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Abstract

Background: Herpes simplex viruses form a genus within the alphaherpesvirus subfamily, with three identified viral
species isolated from Old World monkeys (OWM); Macacine alphaherpesvirus 1 (McHV-1; herpes B), Cercopithecine
alphaherpesvirus 2 (SA8), and Papiine alphaherpesvirus 2 (PaHV-2; herpes papio). Herpes B is endemic to macaques,
while PaHV-2 and SA8 appear endemic to baboons. All three viruses are genetically and antigenically similar, with
SA8 and PaHV-2 thought to be avirulent in humans, while herpes B is a biosafety level 4 pathogen. Recently, next-
generation sequencing (NGS) has resulted in an increased number of published OWM herpes simplex genomes,
allowing an encompassing phylogenetic analysis.

Results: In this study, phylogenetic networks, in conjunction with a genome-based genetic distance cutoff
method were used to examine 27 OWM monkey herpes simplex isolates. Genome-based genetic distances
were calculated, resulting in distances between lion and pig-tailed simplex viruses themselves, and versus
herpes B core strains that were higher than those between PaHV-2 and SA8 (approximately 14 and 10%
respectively). The species distance cutoff was determined to be 8.94%, with the method recovering separate
species status for PaHV-2 and SA8 and showed that lion and pig-tailed simplex viruses (vs core herpes B
strains) were well over the distance species cutoff.

Conclusions: We propose designating lion and pig-tailed simplex viruses as separate, individual viral species,
and that this may be the first identification of viral cryptic species.
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Background
The alphaherpesvirinae comprise a subfamily within
Herpesviridae, with most of its members establishing la-
tency in the peripheral nervous system. The five genera
which comprise the alphaherpesvirinae infect birds (Ilto-
virus, Mardivirus), sea turtles (Scutavirus), mammals
(Varicellovirus, Simplevirus), as well as lizards (currently
unassigned). Until fairly recently, simplex viruses were

thought to only infect primates, however simplex viruses
have been isolated from cattle, bats, rabbits, and marsu-
pials [1–5]. Various species of macaque monkeys are the
natural reservoir for the herpes B simplex virus. Herpes
B was first described in 1933, following an incident
where a 29-year-old laboratory worker was bitten by an
asymptomatic monkey and later died from encephalitis
[6, 7]. Herpes B has been demonstrated to be highly
neurovirulent with ~ 80% mortality and is categorized as
a BSL-4 level pathogen by the CDC [8, 9]. In spite of
considerable work with macaques in laboratory settings,
as well as close contact between humans and macaques
particularly in Asia, there have only been 46
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documented cases of zoonotic transmission since 1933
[10, 11]. A recent commentary has questioned the high
neurovirulence of herpes B and has raised the possibility
of higher rates of viral shedding in laboratory settings
due to stress [11].
Herpes B has an approximately 156,400 bp genome, a

high GC content of 74.5%, and has been shown to be
closely related to Papiine alphaherpesvirus 2 (PaHV-2;
herpes papio) and Cercopithecine alphaherpesvirus 2
(SA8). With the advent of next-generation sequencing
(NGS) the genomes of 19 herpes B isolates have been se-
quenced [12–14]. The sequenced strains were isolated
from six macaque species; Macaca (M.) fascularis (crab-
eating; cynomologous; cyno), M. fuscata (Japanese), M.
mulatta (rhesus), M. nemestrina (pig-tailed), M. radiata
(bonnet), and M. silenus (lion-tailed). Macaque phylo-
genetic research has shown that of the macaque species
featured in the current study, M. silenus and M. nemes-
trina are basal to the remaining species [15]. A herpes B
multi-isolate analysis previously showed that herpes B
strains isolated from M. silenus and M. nemestrina were
distant from the remaining macaque derived sequences
according to percent coding identity [12].
For several decades, the classic definition of species

