by facilitating NF-κB binding to miR-146a
promoter, which reduces downstream responses including IL-6
secretion (29). Thus, the acetylation pattern of miR-146a is an
important aspect to its expression and function in OA FLS.
MiR-122 is another miRNA with anti-inflammatory potential as
its overexpression in OA FLS reduces IL-1α levels (31). Taken
together, miRNAs have the potential to regulate inflammation
positively or negatively in the OA synovium; but timing,
source, and context of their expression in relation to OA-related
inflammatory responses needs to be better understood.
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FIGURE 1 | Schematic showing some miRNAs involved in human OA synovial pathology. MiR-381a-3p, miR-34a, miR-146a, and miR-181a promote inflammatory

mechanisms (32, 33). MiR-26a-5p, miR-146a, miR-122, and miR-181c suppress the expression of inflammatory cytokines (24, 26, 27, 31). MiR-181c and miR-770

suppress fibroblast-like synoviocyte proliferation (24, 25). MiR-29a and miR-338-3p exhibit anti-fibrotic effects (34, 35).

RA FLS have been shown to mount greater inflammatory
responses compared to OA FLS, expressing higher levels of
certain inflammation-inducing miRNAs. For instance, miR-
146a, miR-155, and miR-223 are expressed at higher levels in
synovial tissues and RNA extracted from paraffin embedded RA
synovial sections relative to OA samples (40, 41). OA tissue is
routinely used as control comparisons in these instances. As
a result, much more is known about the role of miRNA in
RA FLS and synovial tissue. In RA FLS, miR-155 suppresses
MMP1 and MMP3 expression (42). Inhibition of miR-155 in
synovial fluid-derived macrophages reduces TNF-α production
in vitro (43). Mir-221-3p is also expressed at higher levels in
RA synovial tissue and fluid, and inhibits the anti-inflammatory
arm of macrophages by suppressing the JAK3/STAT3 axis and
increasing the expression of inflammatory mediators such as
IL-6 and IL-8 (44). Similarly, miR-145-5p and miR-143-3p are
expressed at higher levels in RA synovium and FLS compared
to OA (45). MiR-145-5p targets osteoprotegerin, aggravating
bone erosion in collagen-induced arthritis, and also regulates
semaphorin 3A (SEMA3A) to modulate the phenotype of RA
FLS (45, 46). MiR-143-3p targets insulin-like growth factor1
receptor (IGF1R) and insulin-like growth factor binding protein
5 (IGFBP5) expression, regulating the Ras/p38 MAPK signaling
pathway, contributing to FLS proliferation and apoptosis (45, 47).
Additionally, miR-203 promotes NF-κB activation and secretion

of MMP1 and IL-6, thereby accelerating RA FLS activation (48).
Overall, miRNAs clearly modulate the inflammatory profile of
synovial macrophages and FLS in RA.

However, it is now appreciated that OA FLS exhibit an
independent miRNA signature from RA FLS (22). Intriguingly,
several miRNAs that negatively regulate inflammation or
FLS proliferation are expressed at higher levels in OA
synovium and FLS compared to RA, including miR-34a-
3p, miR-124a, miR-30a, miR-10a, miR-140-3p, and miR-140-
5p (49–53). MiR-34a-3p expression is decreased in RA FLS,
leading to increased inflammation and proliferation (49).
Downregulation of miR-34a passenger strand (miR-34a∗) in RA
FLS, due to methylation of its promoter, promotes apoptosis
resistance (54). MiR-124a also suppresses proliferation and
inflammation by directly targeting cyclin-dependent kinase
2 (CDK-2) and monocyte chemoattractant protein-1 (MCP-
1) in RA FLS (50). Furthermore, decreased levels of miR-
30a in RA synovium correlate with reduced apoptosis and
enhanced autophagy (51), while lower expression of miR-10a
is thought to promote excessive secretion of inflammatory
cytokines via NF-κB regulation (52). OA is considered a low-
grade inflammatory disease compared to RA or other types
of inflammatory arthritis (55); thus, it is not surprising that
many miRNAs are differentially expressed in RA compared
to OA synovial cells. However, it does not preclude the
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possibility that these miRNAs also contribute to synovial
inflammation and OA progression. Detailed comparisons of the
differential miRNA profiles detected in RA and OA synovial
cells coupled with mechanistic studies could offer a jumping
point for future investigations into their contributions to
OA pathogenesis.

