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Introduction

Three months after the discovery of coronavirus disease 
2019 (COVID-19), the World Health Organization 
declared COVID-19 as a pandemic on 12 March, 2020 (1). 

To date, more than 190 countries and regions have reported 
COVID-19 cases, more than 527,000,000 people have 
been infected, and 6,000,000 people have died globally. 
The most recent global outbreak of COVID-19 has been 
triggered by the Omicron variant. The Omicron variant 
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showed a higher transmissibility than the Delta variant (2), 
and the identification of its sub-lineages, namely BA.2.12.1, 
BA.4, and BA.5, even exhibited higher transmissibility than 
the original Omicron variant (3). Many countries have 
experienced a sharp increase in the number of confirmed 
cases of COVID-19, which has increased by 71% from 
27 December, 2021 to 2 June, 2022 (4). Some researchers 
pointed out that current vaccines, such as ChAdOx1 nCoV-
19 and BNT162b2, can only provide limited protection 
against Omicron variant (5), and according to a recent 
study, the Omicron wave will not end by November 
2023 (6). How to make an early warning on the spread of 
COVID-19 and mitigate it have become a tricky question 
for governments. Except for the medical help, establishing a 
prediction system is also of great need.

The subject of infectious diseases has developed into 
an interdisciplinary field (7), which requires not only 
knowledge of the pathogen but also knowledge of statistics 
and mathematics (8). Mathematical models have been 
developed for predicting the development of infectious 
diseases in the epidemiology field (9). There are numerous 
studies have been conducted on making reliable prediction 
results on the development of COVID-19. For example, 
the clustering technique used in machine learning model 

has been implemented for forecasting the COVID-19 
outbreak in Chinese provinces, and achieved stable results 
2 days ahead of the present time (10). Apart from machine 
learning models, the classic epidemiological models, such 
as the susceptible-infected-removed (SIR) and susceptible-
exposed-infected-removed (SEIR) models, can also depict 
the development of infectious diseases. However, such 
models can only predict one wave of an epidemic (11), 
while the real situation is most likely a multiwave epidemic. 
Multi-source infection is one of the reasons for the multiple 
waves of an epidemic. Particularly in highly urbanized areas, 
interaction between people is tight and frequent. When the 
detection speed is not as fast as the spread speed of the virus, 
potential patients cannot be diagnosed and hospitalized in 
time, and they will become a new source of infection and 
cause a new wave of the epidemic. This phenomenon has 
appeared several times in recent outbreaks of COVID-19 in 
China.

Since the first COVID-19 outbreak in China, the 
government has taken strict measures to contain the 
epidemic. The core principle of the Chinese government 
to contain the COVID-19 epidemic is to implement 
fast and strict non-pharmaceutical interventions (NPIs) 
to cut off the transmission chain (12). The quarantine, 
social distancing, and isolating infected people have been 
proved to be able to contain the epidemic in China (13). In 
addition, the most important thing is to ensure the capacity 
of healthcare will not be overloaded during the outbreak of 
COVID-19. Since the healthcare resources in communities 
that are distanced from major urban areas are limited (14),  
thus, these NPIs, including social distancing, testing, 
contact-tracing and quarantine, can relieve the healthcare 
burden and enable the reopening of economics (15). In 
fact, not only the COVID-19 epidemic can be curbed by 
applying NPIs, but also the SARS outbreak happened in 
2022 can be controlled by isolating the infected individuals 
from susceptible population (16). Even though these 
NPIs worked well on small-scale domestic outbreaks of 
COVID-19 in China from April 2020 to December 2021, 
the large-scale human mobility has made it much easier for 
viruses to be transmitted among humans (17), particularly 
when people tend to take public transportation in cities, and 
this will increase the risk of infection by virus (18,19). The 
delayed detection of infected cases outside the lockdown 
areas would cause several sources of the epidemic, making 
it difficult for governments to control the development 
of COVID-19 in time. Considering this situation, a new 
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method for predicting the multiwave spread of COVID-19 
in megacities is required.

