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Type 2 diabetes (T2D) is a heterogeneous disorder with
contributions from peripheral insulin resistance and b-cell
dysfunction. For minimization of phenotypic heterogeneity,
quantitative intermediate phenotypes characterizing basal
glucose homeostasis (insulin resistance and HOMA of in-
sulin resistance [HOMAIR] and of b-cell function [HOMAB])
have shown promise in relatively large samples. We inves-
tigated the utility of dynamic measures of glucose homeo-
stasis (insulin sensitivity [SI] and acute insulin response
[AIRg]) evaluating T2D-susceptibility variants (n = 57) in
Hispanic Americans from the GUARDIAN Consortium
(n = 2,560). Basal and dynamic measures were genetically
correlated (HOMAB-AIRg: rG = 0.28–0.73; HOMAIR-SI: rG =
20.73 to 20.83) with increased heritability for the dynamic
measure AIRg. Significant association of variants with

dynamic measures (P < 8.77 3 1024) was observed. A
pattern of superior performance of AIRg was observed for
well-established loci includingMTNR1B (P = 9.463 10212),
KCNQ1 (P = 1.35 3 1024), and TCF7L2 (P = 5.10 3 1024)
with study-wise statistical significance. Notably, signifi-
cant association of MTNR1B with AIRg (P < 1.38 3 1029)
was observed in a population one-fourteenth the size
of the initial discovery cohort. These observations sug-
gest that basal and dynamic measures provide differ-
ent views and levels of sensitivity to discrete elements
of glucose homeostasis. Although more costly to ob-
tain, dynamic measures yield significant results that
could be considered physiologically “closer” to causal
pathways and provide insight into the discrete mecha-
nisms of action.
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Type 2 diabetes (T2D) is a heterogeneous disorder in
which complex interactions of peripheral insulin resis-
tance with concomitant b-cell dysfunction lead to clinical
presentation of disease. The “gold standards” for assess-
ment of insulin resistance and b-cell dysfunction are the
euglycemic-hyperinsulinemic and hyperglycemic clamps
(1), respectively. An alternative approach, the frequently
sampled intravenous glucose tolerance test (FSIGT) with
minimal model (MINMOD) analysis (2), has been widely
used and provides dynamic measures of glucose and insulin
utilization, similar to the clamps, with correlated results
across a range of glucose tolerance states (3–6). However,
the expertise, time, and expense required by these measures
as well as demands placed on the participant makes it dif-
ficult to perform these tests in large epidemiological studies.
Consequently, basal estimates calculated from fasting glu-
cose and insulin values, e.g., HOMA of insulin resistance
(HOMAIR) and of b-cell function (HOMAB), in addition to
simple measures of glycemic control have been widely used.

More than 80 loci (7) have been robustly implicated in
T2D risk through evaluation of common variation across
the genome in studies comprising up to 110,452 subjects
(8). Collectively, however, these variants explain ,10% of
disease risk (8,9). Complementary efforts have explored
the genetics of quantitative intermediate phenotypes of
glucose homeostasis in normoglycemic individuals (8,10,11).
To date, these studies have focused on the identification
of variants modulating disease risk through assessment of
basal insulin resistance or b-cell function. The majority of
these loci appear to mediate their effects through b-cell
function, while few loci have been identified that influence
insulin resistance, despite an extensive literature document-
ing insulin resistance as a major component of T2D (12–16).

Despite the wide use of basal measures of glucose
homeostasis to dissect the mechanistic heterogeneity of
T2D, contributions to the pathophysiology remain un-
clear for many loci. Dynamic measures have the potential
to elucidate contributors more proximal to the causal
gene product resulting in the overt phenotype of T2D
with attendant increases in power for discovery. Further,
such analyses may more clearly identify the physiological
path through which T2D susceptibility is transmitted. We
evaluated the performance of basal (HOMAIR and HOMAB)
and dynamic (acute insulin response [AIRg] and insulin sen-
sitivity [SI]) measures of glucose homeostasis in the Genetics
Underlying Diabetes in Hispanics (GUARDIAN) Consortium.
Through statistical genetic comparison, we evaluated and
contrasted the genetic basis of basal and dynamic measures
of glucose homeostasis and used previously identified T2D
susceptibility variants to evaluate the advantage of dynamic
indices.

