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ABSTRACT: There is an ever increasing resource in terms of both structural
information and activity data for many protein targets. In this paper we describe
OOMMPPAA, a novel computational tool designed to inform compound design by
combining such data. OOMMPPAA uses 3D matched molecular pairs to generate
3D ligand conformations. It then identifies pharmacophoric transformations between
pairs of compounds and associates them with their relevant activity changes.
OOMMPPAA presents this data in an interactive application providing the user with
a visual summary of important interaction regions in the context of the binding site.
We present validation of the tool using openly available data for CDK2 and a
GlaxoSmithKline data set for a SAM-dependent methyl-transferase. We demonstrate
OOMMPPAA’s application in optimizing both potency and cell permeability and
use OOMMPPAA to highlight nuanced and cross-series SAR. OOMMPPAA is
freely available to download at http://oommppaa.sgc.ox.ac.uk/OOMMPPAA/.

■ INTRODUCTION

In recent years approaches such as high-throughput crystallog-
raphy and Fragment Based Drug Design have reached maturity,
resulting in a rapidly increasing number of available crystal
structures and particularly more liganded structures for a given
protein. In the pharmaceutical industry it is now common to
have access to many tens of liganded crystal structures within a
drug discovery program. At the same time, improvements in
small-molecule screening throughput and initiatives to
consolidate activity data from disparate sources have made
thousands of high-quality small-molecule activity data points
available for many biologically important protein targets both in
the public domain1 and within the pharmaceutical industry.
This data is a key resource in the early stages of drug discovery
as it provides information that may aid in the design of small-
molecules as part of lead-discovery and lead-optimization.2,3

However, despite the availability of this wealth of new data,
there are few computational tools that are able to systematically
exploit it. There is a clear need for novel automated methods
that can use these data sets to assist medicinal and
computational chemists in the directed synthesis of small-
molecules.

Probably the best known method for relating trends in
biological data to 3D structure is 3D Quantitative Structure
Activity Relationships (3D QSAR).2,4 3D QSAR attempts to
build statistical models that relate small-molecule bioactivity
data with 3D compound properties. There are however well-
documented problems with 3D QSAR. The generation of
relevant bioactive conformations and dealing with varied
binding modes poses a significant problem.5 Simple models
using, for example, linear regression are unable to detect
complex and nuanced features of the data.5 More elaborate
models, which include many descriptors or complicated
statistical methods, often require large data sets, can be prone
to overfitting,6,7 and can be hard to interpret. Attempts,
however, have been made to improve the interpretability of 3D
QSAR by developing simplified models, for example by using
pharmacophore based abstractions.8,9

One way to move beyond the generalizations of typical
regression-based QSAR models, to probe the underlying data in
more detail, is to carry out the analysis in a pairwise fashion.
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This strategy is adopted in 2D matched molecular pair analysis
(2D MMPA).10,11 A matched molecular pair (MMP) consists
of two compounds that are identical apart from one small
structural alteration, known as a transformation (the shared
part of the molecules is commonly referred to as the context).
The impact of a given transformation upon a particular
property can be assessed from this. Beneficial transformations
can then be applied to a compound series of interest with the
aim of improving that property.
Recent work by Geppert and Beck12 has extended this

concept by using pharmacophore-based clustering in “Fuzzy”
2D MMP analysis. This approach enables the clustering of
multiple chemically different but pharmacophorically conserved
transformations or contexts. This improves the number of
observations in each subset. Pharmacophore retyping aims to
transfer SAR from chemically different but pharmacophorically
identical contexts. However, pharmacophore-based matching
overlooks compounds with shared binding modes but slightly
different pharmacophores. Further it is possible for compounds
with identical pharmacophores to possess different binding
modes.
The MMP concept can also be extended to carry out the

analysis on biologically relevant 3D conformations. This
approach is known as 3D MMPA. A key benefit of 3D
MMPA is that SAR can be transferred between structurally and
pharmacophorically dissimilar series but with analogous binding
modes. Furthermore, it includes information about the local
protein environment. This is important since this environment
directly affects the nature and magnitude of a given
transformation’s effect. 3D MMPA also presents a number of
key advantages over 3D QSAR. First it offers a simple and easily
implemented method for 3D conformation generation.13 Most
importantly it produces models that are directly related to
simple pairwise compound transformations. 3D MMPA can
thus be used to investigate confounding factors in analysis and
show nuanced information in a way that even the most
interpretable 3D QSAR models cannot.
Two recent works13,14 have developed the 3D MMPA field.