Epidemic models have long been used for predicting the 
development of infectious diseases. In this study, we applied 
a modified SEIR model and combined it with a multi-
source dynamic ensemble prediction (MDEP) technique to 
predict the development of the latest COVID-19 epidemics 
in Beijing, Lanzhou, Beihai, Urumqi, Yili, and Sanya, 
China. We chose these cities as the target cities is because 
the spread patterns of COVID-19 are complex. Thus, the 
advantage of the implementation of the MDEP method can 
be clearly observed, and this method would provide a new 
perspective for predicting the spread of infectious diseases 
in populated areas. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
jtd.amegroups.com/article/view/10.21037/jtd-23-234/rc).

Methods

Data sources

All the epidemic data of COVID-19 are available online 
and can be obtained publicly. Daily epidemic data for 
COVID-19 in Beijing city were obtained from the National 
Health Commission of the People’s Republic of China 
(http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml). The time 
period for COVID-19 data in Beijing was from 17 April 
2022 to 8 June 2022. The epidemic data of COVID-19 in 
Lanzhou City were collected from the Health Commission 
of Gansu Province (http://wsjk.gansu.gov.cn/wsjk/c113605/
list.shtml), and the time period was from 8 July 2022 to 9 
August 2022. The COVID-19 epidemic data of Beihai City 
were collected from the Health Commission of Guangxi 
Zhuang Autonomous Region (http://wsjkw.gxzf.gov.cn/
ztq_49630/sszt/xxgzbdfyyqfk/yqtb/) from 12 July 2022 to 
12 August 2022. The COVID-19 data of Urumqi and Yili 
can be obtained from the Health Commission of Xinjiang 
Uygur Autonomous Region (http://wjw.xinjiang.gov.cn/
hfpc/fkxxfyfkxx/fkxxfy_list.shtml) from 30 July 2022 to 
20 September 2022. The COVID-19 data of Sanya city 
were downloaded from the Health Commission of Hainan 
Province (https://wst.hainan.gov.cn/swjw/rdzt/yqfk/
index_5.html) from 1 August 2022 to 14 September 2022. 
All epidemiological data were collected and updated in a 
daily basis.

Modified SEIR model

The global prediction system of COVID-19 pandemic 

(GPCP) was used to predict the development of the 
COVID-19 outbreak in China. The GPCP system is 
the modified SEIR model. Compared to the classical 
epidemiological models, such as the SIR model and SEIR 
model, the modified SEIR model, also called the SPEIQDR 
model, adds three more stages, namely the protected stage 
(P), quarantined stage (Q), and dead stage (D) (20). Similar 
to the SIR and SEIR models, the modified SEIR model 
is a compartment model that depicts the population flow 
between each compartment. The modified SEIR model 
follows the following equations:
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S t
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where the total population N=S+P+E+I+Q+D+R. The 
susceptible people will either enter the protected stage 
under the protection rate α, or become exposed people 
with the rate β, and the exposed people will take 

1
γ  time, 

also known as latent time to become infectious, and there 
will be a certain part of the infected people being admitted 
to the hospital and become quarantined under the rate δ. 
The rates λ and κ represent the recovery and death rates, 
respectively, which suggests that quarantined people will 
recover or die after treatment. Particularly, the protection 
rate (α) represents the proportion of susceptible people 
who will be highly immune to COVID-19 due to the good 
awareness of self-protection, such as wearing face masks 
and keeping social distance. It should be noted that all the 
above-mentioned parameters are greater than zero, except 
the protection rate. When α>0, people will enter into 
protected phase from susceptible population, while if α<0, 
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people will return to susceptible group (21). The initial 
value and range of each parameter in the model are shown 
in the Table 1.

The GPCP system also sets up a parameterization 
scheme for atmospheric factors, including temperature 
and humidity. The original transmission rate β was 
calibrated as β=β0+β1F(T2m)+β2F(RH2m), where F(T2m) and 
F(RH2m) represent the probability distribution functions of 
temperature and humidity obtained by Huang et al. (22). 
T2m and H2m represents the temperature at 2 m above ground 
level and the humidity at 2 m above the ground level, 
respectively. β0 represents the original transmission rate 
when temperature and humidity are excluded, and β1 and 
β2 represent the transmission rates when temperature and 
humidity factors are included, respectively.