RESEARCH DESIGN AND METHODS

Study Population
The GUARDIAN Consortium was established to evaluate
the genetic basis of factors that predispose to T2D, including

insulin resistance, metabolic clearance rate of insulin, and
insulin response, in Mexican Americans (17). Participat-
ing cohorts were ascertained for various conditions in-
cluding diabetes, gestational diabetes mellitus, or large
family size and included persons with and without T2D
who self-reported Mexican ancestry. Specific to this re-
port, data were used from 2,560 Mexican American
study subjects without T2D from four cohorts that mea-
sured glucose homeostasis by the FSIGT: the Insulin Re-
sistance Atherosclerosis study (IRAS), the IRAS Family
Study (IRASFS), BetaGene, and Troglitazone in the Pre-
vention of Diabetes (TRIPOD). All participants provided
written informed consent, and institutional review boards
at the clinical, laboratory, and coordinating centers ap-
proved the study.

Phenotyping
Dynamic measures of glucose homeostasis traits were
measured in all participants by FSIGT with two modifi-
cations: an injection of insulin was used (TRIPOD injected
tolbutamide) to ensure adequate plasma insulin levels for
the accurate computation of SI across a broad range of
glucose tolerance (18), and a reduced sampling protocol
was used (19). AIRg was calculated as the increase in in-
sulin concentrations at 2–8 min above the basal (fasting)
insulin level after a bolus glucose injection at 0–1 min.
SI and glucose effectiveness (SG) were derived from the
FSIGT by mathematical modeling using the MINMOD
program (20). Disposition index (DI) was calculated as
the product of SI 3 AIRg. HOMAIR and HOMAB were
modeled from fasting glucose and insulin measures us-
ing the updated HOMA model (21). A comprehensive
description of study variables has previously been de-
scribed (17,22).

Genotyping
Single nucleotide polymorphisms (SNPs) were selected
for analysis with a bias toward variants for T2D and
glucose homeostasis traits (e.g., fasting glucose), which
have exhibited relatively large effect sizes and which have
been widely replicated. This resulted in the selection of 57
variants (23–27) for analysis. Based on the a priori evi-
dence of association, this discovery set yields increased
power as well as increased probability of detecting effects
across ancestries. Genotyping and quality control have
been described in detail (22). Briefly, samples were geno-
typed on the Illumina HumanOmniExpress array. Sam-
ples with call rates .0.98 and SNPs with call rates
.0.99 and minor allele frequency .0.001 passed labora-
tory quality control following usual best practices (e.g.,
sufficient signal and cluster separation with no replicate
errors) (28). For family-based studies, pedigree structures
were confirmed using standard procedures (e.g., Kinship-
based INference for Gwas [KING] [http://people.virginia
.edu/;wc9c/KING/index.html]), and SNPs were examined
for Mendelian inconsistencies using PedCheck (http://
watson.hgen.pitt.edu/register/docs/pedcheck.html).
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Statistical Analysis
A variance components approach as implemented in
Sequential Oligogenic Linkage Analysis Routines (SOLAR)
(29) was used to compute estimates of heritability (h2) for
each trait in the two family-based cohorts (BetaGene and
IRASFS). Because BetaGene was ascertained for gesta-
tional diabetes mellitus, putting subjects at a higher risk
to develop T2D, an ascertainment correction was im-
plemented in SOLAR. When necessary, winsorization
or transformation was applied to best approximate the
distributional assumptions of conditional normality and
homogeneity of variance. For traits warranting transfor-
mation, the same transformation was applied across both
cohorts and included natural logarithm of the trait plus a
constant (SI), natural logarithm (fasting glucose, fasting
insulin, HOMAIR, and HOMAB), and square root (AIRg

and DI); SG was not transformed. Residual phenotypic
variance, after accounting for covariates (age and sex 6
BMI), was partitioned into additive genetic and nonge-
netic (environmental) components and tested using max-
imum likelihood methods in SOLAR.