originating from Ernst Mayr has been “species are groups
of actually or potentially interbreeding natural popula-
tions, which are reproductively isolated from other such
groups” [16, 17]. This definition is problematic in virology
as viruses undergo recombination [18–26], but they do
not interbreed per se, so an alternative definition is re-
quired. The definition of species has not been static, with
several alternative species concepts proposed based on
biological, ecological, evolutionary, cohesion, phylogenetic,
phenetic, and genotypic cluster properties, many of which
have further subdivisions [27]. Related to challenges re-
garding species concepts, are cryptic species (non-viral)
which have been described since the early eighteenth cen-
tury [28, 29]. Cryptic species appear identical based on
morphology but are on different evolutionary paths [29].
The definition of cryptic species lacks clarity, however, a
recently proposed conceptual framework for identifying
cryptic species involves “statistically separable and diver-
gent genotypic clusters” [29]. To address these challenges
several methods of species delimitation have been used in
organisms ranging from bacteria to eukaryotes such as ar-
bitrary distance thresholds, in silico DNA-DNA
hybridization (isDDH) and generalized mixed Yule coales-
cent (GMYC) [30–33]. Previous phylogenetic studies of
porcine circovirus type 2 (PCV2), H5N1 influenza, feline
herpesvirus 1 (FHV-1), and the varicellovirus genus have
used genomic nucleotide distance to establish intraspecies
clade cutoffs [34–37]. The goal of the current study was to
use this genomic distance cutoff approach to determine if
the herpes B strains isolated from M. silenus and M.

nemestrina constituted cryptic viral species, warranting
species status.

Results
Old world monkey simplex virus phylogeny
To investigate if the pig and lion-tailed macaque simplex
viruses warranted separate species status, the genomes
of the available Old World monkey (OWM) derived
simplex viruses were downloaded from Genbank
(Table 1). The available PaHV-2 strains were included in
the analysis in order set an overall species cutoff for the
OWM simplex viruses. The viral genomes were first
aligned, and then the terminal repeat segments were de-
leted from the genomic multiple sequence alignment
(MSA). The optimal nucleotide substitution model for
the dataset was also calculated. This MSA alignment
was used to generate a phylogenetic network which illus-
trates phylogenetic dissonance within the dataset
(Fig. 1a). The phylogenetic network in Fig. 1a shows a
“genetic continuum” with the core herpes B strains at
one end, the pig and lion-tailed macaque derived strains
located approximately in the middle, and the baboon vi-
ruses at the opposite end of the continuum. Addition-
ally, the herpes B strain E90–136, isolated from a cyno
macaque was separated from the core herpes B strains.
A maximum likelihood (ML) tree was also generated to
establish phylogenetic robustness, and the subsequent
tree produced highly similar results to phylogenetic net-
work (Fig. 1b). The OWM simplex virus phylogenetic
network and ML tree (Fig. 1a and b) show similar phylo-
genetic tree topology to the Old World monkey hosts
(Fig. 1c).

Establishing species level cutoffs
Genomic nucleotide distance-based cutoff values have
been used in the past in an effort to define viral intraspe-
cies clades empirically [34–37]. In the current study we
applied this distance-based method to define species
level cutoffs. To begin to establish species level cutoffs,
the maximum composite likelihood (MCL) pairwise dis-
tances between the 28 OWM viruses was calculated, the
frequencies plotted, and a kernel density graph was over-
laid (Fig. 2a). A genomic distance cutoff for establishing
species status was derived by marking the lowest point
of the kernel density plot (8.94%) and is denoted by the
vertical dashed line in Fig. 2a. Thus, for the current data
set, genomic distances over 8.94% merit species status,
and under 8.94% do not. Using this genomic nucleotide-
based distance cutoff approach, the pig and lion-tailed
macaque simplex viruses merit separate, individual spe-
cies status, as the distances between each other was
10.1%. The distance of the pig and lion-tailed macaques
from the core herpes B strains was approximately 14%
(Fig. 2b), suggesting they are separate species. Using this
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method, SA8 and PaHV-2 retained species status, how-
ever the outlying core herpes B isolate E90–136 did not
merit species status (6.1% distance; Fig. 2b).