Model coefficients

Due to the difficulty of obtaining the coefficients needed in 
the model, we, therefore, adopted a method called inverting 
coefficients method to improve the goodness of fit of the 
model (23). Generally speaking, the initial values of each 
coefficient need to be provided to the model before making 
any predictions. After that, some optimization algorithms 
will be applied, and the real time epidemic data are used 
to invert the coefficients in the model, that is to say the 
parameters and real epidemical data are adjusted along 
the process of iteration. Therefore, the initial values of 
coefficients will be adjusted and updated to the real value, 
and the final coefficients will be substituted in the model 
to produce more accurate prediction results. However, it 
should be noted that the model is sensitive to the initial 
values, so it is essential to change the initial values enough 
times to achieve a robust result.

Parameters for control measurements

In the GPCP system, different parameterization schemes 
are employed into the model. As for MDEP method, the 
most important one is the parameterization for control 
measurements. Since Chinese government applied strict 
control measures in terms of contain the outbreaks in a 
timely manner. Therefore, to achieve a better performance 
of the prediction results, we established a parameterization 
scheme to depict the different effects of different strengths 
of control measures. There are three coefficients are 
included in the model, namely government response time 
(Days_con), initial exposed cases (E0), and the attenuation 
rate. In this case, the infection rate β will be calibrated as 
β=β0×attenuation ratet(t>Days_con), where β0 is the base 
infection rate. With the strict control measures applied, 
the value of Days_con will be smaller, and attenuation rate 
will be smaller. As a result, the duration of an outbreak will 
be shorter and the peak value and cumulative cases will be 
smaller.

As for the model for predicting the COVID-19 outbreaks 
in China, the same methodology was used. Moreover, 
to ensure that robustness of the prediction results, the 
Levenberg-Marquardt algorithm was introduced into the 
model (24,25). To be more specific, a damping coefficient 
is inserted into the Gauss-Newton method to calculate 
the Hessian matrix, which can converge much faster than 
before, and yield more robust results (26).

MDEP method

The forecasting problem is to predict the output 
information of the system in the future using the known 
current and past measurable information. It is not difficult 
to predict a deterministic dynamic system that does not 
consider the uncertain random factors of the system or its 
environment. However, random factors or multiple sources 
make forecasting difficult. For several practical epidemic 
transmission systems, the system model parameters are 
difficult to determine precisely in advance, or they change 
with the environment and its disturbance. The discovery of 
a new infection source can change the development of an 
epidemic, and the initial values of the parameters cannot 
satisfy the current situation. Therefore, it is necessary 
to construct a multisource dynamic ensemble prediction 
method to adjust the system model parameters to reduce 
the error rate of the model.

Table 1 Range of the parameters

Parameters Range Initial values

α (protection rate) −1 to 1 0.06

β (transmission rate) 0 to 5 1.0

γ (inverse of latent time) 0 to 1 0.2

δ (transition rate of infected 
people get quarantined)

0 to 1 0.1

λ (recovery rate) 0 to 1 0.1

κ (death rate) 0 to 1 0.001
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MDEP is a method that sums the initial prediction result 
and follow-up dynamic prediction results together to obtain 
the integrated result as the final prediction result. This 
is similar to the ensemble forecast that has been used in 
weather forecast since the 1990s (27). The integrated result 
is the sum of multiple ensemble predictions under different 
initial conditions. The aim of the MDEP method is to 
reduce the initial error caused by incomplete information 
provided by the initial data set (28). At the beginning of 
the prediction, we could only obtain limited information 
from the initial dataset. In some cases, when the epidemic 
has only one source of infection, the initial prediction has 
good accuracy. However, real situations are complex. For 
epidemics occurring in some cities, multiple sources of 
infection always emerge one after another. In this study, 
multisource refers to COVID-19 cases identified in non-
lockdown or non-quarantined areas. The appearance of 
each infection source will likely cause a new wave of the 
epidemic, and the initial prediction cannot depict the 

multiwave epidemic. Therefore, the MDEP method has 
been proposed to solve this problem.