miRNAs AND SYNOVIAL FIBROSIS

In general, a limited number of studies have investigated the role
of miRNAs in processes associated with OA synovial fibrosis. For
instance, miR-29a targets VEGF and its inhibition in OA FLS
promotes the expression of ECM genes (collagen III, TGF-β1,
PLOD2, TIMP1, ADAM12, MMP9, MMP13, and ADAMTS5)
(34). Conversely, miR-29a overexpression decreases VEGF and
ECM gene expression levels. In a mouse model of collagenase-
induced OA (CIOA), intra-articular administration of a miR-
29a precursor protects the synovium from hyperplasia and
macrophage infiltration (34). Thus, miR-29a, which is decreased
in OA synovium, appears to reduce profibrotic activities in the
healthy synovium by tightly regulating angiogenesis and ECM
production. MiR-338-3p is another ECM-regulating miRNA
decreased in OA synovium and synovial effusions compared
to synovial tissues from patients with joint trauma. MiR-
338-3p counteracts TGF-β1-induced expression of vimentin,
type I collagen and TIMP1 in FLS by directly targeting TNF
receptor-associated protein 1 (TRAP-1) and regulating Smad 2/3
signaling pathways (35). Overall, these miRNAs exhibit anti-
fibrotic regulatory effects; however, there are likely moremiRNAs
with similar activities that remain to be identified in addition
to miRNAs with profibrotic effects that exacerbate synovitis
associated with OA.

Profibrotic mediators have also been shown to regulate
miRNA expression, contributing to OA synovial pathology. For
instance, TGF-β1 enhances the expression of anti-inflammatory
factor hemeoxygenase 1 (HO-1) by reducing the expression of
miRNA-519b in human OA FLS (56). TGF-β1 also inhibits
miR-92a to promote the expression of forkhead box class O
3 (FOXO3) in OA FLS, lowering mRNA and protein levels
of TNF-α, IL-1β, VEGF, and C-C Motif Chemokine Ligand
2 (CCL2) (57). Another profibrotic growth factor, connective
tissue growth factor (CTGF), increases miR-210 expression in
OA FLS by activation of PI3K, AKT, ERK, and NF-κB/ELK1
pathways, contributing to VEGF-dependent angiogenesis (58).
It is noteworthy that profibrotic mediators such as TGF-β1 and
CTGF modulate select miRNAs to regulate certain aspects of
synovitis including inflammation and angiogenesis. This effect
can be counteracted by other miRNAs. MiR-125a is expressed at
higher levels in OA synovium compared to psoriatic arthritis and
modulates glycolysis in human umbilical vein endothelial cells
(HUVEC) to inhibit angiogenesis (36). MiRNAs are dysregulated
in the synovium during OA, but the way in which they
regulate inflammation, angiogenesis or ECM modulation, and
how they interact to maintain the joint homeostasis, remains
poorly understood and requires extensive investigation in
near future.

MECHANISMS REGULATING miRNAs IN
OA SYNOVIUM

Adipocyte-derived molecules (adipokines) are elevated in the
joint during OA and play an important role in cartilage and bone
turnover (59). In addition, adipokines alter miRNA expression
levels, modulating synovial inflammatory responses. Visfatin and
resistin upregulate miR-34a, miR-146a and miR-181a in OA FLS,
which when inhibited, decreases proinflammatory responses and
oxidative stress (33). Adipokines can also inhibit miRNAs to
enhance inflammatory responses. For instance, visfatin inhibits
miR-199a-5p expression in OA FLS through ERK, p38, and JNK
signaling pathways, which promotes IL-6 and TNF-α production
(60). Similarly, resistin suppresses miR-33a and miR-33b in OA
FLS resulting in increased MCP-1 transcription, facilitating the
migration of monocytes (61). Thus, select miRNAs are regulated
by adipokines influencing OA-related inflammatory responses.

Just as miRNAs regulate mRNAs, miRNAs are also regulated
through interaction with RNA partners, specifically long non-
coding (lnc) RNAs and circular (circ) RNAs (24, 25, 62). Both
act as sponges, binding directly to miRNAs and regulating
their free concentration. Evidence suggests that these regulatory
RNAs have the capacity to fine-tune miRNA activity in
OA FLS. For example, lncRNA nuclear enriched abundant
transcript 1 (NEAT1) binds miR-181c, inhibiting osteopontin
(OPN) expression and regulating OA FLS proliferation (24).
Similarly, the lncRNA prostate cancer gene expression marker
1 (PCGEM1) binds miR-770, promoting OA FLS proliferation
and survival (25). In fact, 122 circRNAs are differentially
expressed in the OA synovium, with over 1,000 miRNAs
and 28,000 circRNA-miRNA interaction pairs. Intriguingly, 641
miRNAs are predicted to interact with six circRNAs (62).
These findings indicate that many miRNAs can be modulated
by a handful of circRNAs, adding complexity to the network
that regulates synoviocyte expression profiles. CircRNAs and
lncRNAs represent an opportunity to modulate several miRNAs
simultaneously, and thus hold great therapeutic potential to
modulate OA synovial pathology.