Variance component models as implemented in SOLAR
(29) were used to test for association in family cohorts
and linear regression models as implemented in QSNPGWA
from the SNPlash suite (https://github.com/guyrt/WFUBMC/
tree/master/snplash) in nonfamily cohorts. All models included
age, sex, BMI, study site (in multicenter recruitment stud-
ies), and admixture proportions. Traits were conditioned to
approximate a normal distribution as described above. Pop-
ulation substructure was estimated using ADMIXTURE
(http://www.genetics.ucla.edu/software/admixture/). In all
tests for association, admixture proportions were included
as covariates in the model such that the covariates were
not collinear and tests of association did not exhibit evi-
dence of inflation.

The primary inference was derived from the additive
genetic model. The inverse variance–weighted method
with weighting based on sample size was used to combine

the evidence of association across cohorts as implemented
in METAL (http://www.sph.umich.edu/csg/abecasis/metal/).
A P , 8.77 3 1024 (Bonferroni correction for 57 loci) was
considered statistically significant. For each SNP-trait com-
bination, we calculated the Wald statistic for comparison of
the phenotypes on a unitless scale. With use of a matched
pairs analysis as implemented in SAS (SAS Institute, Cary,
NC), the Wilcoxon signed rank test was used to assess en-
richment of previously reported loci for association with
T2D-related quantitative traits.

Power for the association analysis (accounting for the
familial correlations, with simulation-based estimations,
resulting in an effective sample size of 92% of the total
[n = 2,344]) was estimated to be 80% to detect SNP–
quantitative trait associations that explain 1% and 0.56%
of the variation in the quantitative traits at a = 5 3 1028

and a = 1 3 1024, respectively.

RESULTS

The study was performed with data from 2,560 Mexican
Americans without T2D from four cohorts (Table 1).
On average, the study subjects were overweight (BMI
$25 kg/m2) and the majority of participants were female.
The four cohorts varied in mean SI from moderately insulin
resistant (IRAS: mean SI of 1.33 6 1.24 3 1024 $ min21 $
mU21 mL) to average SI (IRASFS: mean SI of 2.146 1.863
1024 $ min21 $ mU21 mL) to relatively insulin sensitive for
the younger, largely female BetaGene cohort (mean SI of
3.036 1.633 1024 $min21 $ mU21 mL). Correspondingly,
insulin response (AIRg) was higher among more insulin re-
sistant cohorts (IRAS and IRASFS), resulting in comparable
DI values across the cohorts. The trend for the measure of
insulin resistance derived from basal estimates (HOMAIR)
mirrored that of the FSIGT, and similarly, estimates of
b-cell function (HOMAB) were compensatory.

Genetic and environmental correlations (rG and rE,
respectively) among the T2D-related quantitative traits
are presented in Tables 2 and 3 (with BMI adjustment)

Table 1—Clinical characteristics of the GUARDIAN cohorts

IRAS IRASFS BetaGene TRIPOD

Demographics
Sample size 187 1,034 1,214 125
Age (years) 58.8 6 8.3 40.6 6 13.7 34.6 6 7.9 34.8 6 6.3
Women (%) 58.3 59.0 72.1 100.0
BMI (kg $ m22) 28.9 6 5.1 28.3 6 5.7 29.5 6 6.1 30.6 6 5.4

Dynamic measures
AIRg (mU $ mL21 $ min) 673 6 702 760 6 649 569 6 480 488 6 450
SI (31024 $ min21 $ mU21 $ mL) 1.33 6 1.24 2.14 6 1.86 3.03 6 1.63 2.57 6 1.79
DI 1,245 6 1,184 1,202 6 1,236 1,409 6 946 1,004 6 724
SG (min21) 0.0208 6 0.0088 0.0202 6 0.0091 0.0178 6 0.0067 0.0157 6 0.0041