The integrated results are a set of data expressed as yi,j, where 
i represents the multi-source of the epidemic; for example, 
the result from the initial prediction stage was expressed as y0,j, 
and for the first dynamic prediction period, the result would 
be y1,j, and j represents the daily predicted results. In the initial 
prediction procedure, we obtained a set of prediction results: 
y0,1, y0,2, …, y0,n. With the development of the epidemic, multiple 
waves will occur, and we will use the MDEP method to obtain 
a set of new prediction results. For example, the prediction 
results for the first wave would be y1,5, y1,6, y1,7, …, y1,n, and the 
new prediction results would be superimposed on the previous 
ones; thus, the final prediction results of the epidemic should be 
y0,1, y0,2, y0,3, y0,4, y0,5+y1,5, y0,6+y1,6, y0,7+y1,7, …, y0,n+y1,n. As shown in 
Figure 1, the final prediction result is called the integrated 
result, and it will be updated i times, where i equals the 
number of waves the epidemic had and n equals the number 
of days that the epidemic lasts.

Initial
prediction

Prediction 
results

y0,1, y0,2, y0,3, y0,4, y0,5, 
…, y0,n

y1,5, y1,6, y1,7, y1,8, y1,9, 
…, y1,n

y2,9, y2,10, y2,11, y2,12, 
y2,13, …, y2,n

yi,n−8, yi,n−7, yi,n−6, yi,n−5, 
yi,n−4, …, yi,n

Integrated results

2nd wave

1st wave

ith wave

Initial
pred.

Integrated results

First wave
Second

wave
ith wave

Figure 1 The calculating procedure of multi-source dynamic ensemble prediction method. pred., prediction.
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Results

The defect of the one-wave models

According to the nature of the classic SEIR and SIR models, 
only one wave of an epidemic can be simulated by these 
models. As shown in Figure 2, we take the recent outbreaks 
of COVID-19 in Beijing and Lanzhou cities as examples, 
where the red lines show the real development trends of 
COVID-19 epidemics in these two cities, and blue lines are 
the simulated results produced by the one-wave modified 
SEIR model. It can be observed clearly from Figure 2 
that the real development trends of COVID-19 exhibit 
multiple waves, and fluctuate frequently at large scales. The 
simulated curves cannot reflect the real trends, and show 
very poor accuracy rates in daily cases and cumulative cases. 
The calculated error values (E=Npdaily/pcumu_i−Nrdaily/rcumu_i, where 
i=1,2,3… and Npdaily/pcumu_i represents the prediction results of 
daily and cumulative cases, while Npdaily/rcumu_i represents the 
real daily and cumulative cases), which are shown in Figure 3, 
indicated that the error values of daily and cumulative cases 

in Beijing and Lanzhou fluctuated greatly, ranging from 
−250 to 25 and −2,000 to 500, respectively. Since the classic 
epidemical models were proposed about 100 years ago, 
when implementing these models nowadays, they will of 
course have some defects. The most prominent flaw of these 
models is that they are compartment models, which means 
they are suitable for a limited and confined space, where 
the large-scale of human mobility will not be considered. 
Therefore, it cannot depict the real situation.

Multisource of infections

Except for the flaw of the models themselves, other factors 
also need to be emphasized. As the complex transmission 
pattern of COVID-19 epidemic in cities, such as frequent 
contact between people, there will be multi-source of 
infections identified during the outbreaks. In addition, 
the Omicron variant, which was identified in December 
2021, possesses a higher transmissibility and is hard to be 
diagnosed in time, therefore, has contributed to the wide-
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scale outbreaks in China. Based on the previous experiences 
that the Chinese government has gained in terms of control 
the transmission of COVID-19, the most effective method 
is to isolate infected people. By using this method, the 
Chinese government has successfully contained previous 
outbreaks of COVID-19. However, as aforementioned, the 
complex transmission pattern of Omicron variant has caused 
multiple infection sources, and each of the new infection 
sources caused a new wave of the epidemic. The reason why 
the multi-sources of infection kept emerging is because of 
the appearance of the new cases in non-lockdown or non-
quarantined areas. Figure 4 shows that when the number 
of cases outside the lockdown areas (red areas) increased, 
the total number of cases (blue areas) also increased. The 
development trend of the cases in non-lockdown or non-
quarantined areas are accordance with it of the total 
number of cases, when the cases outside the lockdown or 
quarantined areas dropped to zero, the number of the total 
would decrease to zero in a few days.