Both incorporate experimental data on compounds tested in
activity assays, but for which no complexed structure is
available. They operate on the assumption that similar ligands
will have similar binding modes. This is a central tenet of
cheminformatics and has recently been shown to be useful in
solving complexed ligand crystal structures15 and docking.16

The first method, VAMMPIRE,14 combines data from
PDBBind17 and ChEMBL1 by aligning MMPs using their
shared core. It is presented as a Web application and takes as
input (a) a substituent or (b) a transformation or (c) a protein
environment. It then displays the effect of this transformation,
in the appropriate environment across all available data.
VAMMPIRE aggregates data from multiple targets giving the
user an overview of commonly tolerated modifications. The
method does not, however, look at target-specific trends.
Posy et al.13 take an alternative approach from VAMMPIRE.

They use a target(s)-specific method primarily focusing on the
protein kinase p38α. MMPs are used to identify preferred
functional groups for a given region of the binding pocket. For
example they demonstrate that the addition of cyclopropyl
amides in a particular region improves activity in the majority of
transformations. They then demonstrate that the addition of
this moiety improves the potency of a different compound
series. However, considering functional groups (e.g., cyclo-
propyl amides) limits the applicability of this method to

existing chemistry that has been f requently explored before.
Furthermore, the investigation of average trends across groups
and without reference to individual transformations may, as we
will show later, miss nuanced effects.
In this work, we present the OOMMPPAA method.

OOMMPPAA is a 3D MMPA tool for analyzing target specific
features at the pharmacophore level. OOMPPPAA diverges
from the 3D MMPPA method of Weber et al. by considering
each target’s data separately. OOMMPPAA is designed to
investigate a particular target’s data not a protein environment.
In this way target-specific trends in data can be observed.
Further, OOMMPPAA differs from the target based 3D MMPA
method of Posy et al. in two key ways. First, OOMMPPAA
bases its analysis on pharmacophoric changes, not chemical
changes, between small-molecules. As demonstrated by
Geppert and Beck12 but for 2D MMPA, the consideration of
pharmacophoric features allows for an increase in the number
of equivalent substitutions. Second, it considers the differences
between molecules not just the destination fragment.
Finally, OOMMPPAA does not aggregate activity changes

into general trends but, rather, considers positive and negative
activity changes separately. This is a key distinction from many
other 3D QSAR and 3D MMP methods and allows for nuanced
descriptions of complex data and deeper analysis into
confounding factors in possible trends. This makes OOMMP-
PAA a useful complementary tool for exploration of large and
complex structural and activity data. OOMMPPAA is, to our
knowledge, the first freely available 3D MMP tool providing an
intuitive user interface to interact with the available data and
tools to apply the method to a user’s own data sets. Here we
demonstrate the OOMMPPAA methodology and the tool’s
application, using examples from publically available cyclin-
dependent kinase 2 (CDK2) data and data for a SAM-
dependent methyl-transferase from GlaxoSmithKline (GSK).

■ METHODS AND DATA SETS
Data is input via a user interface or command-line in MacOSX,
Windows, or Linux; it is processed by OOMMPPAA and
presented as a visual application.

Input of Data. The input required for OOMMPPAA
consists of the 3D coordinates of ligands from aligned
cocomplexed structures and bioactivity data for all small-
molecules of interest for each protein target. Ligand structural
coordinates are input as an SD file containing the 3D structures
of all cocomplexed ligands. The input ligand structures must be
aligned into the same coordinate frame by aligning their
complexed proteins. They should also be set to a physiolog-
ically relevant protonation state (pH 7.4). Activity data is
accepted as a comma-separated variable (CSV) file containing
at least two columns; chemical structures as SMILES18 and
activity data as the negative base 10 logarithmic value. If a
compound has more than one activity value associated with it,
the highest value (most potent) will be chosen for later analysis.
Compound SMILES should be entered in the tautomeric form
appropriate for the complexed ligands. Currently, the MMP
implementation in OOMMPPAA carries out direct string
comparisons on SMILES. Since SMILES do not canonicalize
tautomeric forms, it is important that consistent tautomeric
forms are used; otherwise the tool is likely to miss the affected
pairs.
Inactive small-molecules are an important component of the

data sets used. Inactive compounds are annotated in the CSV
file by adding an “Operator” column. A “<” sign in this column
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indicates an inactive compound; the activity value is the
reported assay tolerance. An “=” sign indicates a compound for
which the activity is known. If the “<” sign is used, the
corresponding small molecule can only be less active than other
small molecules. For example a small-molecule with activity
<5.3 will be assigned 1.1 log unit less active than a small-
molecule with activity = 6.4. However, it will not be seen as
more active than a small-molecule with activity = 5.0.
Combining IC50 and Ki data from ChEMBL is also important
to maximize the power of this data source. Kalliokoski et al.19

recently demonstrated that combining these data sources from
ChEMBL did not reduce data quality. We do not apply the
scaling factor suggested in their work (0.35 log units) but do
highlight the activity source in the interactive viewer. This
allows the user to exercise their own discretion when using the
tool. Since the output is easily scrutinized, disparate data
sources can be used, but only the most appropriate
comparisons considered in analysis - a clear advantage of the
3D MMP method over conventional regression-based 3D
QSAR.
Data Model. OOMMPPAA uses a bespoke Python20