Basal measures
HOMAB 128.7 6 42.9 120.8 6 45.6 89.4 6 45.3 119.4 6 40.3
HOMAIR 1.99 6 1.03 1.67 6 1.04 0.974 6 0.722 1.87 6 0.98
Fasting glucose (mg $ dL21) 96.8 6 10.1 93.4 6 9.5 90.8 6 11.5 98.3 6 9.5
Fasting insulin (mL $ units $ L21) 18.39 6 11.61 14.90 6 11.04 8.69 6 6.51 16.57 6 8.90

Data are means 6 SD unless otherwise indicated.
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and in Supplementary Table 1 (without BMI adjustment).
AIRg was positively correlated with the basal estimate
of HOMAB (rG, IRASFS = 0.73; rG, BetaGene = 0.28). How-
ever, directionality among the composite measures dif-
fered between IRASFS fasting glucose (fasting glucose rG,
IRASFS = 20.38; fasting insulin rG, IRASFS = 0.68) and
BetaGene fasting glucose (fasting glucose rG, BetaGene =
0.07; fasting insulin rG, BetaGene = 0.48). Among insulin
resistance measures, SI was negatively correlated with
HOMAIR (rG, IRASFS = 20.73; rG, BetaGene = 20.83) as
well as the composite phenotypes of fasting glucose (rG,
IRASFS =20.23; rG, BetaGene =20.23) and fasting insulin
(rG, IRASFS = 20.71; rG, BetaGene = 20.84).

Heritability estimates from IRASFS and BetaGene for
dynamic and basal measures of glucose homeostasis are
presented in Tables 2 and 3 (with BMI adjustment) and in
Supplementary Table 1 (without BMI adjustment). The
dynamic measure of b-cell function, assessed by AIRg,
was the most consistent and highly heritable (h2 =
0.47–0.56) measure assessed. In comparison, basal mea-
sures of b-cell function were lower in IRASFS (h2 = 0.34)
but comparable in BetaGene (h2 = 0.55), which could be
attributed to sample ascertainment differences between
population-based and a family history of T2D, respec-
tively. Measures of insulin resistance were also heritable
(h2 = 0.33–0.34). In contrast to HOMAB, basal heritability
estimates of insulin resistance were higher in BetaGene
(h2 = 0.48) but again comparable in IRASFS (h2 = 0.31).
Furthermore, an examination of the heritability esti-
mates and associated SEs for the dynamic and basal
measures revealed that SI had the most consistent her-
itability estimates between the two studies, while the
basal measures (HOMAB, HOMAIR, fasting glucose, and
fasting insulin) had nonoverlapping point estimates
within the SE-defined CIs.

Significant genetic association results observed among
the 57 SNPs with dynamic (AIRg, SI, DI and SG) and basal
(HOMAB, HOMAIR, fasting glucose, and fasting insulin)
glucose homeostasis traits are summarized in Table 4 (full
results for SNP-trait combinations are presented in Sup-
plementary Table 2). The most significant associations
observed were among two modestly correlated SNPs,
rs10830963 and rs1387153 (r2 = 0.69), at the melatonin
receptor 1B gene (MTNR1B) with AIRg that reached
genome-wide significance (P , 5.00 3 1028). The
MTNR1B locus was initially identified as a locus for fasting
glucose and subsequently evaluated for association with
T2D (30). Among the GUARDIAN cohorts, evidence of
association between MTNR1B SNPs and other traits, such
as fasting glucose, was comparatively modest (P . 1.50 3
1026), and no evidence of association was observed with a
basal measure of b-cell function (HOMAB, P . 0.020).