In order to remedy these defects, an innovative method 
named as MDEP method was proposed. The development 

of the case outside the lockdown areas was used as an 
important reference for dynamic prediction, that is, if the 
case outside the lockdown areas continues to emerge, the 
dynamic prediction must be carried out continuously.

Case study in China

Figure 4 shows the prediction results of MDEP for the 
recent COVID-19 outbreaks in Beijing, Lanzhou, Beihai, 
Urumqi, Yili, and Sanya cities. The prediction results are 
presented as daily confirmed cases and cumulative cases 
separately. From Figure 5, we can observe that the real 
epidemiological data fluctuated over a large scale, and 
clearly, the one-wave SEIR model could not depict the 
real trend. Therefore, we employed the MDEP prediction 
method to obtain more accurate results. The initial 
prediction on Beijing began on 22 April 2022 when the 
epidemic entered an outbreak phase, and ended on 4 May 
2022. The number of daily confirmed cases on 4 May 
2022 was 43, and the number of daily confirmed cases 
started increasing from 5 May 2022 to 9 May 2022 which 

Figure 3 The error values of simulated results using one-way epidemiological model, where the upper panel are the daily error values of 
Beijing and Lanzhou, respectively, and the bottom panel are the cumulative error values of Beijing and Lanzhou, accordingly.
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implies that a new small resurge in the epidemic occurred. 
Because the initial prediction could not reflect the second 
increase phase, we performed the first dynamic prediction 
to update the original result. The duration of the first 
dynamic prediction was from 5 May 2022 to 10 May 2022. 
The second dynamic prediction started on 11 May 2022 
and ended on 13 May 2022. The third dynamic prediction 
was from 14 May 2022 to 29 May 2022 which lasted for 
16 days, and the fourth dynamic prediction started on  
30 May 2022. We superimposed the initial prediction, 
first dynamic prediction, second dynamic prediction, third 
dynamic prediction, and fourth dynamic prediction to 
obtain the final result. As shown in Figure 5, the blue line 
represents the final result, which is labelled as the integrated 
prediction. From the plot, we observe that the MDEP 
method can reflect multiple waves of the epidemic, which 
is more suitable for real-world situations. The prediction 
results for the cumulative cases also suggest that the MDEP 
method can produce a more accurate result. Based on the 
predicted results, there will be 1,848 confirmed cases by the 
end of the outbreak. The real number of confirmed cases 
was 1,840 as of 8 June 2022 since there had been no new 
confirmed cases reported outside the lockdown areas, and 
the government declared that the outbreak of COVID-19 
had been contained successfully.

After successfully implementing the MDEP method 
on COVID-19 outbreaks in Beijing, we then utilized this 
method on another five cities in China, namely Lanzhou, 
Beihai, Urumqi, Yili, and Sanya. These cities all shared the 
same features, which are the duration of the COVID-19 
outbreaks were relative long, and the fluctuations of daily 
cases were large. Therefore, the development trends of 
COVID-19 epidemics in these cities are consistent with 
multiwave development of COVID-19. In addition, all the 
six cities were hit by Omicron variant, so the interference 
of different variants was excluded, thus, ensure the results 
are not biased. Lanzhou reported the first confirmed case 
of COVID-19 on 8 July 2022, and we applied the MDEP 
method to predict the spread of COVID-19 in Lanzhou. 
The results are shown in Figure 5. The prediction results 
for the cumulative cases showed a high accuracy. The 
COVID-19 outbreak in Lanzhou ended on 5 August 2022, 
with the real cumulative cases is 2,208, and final prediction 
results for cumulative cases is 2,234. Beihai is a tourist city 
located in Guangxi Province. The first confirmed case was 
reported on 12 July, 2022. Following the first confirmed 
case, the COVID-19 epidemic in Beihai exhibited a rapid 
growth trend, and it took a month for the government to 