Django21 data model to store all data in an SQLite database.
The data model does not allow the entry of duplicate data
meaning that input files can be appended and re-entered to
OOMMPPAA, and only new data will be added. This model
enables rapid local access, curation, and connection of large
quantities of information.

■ OOMMPPAA METHOD
The OOMMPPA method is implemented in four steps, as
shown in Figure 1. First, the matched molecular pair database is
formed using the method of Hussain and Rea.22 Second all
relevant matched molecular pairs are found where one
compound of each pair is represented in a crystal structure
and the other is not. These pairs are used to predict coordinates

of compounds for which no crystal-structure is available. Third,
each pair is searched for pharmacophore differences between
compounds. Finally the differences found in this last step are
displayed and can be queried via an intuitive Web-based and
desktop application.

Stage 1: Matched Molecular Pair Database. To find
matched molecular pairs we use the method developed by
Hussain and Rea.22 All acyclic single bond breaks are
exhaustively enumerated, and the pairs formed are stored as
canonicalized SMILES. Only single breaks are considered since
double and triple cuts would complicate conformation
generation. To reduce the total number of pairs, the
nonmatching part of the pair does not consist of more than
10 heavy (non-hydrogen) atoms. OpenBabel23 is employed to
assign physiologically relevant protonation states to the
compounds (pH 7.4). Matched molecular pairs are found by
querying this data model.

Stage 2: Creating Bioactive and -Inactive Coordinates.
Figure 2 shows the OOMMPPAA method for generating

coordinates for compounds with no crystal structure from each
matched molecular pair found in stage 1. The shared core
between these two compounds is used as a rigid template to
derive 3D coordinates of the compound for which no structural
information is available.
For each compound 100 dif ferent conformations are

generated and minimized using the Merck Molecular Force
Field (MMFF)24 using the shared core template as a rigid
constraint. Hydrogens are added to the molecule before
minimization. Conformations within 0.35 Å RMSD from an
existing conformation are rejected as not dif ferent. This is in
accordance with the protocol presented by Ebejer et al.25 using
RDKit26 for varied and accurate conformer generation. The
conformation from these local energy minima that maximizes
the shape overlap between the two compounds is chosen.
Shape overlap is calculated using the RDKit Tanimoto shape
distance implementation.
In contrast to previous methods13,14 we do not consider the

contribution of the protein when performing energy
minimization of the generated conformer. While inclusion of
the protein during this minimization process might produce
more accurate compound conformations, it would reduce both
the ability to make direct comparisons and the interpretability
of the results. For example, Figure 3 shows an example whereFigure 1. Four stages of the OOMMPPAA method.

Figure 2. OOMMPPAA’s method for generating bioactive and
-inactive coordinates. Matched molecular pairs are identified and
then superimposed using the shared substructure and the coordinates
of the compound with a crystal structure. Conformations of the query
molecule are then generated. The conformation with the maximum
shape overlap is selected.
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energy minimization would lead to missing an important
comparison. In this example replacing a ligand H-bond
acceptor for an H-bond donor would result in a clash between
the protein and ligand H-bond donors and lead to a loss of
activity. Minimizing the ligand to circumvent this might lead to
a ring flip forming an interaction with an H-bond acceptor on
the protein. This would mean the two groups (H-bond donor
and acceptor) would not be directly compared in the analysis
outlined in the next section, and so this feature would be
missed. When minimization is not carried out, not only is the
comparison made, but the unfavorable interaction responsible
for the feature can be observed. In this way the OOMMPPAA
method presents such extra information from inactive
compounds.
It is however important to note that, for active compounds

without crystal structure, the pose produced may not be
representative of the native binding mode. As such, for these
compounds, protein−ligand interactions presented should be
treated with caution and considered representative of
interaction regions, rather than specific interactions. Further-
more, important protein−ligand interactions may be missed.
However, this problem can also persist for compounds
minimized within the protein.
Stage 3: Finding Compound Changes That Alter