FUTURE DIRECTIONS

An important aspect overlooked in many OA studies using
animal models is that OA is an age-related disease and
experiments are routinely conducted in young animals. As
with other organ systems, cellular activity in joint tissues is
altered with age, including abnormal ECM, cytokine and reactive
oxygen species (ROS) production, which likely contribute to
OA pathology differently than post-traumatic or metabolic-
induced OA (63, 64). Little is known regarding how aging
alters synovial homeostasis and function over time, and
how that might contribute to OA progression. Expression of
many miRNAs change with age in various tissues, altering
processes like cell senescence (65). MiR-126-3p, which is
important for cell attachment to the ECM, is downregulated in
aged OA chondrocytes relative to their younger counterparts
(66). Improving our understanding of how miRNAs are
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differentially expressed with age, and how this alters joint
homeostasis and OA progression will be essential for future
translational success.

Integrated analyses examining miRNA and transcript profiles
in parallel will help elucidate dysregulated miRNA and RNA
interactions occurring in OA. In OA, Chen et al. performed
RNA sequencing alongside small RNA sequencing in OA
FLS compared to those derived from healthy tissue (21).
Putative targets of dysregulated miRNAs were predicted by
bioinformatic approaches, including 14 genes (11 upregulated
and 3 downregulated) that require further biological validations
(21). Another study attempted to identify differential mRNA
and miRNA expression in the DMM mouse OA model using
microarray and RT-qPCR, but found no evidence of differential
expression of miRNAs and RNAs levels between sham and
DMM-induced OA mice at 1 or 6 weeks after surgery (23).
However, the time after surgery examined, the small sample
size used and variability observed within the groups, might
be masking some relevant changes, and further investigation
is warranted.

In addition to holding therapeutic potential, miRNAs in the
synovial fluid or synovium-derived extracellular vesicles (EVs)
might also act as biomarkers (67, 68). Increased levels of miR-
23a-3p, miR-24-3p, miR-186-5p, miR-29c-3p, miR-34a-5p, and
miR-27b-3p are found in the synovial fluid of OA patients with
late-stage compared to early-stage radiographic knee OA (69).
Some of these miRNAs are highly expressed in the OA synovium.
MiR-210 is increased in the synovial fluid of both early- and late-
stage radiographic knee OA patients compared to healthy donors
and positively correlates with VEGF levels (70). Other synovial
fluid miRNAs suggested as OA biomarkers include miR-29b-
3p and miR-140, which show positive and negative correlations
with radiographic knee OA severity, respectively (71, 72). As
we continue to unearth the biomarker potential of some of
these miRNAs, understanding the release mechanism as well
as the exact cellular source of secreted miRNAs in the joint
will advance our understanding of miRNA contributions to OA
pathology. Profiling miRNA content of cells and tissues using
next generation sequencing not only helps to identify the source

of miRNAs, but also has the added advantage of identifying
novel miRNAs, expanding the rapidly-growing human miRNA
repository and promoting investigations into new regulatory
mechanisms and therapeutic targets. Sequencing datasets are
routinely deposited on-line, and this open format is not only

idea-generating but can also be used to substantiate novel
findings. MiRNAs are currently being explored as potential
therapeutic targets to counteract cartilage degeneration and
synovitis in OA. For example, inhibition of miR-101 andmiR-128
has been shown to rescue cartilage degeneration and synovitis
in MIA and ACLT animal models of OA, respectively (37, 38).
Extensive research is underway to identify the best mode of
delivery of miRNA-based therapies (mimics or inhibitors) in
preclinical models of OA.

CONCLUSIONS

Taken together, miRNAs contribute to synovial homeostasis,
inflammation, fibrosis, angiogenesis, cell survival and cell
apoptosis, contributing to OA synovial pathology. MiRNAs have
been a focus of OA research since their discovery and they are
attracting more attention due to their biomarker and therapeutic
potential. However, research on the role of miRNAs in OA-
related synovial pathology is only in its infancy. Most research
on synovitis is performed in samples from RA patients or animal
models where OA tissues are often used as a control reference.
This has hampered our understanding of the mechanisms
modulated by miRNAs in OA synovitis. Additional studies are
needed to comprehensively understand the role miRNAs play
in OA-related synovial pathology and to identify novel disease
modifying targets for therapeutic development.
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