control the development of the epidemic. The prediction 
results indicate that the initial prediction began on 12 
July 2022 and ended on 17 July 2022 followed by the first 
dynamic prediction (from 18 July 2022 to 21 July 2022), 
and the second dynamic prediction (from 22 July 2022 to 12 
August 2022). The outbreak of COVID-19 in Beihai ended 
on 12 August 2022 with a final cumulative number of cases 
of 3,202, and our prediction result was 3,220. The MDEP 
method showed a high accuracy in the final result. The 
same procedure was conducted on Urumqi, Yili, and Sanya 
cities, and the prediction results are shown in Figure 5. The 
final results suggested that by the time when COVID-19 
outbreaks ended, there would be 1,073, 2,700, and 16,619 
confirmed cases in Urumqi, Yili, and Sanya, respectively, 
while the real cases in these three cities were 1,172, 2,864, 
and 15,668, respectively. According to the prediction 
results, we can conclude that the MDEP method has shown 
a high accuracy in terms of predicting the multiwave of 
COVID-19. When taking the population and control 
measures into consideration, we can observe that cities like 
Beijing, Lanzhou and Urumqi took relatively strict control 
measures compared with the other three cities, and they all 
have shown lower peak values and shorter durations

Model validation

Figure 6 validates the prediction results. The validation 
results indicated that our predictions of cumulative cases 
exhibited high accuracy rates in Beijing, Lanzhou, Beihai, 
Urumqi, Yili, and Sanya. Figure 6A shows the scatter plot of 
predicted cases versus real confirmed cases. From the plot 
we can observe that the results show a strong goodness fit 
of the MDEP model. Moreover, the calculated R-square 
values shown in Table 2 prove that the MDEP model 
produced higher accuracy rates than the one-wave model 
did, as the R-square vales of MDEP model are very close 
to 1. The root mean square error (RMSE) values of the 
MDEP model in Beijing, Lanzhou, Beihai, Urumqi, Yili, 
and Sanya are 54.22, 47.25, 49.33, 71.49, 86.03, and 606.27, 
respectively, which are much smaller than it of the one-
wave model, thus, illustrates that the MDEP model has a 
better performance in terms of predicting the development 
of COVID-19. The average accuracy rates are shown in 
Figure 6B, the accuracy rates of MDEP model (blue bar) 
of these six cities are all above 80%, with the accuracy 
rates are 89.95%, 91.74%, 94.81%, 81.08%, 85.50%, and 
90.57% in Beijing, Lanzhou, Beihai, Urumqi, Yili, and 
Sanya, respectively, and the overall average accuracy rate 
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is 88.94%. However, the accuracy rates of the one wave 
model (red bar) are much lower than MDEP model, with 
the overall average accuracy rate only 44.19%, which is the 
half of the accuracy rate of MDEP model. The differences 
of the accuracy rates are mainly caused by the different 
abilities in terms of management and healthcare of local 
governments. For example, Beijing possessed the developed 
healthcare system and has abundant resources to conduct 

contact tracing work, thus, even though there were many 
sources of infections, Beijing still managed to control the 
epidemic well. However, Urumqi and Yili have limited 
resources, and the outbreaks in these two cities were large, 
which exhausted the healthcare and management resources. 
Therefore, the transmission in these two cities showed the 
same characteristic, which is the ending periods, when the 
number of daily cases dropped below 10 and entering into 

Table 2 The R-square and RMSE values of one-wave model and MDEP model

City statistic Beijing Lanzhou Beihai Urumqi Yili Sanya

R-square (one-wave model) −0.33 −0.72 −0.24 0.05 −0.19 −0.33

R-square (MDEP model) 0.992 0.997 0.998 0.966 0.993 0.990

RMSE (one-wave model) 675.52 1,184.87 1,383.65 304.10 1,134.06 11,669.58

RMSE (MDEP model) 54.22 47.25 49.33 71.49 86.03 606.27

RMSE, root mean square error; MDEP, multi-source dynamic ensemble prediction.
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the finishing phase, are longer than the rest of the cities. As 
a result, they had lower accuracy rates.