Activity. The above method is able to produce thousands of
matched molecular pairs using the data sets tested in this work.
In order to highlight important pairs within this data we search
both compounds in each pair for compound transformations
that are likely to impact protein−ligand binding. In this current
work pharmacophoric changes between compounds are
considered. SMARTS27-based RDKit pharmacophore defini-
tions (H-bond donors, H-bond acceptors, hydrophobic groups,
and aromatic groups) are used. Figure 4 shows the process for
finding pharmacophoric differences between two compounds.
Pharmacophore points for both molecules are generated. All
pharmacophore points found on one molecule in the matched
molecular pair but not found within a Euclidean distance of 1.5
Å of an equivalent point on the second molecule are identified.
These pharmacophore points are stored in the OOMMPPAA
database along with the following associated data; the number

of pharmacophore point differences between the two molecules
and the activity change between the two molecules. This data is
then available to be queried by the interactive OOMMPAA
visualization tool. Other distances were trialed, and 1.5 Å was
qualitatively determined as most appropriate by visual
inspection. A greater distance led to points that could be
seen to make different interactions being counted as the same.
Conversely a smaller distance seemed to lead to like
interactions being counted as different.

Stage 4: The Visualization Tool. OOMMPPAA presents
the data via an interactive interface that can be explored to
direct future compound design and find features of available
activity data. A screenshot is shown in Figure 5. The interface is
embedded in a Web browser but can be run locally as a
standalone program, using a Python Tornado (version 3.0.1)
Web server. The ActiveICM (version 1.1−7)28 Web plugin is
used for client-side molecular interactions and visualizations.

3D Visualization of Available Data. Interactive visual-
ization of the matched molecular pair differences and their
associated information in 3D is an important component of
OOMMPPAA. Two types of points are shown in the viewer.
First, the centers of mass of the nonmatching parts of each
MMP are displayed as spheres. They are colored on a heat-scale
representing the change in activity per heavy-atom difference.
As discussed below, these points can summarize the
distribution and nature of data available. Second, points
representing a pharmacophoric difference between two
compounds are shown. Each point is shown as a star if it has
improved activity and as a cube if it has reduced activity. They
are colored by their pharmacophoric feature.
Each pharmacophore difference point possesses information

based on the matched molecular pair from which it is derived:
1) the number of pharmacophoric differences between the two
compounds and 2) the log-change in activity between the
compounds. We propose, in accordance with Stumpfe et al.,29

that these two values, similarity and activity change, are related
to how impactful each pharmacophoric difference is on activity.
A larger change in activity is a direct indicator of a greater
impact on activity. A smaller total number of pharmacophore

Figure 3. Energy minimization using the protein may lead to missing
important protein−ligand interactions. In this instance, a disfavorable
change from acceptor to donor would not be directly compared if the
compound is minimized within the context of the protein.

Figure 4. OOMMPPAA’s method to find pharmacophoric changes
between compounds. All pharmacophore points are found on each
compound. Points on one compound but not within 1.5 Å of a like
point on the other are found. These are associated with the activity
change.
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point differences suggest that this particular pharmacophoric
change is more likely to be responsible for the activity change.
The appropriate values to choose as cut-offs for activity and

pharmacophoric differences are dependent on the assay used,
the target involved, and the quantity of data considered. Indeed
they will most likely differ within regions of the same binding
site. The OOMMPPAA interface provides sliders to alter the
threshold for each of these values and thus increase the number
of points at the expense of noise or vice versa.
Viewing Activity Data. Each point in the 3D display is

associated with a matched molecular pair and activity changes.
The user can interrogate each point for this information by
selecting the point and clicking the Display MMPs button. The
3D depictions of the compounds relating to these points will
then appear positioned according to the coordinate generation
process. The corresponding 2D compound depictions along
with appropriate activity information are also shown, in their
matched molecular pairs. The matching part of the pair is
shown in gray.
Highlighting Key Features. To aid in directed synthesis

we provide 2D feature maps for a query compound. These
maps highlight 1) compound features that have been shown to
reduce activity, 2) regions of the compound from which
synthesis might be attempted to improve potency, and 3)
compound features that are pharmacophorically conserved
across the complexed ligands. The user may enter a
compound’s SMILES or name, as provided in the input SD
file. OOMMPPAA then searches for this ligand. If a SMILES is
entered and no exact match is found, the most similar ligand
based on Morgan fingerprint30 similarity (radius 2) is found.
The ligand is shown in the 3D display along with two feature
maps, as shown in Figure 6. These are colored based on per-
atom scores which can be depicted using the RDKit “Similarity
Map” compound visualizations recently developed by Riniker
and Landrum.31 The Activity Change map (Figure 6a) provides
a qualitative visualization of locations around the query
compound that confer changes in activity within the data