The majority of significant associations (Bonferroni-
corrected P , 8.77 3 1024) among the 57 previously
reported T2D-associated SNPs were with AIRg (n = 10),
with eight SNPs showing consistent association of the
T2D-associated allele with decreased b-cell function. Further,
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13 additional T2D variants were nominally associated with
AIRg (P , 0.05), with eight SNPs showing a consistent di-
rection of effect. Comparison of the effect sizes for measures
of b-cell function using the Wilcoxon signed rank test
revealed a significant nonzero shift toward AIRg (P = 7.0 3
1024). The proportion of variants associated with AIRg

(17.5%) was more than expected by chance (P = 1.12 3
10220), consistent with the previous observation of enrich-
ment of T2D-associated loci that contribute to b-cell function.

In addition to MTNR1B, there was a consistent pattern
of variants showing association with AIRg but little or no
association with the basal measure of insulin response,
i.e., HOMAB, including KCNQ1 and TCF7L2, which is con-
sistent with prior literature (31–33). Strikingly, only a
single variant at the glucose-6-phosphatase catalytic sub-
unit gene (G6PC2) (rs560887, P = 1.25 3 1024) showed
nominal evidence of association with basal estimates of
b-cell function (HOMAB).

Measures of insulin resistance, both dynamic (SI) and
basal (HOMAIR), failed to show evidence of association
among the 57 T2D-associated SNPs. More nominal evi-
dence of association (P , 0.05) was observed among 11
SNPs with SI (P = 0.48–0.0013) and 10 SNPs with
HOMAIR (P = 0.048–0.0023), only six of which overlapped
between traits. Notably, variants in the potassium inwardly-
rectifying channel gene (KCNJ11) were nominally associ-
ated with the dynamic measure of insulin resistance (SI)
(rs5219, P = 0.032). Effect size comparisons among in-
sulin resistance loci using the Wilcoxon signed rank test
were nonsignificant (P = 0.60).

Among additional phenotypes obtained from the FSIGT,
three variants at two loci were significantly associated with
SG, which captures the ability of glucose to enhance its
own disposal (34). SNP rs780094 (P = 5.38 3 1026) is
located in the glucokinase regulator gene (GCKR), and
SNPs rs10830963 (P = 1.09 3 1024) and rs1387153
(P = 6.85 3 1024) are located near the MTNR1B locus.

Seven variants were significantly associated with DI,
which is thought to be a good predictor of diabetes onset
(35) taking into account the contributions of both insulin
sensitivity and response, SI and AIRg, respectively. In each
case the association with DI was one to two orders of
magnitude more significant than that observed with
AIRg. Notably, two variants at the MTNR1B locus were
more strongly associated with DI (rs10830963, P =
1.11 3 10214 and rs1387153, P = 1.40 3 10211) than
AIRg despite the lack of contribution from SI (P . 0.089).
Two additional variants that were previously identified
through association with fasting glucose, rs11708067 in
the adenylate cyclase 5 gene (ADCY5) (36) and rs560887
in the glucose-6-phosphatase 2 gene (G6PC2) (37), were
also associated with DI. Notably, neither SNP was sig-
nificantly associated with fasting glucose (P = 0.18
and 0.033, respectively). Variants in KCNQ1 and insulin-
like growth factor 2 mRNA–binding protein 2 gene
(IGF2BP2) were also significantly associated with DI
(P , 4.93 3 1024).
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DISCUSSION

Genome-wide association studies (GWAS) of T2D have
identified .80 susceptibility loci to date (8,9,26,38–41).
However, there is a diminishing return on investment, as
contemporary studies require increasingly large sample
sizes; e.g., the most recent analysis by Morris et al. (9)
analyzed 34,840 case and 114,981 control subjects. In an
effort to reduce the phenotypic heterogeneity, quantita-
tive intermediate phenotypes of glucose homeostasis have
been assessed. These studies have focused most frequently
on basal measures of glucose homeostasis derived from eas-
ily obtained fasting measures. These genetic studies have
confirmed the contribution of 53 loci, 33 of which impact
T2D risk, but required similarly large sample sizes; e.g., Scott
et al. (10) analyzed 133,010 individuals. Even when such
large samples are used, much of the genetic component of
T2D and its underlying glucometabolic phenotypes remain
unknown. This challenge is amplified in populations such as
African Americans and Mexican Americans where available
samples sizes are appreciably smaller and genetic admixture
complicates analysis. The current study demonstrates the
potential value of further refining quantitative intermediate
phenotypes of T2D through analysis of dynamic quantitative
measures of insulin sensitivity and b-cell function.