Discussion

From the early stage of the COVID-19 pandemic, the 
Chinese government employed a zero-policy to contain 
the spread of COVID-19 (29). This policy has successfully 
stopped many domestic COVID-19 outbreaks. However, 
the recent situation has changed. The newly identified 
variant of coronavirus, known as the Omicron variant, has 
shown rapid transmissibility and triggered a huge outbreak 
worldwide. The Omicron variant first spread to mainland 
China on 8 January 2022 and the following domestic 
outbreaks of COVID-19 were all related to the Omicron 
variant. The recent outbreaks of COVID-19 in China 
showed some characteristics such as the long duration 
of the epidemic and the multiple sources of infections 
identified, which have not been discovered previously. 
These characteristics made the outbreaks difficult to contain 
in a timely manner and also added many difficulties to the 
prediction work.

In this study, we demonstrated the different characteristics 
of the COVID-19 outbreak in terms of the scale, duration, 
and infection sources. We observed that when the scale of 
the outbreak of COVID-19 was small, which indicated that 
the amplitude of the daily cases throughout the outbreak was 
small, this outbreak would possibly have a single infection 
source, and the source of the outbreak could be traced 
easily. Therefore, implementing effective measures to 
contain the outbreak is easier for governments. Outbreaks 
that satisfy the above-mentioned characteristics can be 
predicted using a one-wave modified SEIR model, and 
the results show relatively high accuracy rates. However, 
with the development of COVID-19, the mutated virus 
became harder to identify and had a higher transmissibility 
than the original one (30). Thus, the current situation has 
become more complicated. Particularly when large-scale 
human mobility makes the interaction between humans 
more frequent and provides a perfect opportunity for the 
transmission of the virus (31). Moreover, more frequent 
human mobility indicates more importation and exportation 
of humans, which will increase the risk of transmission of 
the virus (32). The MDEP method was proposed to solve 
this particular problem, and our prediction results have 
shown very high accuracy rates for the final confirmed 
cumulative cases. The average accuracy rates for daily 
cumulative cases were also high enough to be considered as 

good predictions.

Conclusions

Although the implementation of MDEP for COVID-19 is 
innovative and has been proven to be highly accurate. The 
limitations of this method cannot be ignored, because the 
base model used in the MDEP method is the modified SEIR 
model, which is a compartment model. The compartment 
model can reflect the internal transmission progress; in 
our case, it is the progress that people transferred from the 
susceptible stage either to the protected or exposed stages, 
and from the exposed to the infected stages, the infected 
people will be quarantined and finally recover or die. The 
major limitation of this compartment model is that the 
total population is assumed to be constant throughout the 
entire process, while in the real world, the total population 
always keeps changing, which indicates that external human 
mobility was not considered in the model. Some studies 
showed that take human mobility into consideration will 
improve the forecast accuracy (33), and quantifying the trade-
off between mobility and infection can provide guidelines 
for governments to make appropriate directives (34). In 
addition, demographic data such as age, gender, and income 
were not considered in the model, as well as some digital 
data from social medium may provide earlier indication that 
help to make prediction in time (35). Moreover, the details 
of the epidemic data need to be improved. For instance, the 
reported date and illness onset date of the patients should 
be obtained and added into model to simulate the results 
accordingly, thus, compare the difference between these two 
simulation results to reveal more transmission mechanisms 
of COVID-19. In the next generation of our model, we will 
combine the MDEP model with an artificial intelligence 
model use more sources of data to make our model more 
suitable for complex conditions, such as large-scale human 
mobility and the transportation connection between cities, 
provinces, states, and countries. At the same time, we will also 
seek for cooperation and other ways to obtain more relevant 
data to perfect our model. However, the current MDEP 
model has significantly improved the prediction accuracy 
rate, and the prediction result can provide scientific guidance 
to the government and assist to make appropriate directives 
to cope with the domestic COVID-19 outbreak.
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