provided to OOMMPPAA. All pharmacophore differences
conferring an activity difference greater than 0.5 log units and a
number of pharmacophore differences less than 4 are used.
Extension points to the compound that could be made to
increase the compound’s potency are highlighted in blue. These
are currently defined as hydrogen atoms. A darker blue
indicates a hydrogen is near to more pharmacophoric changes
that have led to an increase in activity. Atoms in the compound
that might be reducing the compound’s potency are highlighted
in red. A darker red indicates an atom is near to more
pharmacophoric changes of the atom’s type(s) that have led to
any loss in activity.
The Pharmacophore Conservation map (Figure 6b) presents

the conservation of pharmacophoric features for the whole
molecule against all the cocomplexed ligands for the target.
Increasingly pharmacophorically conserved regions of the
compound are depicted on a scale from yellow to red. This
map indicates pharmacophoric features that are highly

Figure 5. Screenshot of OOMMPPAA’s interactive visualization tool. The top left check boxes and sliders control the points shown in the 3D
display. The central display shows 3D molecular visualizations. The right-hand bar shows 2D activity data. The bottom left and right are the “Feature
maps”. Compounds can be queried using the search bar at the top.

Figure 6. Feature maps for 1QMZ (CDK2 cocomplexed with ATP).
a) The Activity Change map. Red indicates the functional groups that
might be leading to a drop in activity. Blue indicates the potential to
replace a hydrogen with activity improving functionality. b) The
Pharmacophore Conservation map shows how pharmacophorically
conserved features in a compound are, across all the provided
crystallographic data, e.g a highly conserved H-bond acceptor.
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conserved across the compounds cocrystallized with this target
and thus are putatively important for activity.
Data Sets. OOMMPPAA has been tested and developed

using multiple internal GlaxoSmithKline (GSK) and SGC data
sets. Here, we demonstrate the application of this tool using
two data sets. First, publically available cyclin-dependent kinase
2 (CDK2) data from ChEMBL version 16 consisting of in vitro
IC50 and Ki data was used. We extracted all nonredundant
ligands cocomplexed to CDK2 with a resolution less than 3.3 Å
from the PDB32 to use as structural data. Electron density maps
for all structures with resolution greater than 3.0 Å were visually
inspected to ensure the ligand was correctly modeled. We
aligned the ligands into the same coordinate frame via the
protein structures using Pymol33 and visually inspected the
alignment. In total this data set consisted of 1,632 unique
compounds with activity data and 261 unique cocomplexed
ligands. The second data set consisted of internal GSK data for
an S-adenosyl methionine (SAM)-dependent methyl trans-
ferase where all crystallographic data is under 2.5 Å and all
activity data was generated using the same IC50 bioactivity
assay. In total this data set consisted of 2,212 unique
compounds with activity data and 92 unique complexed
ligands. We suggest this order of data quantity is necessary
for undertaking the following depth of analysis. However, we
have tested the tool using a smaller data set (15 complexed
ligands and ∼1000 activity points from Tm shift). The analysis
produced was not as rich; however, useful insights were
generated.

■ RESULTS AND DISCUSSION

OOMMPPAA can be used to demonstrate key features in
available activity information and use that information to
generate evidence-based hypotheses for compound develop-
ment. In the following sections we demonstrate its use in both
of these areas. The examples used are derived from CDK2 and
a SAM-dependent methyl-transferase.
Overview of Available CDK2 Bioactivity Data. In Figure

7 an OOMMPPAA visualization shows ATP surrounded by
points representing each matched molecular pair for CDK2.
Three important features can be seen here. First, there are few
points surrounding the adenine core (blue box) indicating that
OOMMPPAA finds no matched molecular pairs with trans-
formations in these regions. This might suggest that the
compounds available in ChEMBL present highly conserved
substructures in this conserved region of kinase binding.
However, interrogation of the data shows a number of hinge
binding groups are represented, but there are very few MMPs
where that group varies and the rest of the molecule is
conserved. Second, in the red box there are two lines of points.
Each line indicates an SAR series from the same scaffold. These
points are predominantly in red indicating that changes in this
region have a large effect on activity. Finally, in the green box
are a cluster of points largely in blue and purple. These indicate
a collection of changes which have generally altered activity
only weakly. This cluster sits toward the outside of the protein,
and thus groups here may be expected to interact only weakly.
These three examples demonstrate OOMMPPAA’s ability to

present large quantities of data in a manner which allows the
user to identify the nature of and trends in available activity
data. Systematically assessing the nature and scale of pairwise
compound alterations in different regions of the binding pocket
in this way is a novel and useful feature of 3D MMPA.