Basal and dynamic measures of glucose homeostasis
exhibit a differential genetic basis. Basal metabolic mea-
sures are derived from fasting measures of glucose and
insulin via the HOMA approach, while dynamic pheno-
types characterize an elicited response. For example, in
this study AIRg and SI were measured in response to an
intravenous glucose load using the minimal modeling
approach. Extending our previous work (42) with an
increased sample size and inclusion of contemporary
genetic data, we observed that SI was significantly corre-
lated with HOMAIR (rG, IRASFS = 20.73; rG, BetaGene =
20.83) with a stronger contribution from fasting insulin
(rG, IRASFS = 20.71; rG, BetaGene = 20.84) compared
with fasting glucose (rG, IRASFS = 20.23; rG, BetaGene =
20.23). In IRASFS, heritability of SI (h

2 = 0.34) was mod-
estly greater than that for HOMAIR (h

2 = 0.31) with genetic
background accounting for a greater proportion of SI, while
environmental factors made a stronger contribution to
HOMAIR. Notably, a direct assessment of the heritability
and 95% CIs for basal and dynamic measures revealed that
SI was more similar between studies than HOMAIR. Al-
though not assessed herein, basal measures of insulin sen-
sitivity have failed to adequately capture longitudinal
change despite good correlation in the cross-sectional set-
ting (43). As expected, the measures of b-cell function were
positively correlated (AIRg-HOMAB rG, IRASFS = 0.73 and
BetaGene = 0.28) with a relatively lower correlation
observed among the component fasting measures, particu-
larly fasting glucose (AIRg–fasting glucose rG, IRASFS =
20.38 and BetaGene = 0.07), suggesting that the result
is driven by the contribution of fasting insulin (AIRg–
fasting insulin rG, IRASFS = 0.68 and BetaGene = 0.48).
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Using previously identified T2D-susceptibility variants,
the current study demonstrates the value of high-quality
dynamic measures of glucose homeostasis. Most notable
among these observations is the association of MTNR1B
with AIRg. This locus was first identified in a fasting glu-
cose GWAS of 36,610 individuals of European descent
(rs10830963, minor allele frequency =0.30, P = 3.2 3
10250) (30) and was only subsequently attributed to as-
sociation with T2D in analyses testing up to 40,655 case
and 87,022 control subjects (rs10830963, P = 8.0 3
10213) (36). Comparatively, by targeting a precise mea-
sure of b-cell function, i.e., first-phase insulin response
(AIRg), we identified genome-wide significant association
with this locus (rs10830963, P = 9.46 3 10212) in a
sample size of just 2,548 subjects, despite more nominal
associations with fasting glucose (P = 1.50 3 1026) (22).
This association is consistent with the reported biology,
i.e., the colocalization of MTNR1B with insulin in human
islets (44). This pattern of superior performance of AIRg
was repeated for additional well-established T2D loci
KCNQ1 and TCF7L2, which attained study-wise levels of
statistical significance with much more nominal evidence
of association with basal measures. Impairment of insulin
response is believed to be the mechanism of action for
both KCNQ1 (32,33) and TCF7L2 (31), although these
results suggest a direct role in first-phase insulin response
as opposed to significant contributions from changes in
incretin secretion, as has been suggested for KCNQ1 (32).
To compliment these dynamic measures of glucose ho-
meostasis, we also evaluated DI, which is the product of
SI 3 AIRg. Notably, this measure outperformed compo-
nent phenotypes with comparatively more significant as-
sociations observed at the IGF2BP2 locus (AIRg P , 0.023
vs. DI P , 4.93 3 1024) and may indicate a more direct
involvement in physiological cross talk mechanisms used
to maintain glucose homeostasis.