Lead Development Using CDK2. OOMMPPAA’s inter-
active visualizations can be used to suggest changes that may
improve the potency of a given compound series. In Figure 8
we demonstrate, retrospectively, how OOMMPPAA could have
been used to suggest modifications to the original lead (PDB
code 1H1P) from a compound series developed by Davies et
al.34,35 The Activity Change map highlights that changes
improving activity could be made from the terminal amine,
circled in Figure 8a. Investigating these points in the 3D viewer
indicates they are aromatic pharmacophores, and thus adding
an aromatic group in this area has previously improved activity.
The relevant SAR for these transformations is shown in 2D and
is from two different series, as shown in Figure 8b. Davies et al.
extended the lead compound by adding an aryl ring in this area
leading to an increase in in vitro potency from 13 μM to 2.3
μM. This extended ligand was cocrystallized by them and is
shown in Figure 8c; the additional aryl group is placed over the
cluster of cyan stars, as expected. Further additions surround
the aryl group, suggesting future synthetic work that could be
performed. The compound comparisons from Davies et al.
were not included in this analysis.
In this example the advantage of 3D over 2D MMPA is

demonstrated. First, 3D MMPA allows for SAR from one
series, binding in the same region of the binding pocket, to be
transferred to another pharmacophorically and structural
different series. Second, unlike 3D QSAR, OOMMPPAA’s
model is directly related to pairwise transformations. This
allows confounding factors to be scrutinized. For example it can
be directly observed whether the aromatic group is simply
favored as a linker group for another substituent or whether it is
broadly favored irrespective of substitution. Finally it is
important to note that OOMMPPAA’s focus on pharmaco-
phoric changes, unlike existing 3D MMP methods, means that
the different patterns of aryl group substitution in this data set
were accurately deconvoluted, spatially.

Figure 7. A visualization from OOMMPPAA showing the distribution
of all available matched molecular pairs for CDK2. Blue box: the
adenine core is surprisingly sparse in data. Red box: lines of spheres
indicate compound series. Green box: an area where compounds have
not changed activity greatly.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci500245d | J. Chem. Inf. Model. 2014, 54, 2636−26462641



Improving Cellular Activity against CDK2. OOMMP-
PAA can be used to assist in the optimization of properties
other than potency. Figure 9 demonstrates the use of
OOMMPPAA to suggest ways to improve the cell permeability
of a compound series generated by D’Alessio et al.37 against
CDK2. Compound 1 from this work possesses high potency
(0.3 nM) against the isolated enzyme but low potency in cells
(8.74 μM) probably due to its low computed log partition
coefficient (cLogP) (0.09), as shown in Figure 9a. The
sulfonamide group contributes strongly to this low cLogP,

and so altering this group might improve the cellular activity for
this compound series. However, structural data indicates that
the sulfonamide forms favorable interactions with the protein.
The pharmacophoric changes that have been explored in this

region of the protein pocket that have led to a greater than 0.5
log unit increase in activity with less than four pharmacophoric
changes between compounds are shown in Figure 9a. These
points indicate features that have improved activity in this
region of the binding site. Figure 9b shows the 3D display and
demonstrates these scaffolds have similar predicted binding

Figure 8. OOMMPPAA used in the optimization of a compound series by Davies et al. a) and b) OOMMPPAA indicated that activity could be
improved by addition of an aromatic group in the area circled. b) The associated SAR (red box) indicates a variety of substituted aryl groups improve
activity. Experimental data, from Davies et al., shows that addition of an aryl group improves activity (13 μM to 2.3 μM) and c) the aryl group binds
in the position predicted.

Figure 9. OOMMPPAA can be used to aid in the optimization of a compound with poor cell based activity. a) OOMMPPAA indicates features that
could have favorable interactions in the region of the sulfonamide. b) The 3D display demonstrates the scaffolds (rainbow) have similar binding
modes to the query compound (cream and thicker). The sulfonamide region is circled in red. c) The fluoride derivative was synthesized by D’Alessio
et al. and improved cell based activity, while maintaining a respectable activity against the isolated enzyme. cLogP was calculated using the RDKit
implementation of the Crippen36 method.
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modes to the series being developed. First the substitutions in
this region indicate, from two other series, that the sulfonamide
is indeed favorable as potency against the isolated enzyme is
lost when replaced with other groups (not shown). However,
OOMMPPAA also indicates alternative functional groups,
fluoride and hydroxyl, that improve activity in this region.
Further these groups might also improve cell based potency
due to their increased cLogP. D’Alessio et al.37 demonstrated
that replacing the sulfonamide with a fluoride did indeed lead
to a 6−7-fold increase in cellular potency while maintaining a
reasonable activity (36 nM) against the isolated enzyme. The
hydroxyl analogue was not synthesized; however, we postulate
it would lead to a similar increase in activity.
In this example OOMMPPAA’s methodology presents

significantly different insights to 2D MMPA or 3D QSAR.
OOMMPPAA’s analysis allows the user to explore SAR from
different series, binding in the same region of the binding
pocket to develop hypotheses for compound alterations. 3D
QSAR does not allow exploration of the data in this direct
manner. Equally 2D MMPA does not allow facile transfer of
SAR between structurally and pharmacophorically different
series based on shared binding location. Finally by considering
pharmacophoric differences, unlike existing 3D MMP methods,
OOMMPPAA is able to highlight pertinent functional changes
that have led to improved potency.
Highlighting Nuanced SAR with a SAM-Dependent

Methyl-Transferase. OOMMPPAA can be used to identify
nuanced SAR. In Figure 10a the Activity Change and
Pharmacophore Conservation maps for a SAM-dependent
methyl-transferase are shown. They indicate contrasting
features, within the context of the data provided. In the left-
hand map of Figure 10a the N3 atom within the adenine ring

(circled) is shown to be at a position at which an H-bond
acceptor results in a reduced activity. Yet in the right-hand map,
it is also highly conserved, pharmacophorically, and thus
putatively important for protein−ligand binding. This suggests
that this H-bond acceptor is beneficial in some series but not in
others. Investigating this further using OOMMPPAA showed
that the compounds responsible for the loss of activity feature
possess a terminal amide group forming H-bonding interactions
with the protein.
In Figure 10c we show that introduction of an H-bond

acceptor in the highlighted position (in Figure 10b) for a
compound series containing a terminal amide would cause an
intramolecular H-bond to form. This would alter the
energetically preferred conformation of the terminal amide to
one resulting in a mismatch of H-bonding features with the
protein (as shown in Figure 10d). We postulate that this is
responsible for the net-loss in binding affinity for this
compound series.
The information shown by OOMMPPAA would therefore

dissuade future lead development from using this particular
combination of amide and H-bond acceptor. Since the overall
trend in this region is for H-bond acceptor groups to improve
activity (there are more activity improving “stars” than “cubes”
in this region), this would have been obscured if the effects had
been aggregated into a trend, as is carried out in existing 3D
MMP and 3D QSAR methodologies.

Highlighting Potential Dead-Ends with SAM-Depend-
ent Methyl-Transferase. OOMMPPAA can also identify
areas of compound design that have consistently led to a
reduction in activity. Figure 11 shows SAM in its bound

conformation to the SAM-dependent methyl-transferase,
surrounded by all points that are associated with a loss of
activity, colored by their pharmacophore type. A cluster of
acceptors is visible around the ribose ring of the SAM molecule.
Investigation of the underlying matched molecular pairs of this
cluster showed that adding a carbonyl group to compounds in
this region consistently saw greater than 0.5 log unit activity
losses, and hence future analogous alterations may have a
similar consequence.

Figure 10. a) Feature maps for SAM bound to the SAM-dependent
methyl-transferase, left with the conserved H-bond acceptor feature
highlighted. Right, the same feature has also been responsible for
falling activity. b) Rationalization of this change. In the presence of a
terminal amide. c) Addition of an H-bond acceptor in this position
(black circle) leads to an intramolecular H-bond. d) This potentially
reduces activity by causing a conflict between conformations.

Figure 11. Pharmacophore changes associated with at least 1.5 log unit
losses in activity with the native cofactor (SAM) shown for context.
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The carbonyl groups were added with the aim of forming H-
bonding interactions with the protein. By looking at one
compound series, or multiple compound series in 2D, this
feature may not have been apparent. However, OOMMPPAA
produces flexible 3D visualizations of composite activity data
within the context of the protein environment, generating the
above hypothesis and informing prospective compound design.
3D QSAR methodologies may have indicated this feature of
acceptors reducing activity. However, OOMMPPAA provides
this analysis transparently, based on simple pairwise compar-
isons allowing simple analysis of potentially confounding
factors and nuanced SAR, as discussed in the previous example.