Huyghe et al. (45) have genetically assessed a battery
of quantitative intermediate phenotypes characterizing
insulin processing, secretion, and glycemic traits in the
Metabolic Syndrome in Men (METSIM) study. While the
approach herein used metabolic phenotypes derived from
the FSIGT, clinical testing in the METSIM study used the
oral glucose tolerance test (OGTT). This study identified
associations with fasting proinsulin levels at previously
reported GWAS loci as well as novel genes associated
with fasting proinsulin and the insulinogenic index. It is
noteworthy that association with MTNR1B was not re-
ported. In contrast, Prokopenko et al. (46) identified sig-
nificant association at MTNR1B with decreased insulin
secretion (corrected insulin response [CIR], P = 6.71 3
10228) obtained from the OGTT in a comparable sample
size from the Meta-Analysis of Glucose- and Insulin-related
traits Consortium (MAGIC). The OGTT-derived measure of
insulin secretion represents stimulated response to oral glu-
cose administration and may highlight additional compo-
nent pathways toward development of the overt phenotype
of T2D with variable contribution by MTNR1B.

Among additional novel dynamic phenotypes obtained
from the FSIGT, the ability of glucose to enhance its own
disposal is captured in the form of SG. Among significant
results, SNP rs780094 located in the glucokinase regula-
tor gene (GCKR) was associated with SG (P = 5.38 3
1026). This locus is supported biologically by glucokinase,
which catalyzes the ATP-dependent phosphorylation of
glucose, the first and rate-limiting step in liver glucose
metabolism (47). Extending upon the current literature,
we observed association of MTNR1B rs10830963 with SG
(P = 1.09 3 1024), which warrants additional follow-up
studies for a role in glucose tolerance, as has been pre-
viously suggested (48). However, among the candidates
evaluated, G6PC2 has been implicated in the alteration
of hepatic glucose production (49,50). Although no asso-
ciation was observed with SG (P = 0.15) that would
represent the most proximal phenotype in GUARDIAN,
further work is needed to accurately measure this meta-
bolic pathway.

The observations described here suggest that basal and
dynamic measures, the latter resulting from either oral
(OGTT) or intravenous (FSIGT) stimulation, provide dif-
ferent estimates with differing levels of sensitivity to
discrete elements of glucose homeostasis. Thus, T2D risk
polymorphisms may selectively be associated with distinct
measures. While these measures are correlated, the associ-
ation results with AIRg are striking, with rs10830963 having
association P values 4 orders of magnitude stronger than
fasting glucose and 10 orders of magnitude stronger than
HOMAB. Multiple other T2D variants (e.g., KCNQ1,
TCF7L2) showed similar if less dramatic differences.
These results suggest that there is discrete involvement
of these genes in first-phase insulin response. In a similar
vein, Huyghe et al. (45) identified a variant associated
with insulin processing (C-peptide), a phenotype that is
not available in the GUARDIAN cohorts. The utility of
this type of approach for understanding the genetic con-
tribution to disease progression is the proximity of the
phenotypes to the underlying genetic variation. Thus, in-
creased power is observed by reducing phenotypic hetero-
geneity; e.g., insulin resistance precedes development of
impaired insulin response, yet few studies of T2D as a
qualitative trait assess insulin resistance among control
subjects. Together these studies are consistent with mul-
tiple metabolic contributions to T2D that are revealed and
available for investigation only when detailed physiologi-
cal phenotyping has been performed.

Further studies of precise metabolic phenotyping are
needed to identify informative intermediate phenotypes
of glucose homeostasis, and complimentary studies built
upon this knowledge are needed, particularly in ethnic
minority populations who are disproportionately bur-
dened by T2D. Although more costly to attain, these
measures, when analyzed in a comparatively small study
population, yielded significant results that could be con-
sidered physiologically “closer” to the causal pathway.
More broadly, the results presented here argue for detailed
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metabolic phenotyping in the further search for diabeto-
genic loci and as a way to gain insight into the discrete
mechanisms of action.
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