■ COMPARISON TO EXISTING METHODS

In each of the above examples OOMMPPAA highlights
interesting features in existing SAR that could be used to
inform future compound design.
In these examples the advantage of 3D over 2D MMPA is

shown. 3D MMPA allows SAR information from one series to
be transferred to another pharmacophorically and structurally
different series, binding in the same region of the binding
pocket. Furthermore, OOMMPPAA differentiates itself from
existing QSAR methods. The models produced are directly
related to simple pairwise SAR. As a consequence hypotheses
inferred from OOMMPPAA can be directly scrutinized. This
transparency enables rationalization of otherwise potentially
confounding factors. A key example of this is the influence of
the amide group combined with an H-bond acceptor in the
examples above. Finally OOMMPPAA develops upon existing
target specific 3D MMP methods by clustering changes into
pharmacophoric groupings and by not aggregating changes into
trends. The use of pharmacophores is crucial in the hypotheses
generated in each of the above examples, thus demonstrating
the value of this approach. The pharmacophore approach also
provides a broader range of suggested modifications for future
compounds than a more specific functional group analysis.
Further, by not aggregating into trends, nuanced features were
observed.

■ FUTURE DEVELOPMENTS

By design, OOMMPPAA currently takes a simple view of
protein−ligand binding, considering only four pharmacophore
features. This approach enables OOMMPPAA to present
simple, user-friendly visualizations. However, the method can
be readily extended to consider any group that can be expressed
by a SMARTS pattern. It would be possible to assess
OOMMPPAA’s ability to use other groups (e.g., methyl
groups, halogens and basic/acidic groups) to aid in lead
optimization.
Further to this, OOMMPPAA is currently a ligand-centric

tool. It implicitly incorporates protein information by aligning
complexed ligands. Future development will consider potential
protein−ligand interactions. This will allow OOMMPPAA to
assess whether an overlaid compound, which has not been
cocrystallized, might be sterically hindered by the protein itself.
If such a clash consistently leads to an activity decrease, this
would indicate an inflexible region of the protein. Conversely a
region where this is not the case might indicate the protein is
conformationally flexible in this region.
We propose OOMMPPAA could be extended to be used for

experimental design. A number of current methodologies
propose novel ligands, focusing on increasing compound

potency.38,39 However, OOMMPPAA is perhaps more power-
ful if used to improve knowledge regarding protein−ligand
binding. First OOMMPPAA could be used to propose
experiments that would enhance the information density of
the model. For example it might highlight whole SAR series
that currently have no X-ray structure available and thus suggest
which compounds should be prioritized for cocrystallization.
Second it might highlight available, untested, compounds to
probe underexplored regions of the protein binding site. In the
example of CDK2 little information was available around the
adenine core. OOMMPPAA might find compounds from a
large (for example, corporate) database that are matched pairs
with complexed ligands and would produce structural variations
in this region. Since the MMP method used is optimized for
large data sets, this would be computationally inexpensive.
Finally OOMMPPAA could be further extended to test

proposed hypotheses. As demonstrated above, OOMMPPAA is
able to visualize regions of conflicting data, e.g. where addition
of an acceptor both increases and decreases activity in different
compound series. It might then be able to find all untested
compounds that would probe this area and suggest these as
future experimental candidates.

■ CONCLUSION

OOMMPPAA is a novel and freely available computational tool
to aid in directed synthesis by analysis of large structural and
activity data sets, comprising tens of liganded structures and
hundreds of activity data points from Ki and IC50 data.
OOMMPPAA uses 3D MMP analysis to infer possible binding
geometries of compounds for which crystal structures are not
available. Structural changes that alter the compound binding
mode are not predicted in this method. This means poses
produced should be used with caution. However, the method
has the advantage of providing more relevant comparisons of
transformations, particularly when considering those that are
activity reducing.
OOMMPPAA then builds upon existing 3D matched

molecular pair methods by including pharmacophore based
concepts from 2D MMP and 3D QSAR analysis. Critically,
OOMMPPAA considers the pharmacophoric differences
between fragments not just the final molecule and does not
aggregate activity changes into general trends but, rather,
considers positive and negative effects separately. An intuitive
and interactive interface plays an integral role within
OOMMPPAA, providing an easy-to-use tool for analyzing
large quantities of structural and bioactivity data. Diverse
examples of OOMMPPAA’s use have been given, supporting
our belief that OOMMPPAA is an important new tool in any
computational and medicinal chemist’s arsenal.
OOMMPPAA is freely available released under the Apache

Version 2.0.
A demo version of the Web application using the CDK2 data

set can be found at http://oommppaa.sgc.ox.ac.uk/
OOMMPPAA/.
The source code is available here: https://bitbucket.org/

abradley/oommppaa/.
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