Core herpes B clade
The core herpes B strains isolated from rhesus, bonnet,
and Japanese macaques were next examined to establish
intraspecies genomic distance-based clade cutoff. Similar
to the method described above, MSAs comprising the 15
core herpes B strains identified in Fig. 1a and b were
generated with and without an outgroup (M. nemestrina
isolate KQ). Next, a phylogenetic network and maximum
likelihood tree were constructed (Fig. 3a and b) based on
the alignment with an outgroup. The tree topology

patterns between the two phylogenetic methods were
nearly identical, with two basic groupings, aside from an
outlier strain (9400371). Next, pairwise distances between
the core herpes B strains were calculated using the core
herpes B MSA without an outgroup, and the frequencies
were plotted (Fig. 3c). The genomic distance clade cutoff
derived from the kernel density trough was 0.2031%
(Fig. 3c). The distance between groups 1 and 2 was
0.7689% (Fig. 3d), which is above the distance cutoff valid-
ating their status as clades. The distance between strain
9400371 and clades 1 and 2 was 0.07246 and 0.05295% re-
spectively, therefore because these values are above the
0.02031% cutoff value, strain 9400371 may warrant con-
sideration as a single member of a third clade.

Table 1 The abbreviations, synonyms, strains, hosts, genome lengths, and accesion numbers for the viruses used in the current
study

Abbreviation Synonym Strain Host Genome length Accession number

HSV-1 Herpes simplex virus type 1 17 Homo sapiens NC_001806.2

CeHV-2 SA8 B264 Cercopithecus aethiopsa 150,715 NC_006560.1

HVP-2 Herpes papio X313 Papio cynocephalus 156,487 NC_007653.1

HVP-2 Herpes papio OU4–2 Papio ursinus 138,963 KF908244.1

HVP-2 Herpes papio OU4–8 Papio ursinus 139,193 KF908243.1

HVP-2 Herpes papio A951 na 138,559 KF908242.1

HVP-2 Herpes papio OU2–5 Papio cynocephalus 138,807 KF908241.1

HVP-2 Herpes papio OU1–76 Papio cynocephalus 148,944 KF908240.1

HVP-2 Herpes papio A189164 na 139,366 KF908239.1

CeHV-1 Herpes B E2490 Macaca mulatta 156,789 NC_004812.1

CeHV-1 Herpes B M12-O Macaca radiata 155,404 KY628985.1

CeHV-1 Herpes B 9400371 Macaca mulatta or
fascicularisb

155,143 KY628983.1

CeHV-1 Herpes B 7709642 Macaca fuscata 155,141 KY628982.1

CeHV-1 Herpes B 32425-G Macaca mulatta 155,528 KY628981.1

CeHV-1 Herpes B 32188-O Macaca mulatta 155,099 KY628980.1

CeHV-1 Herpes B 32157-G Macaca mulatta 155,777 KY628979.1

CeHV-1 Herpes B 31618-G Macaca mulatta 155,425 KY628978.1

CeHV-1 Herpes B 31612-G Macaca mulatta 155,321 KY628977.1

CeHV-1 Herpes B 26896-O Macaca mulatta 155,583 KY628976.1

CeHV-1 Herpes B 26896-G Macaca mulatta 155,609 KY628975.1

CeHV-1 Herpes B 24105-G Macaca mulatta 155,021 KY628974.1

CeHV-1 Herpes B 20620 Macaca mulatta 155,323 KY628973.1

CeHV-1 Herpes B 16293 Macaca mulatta 155,180 KY628972.1

CeHV-1 Herpes B 12930 Macaca mulatta 155,462 KY628971.1

CeHV-1 Herpes B KQ Macaca nemestrina 157,321 KY628970.1

CeHV-1 Herpes B 1504–11 Macaca nemestrina 156,905 KY628969.1

CeHV-1 Herpes B 8100812 Macaca silenusc 157,447 KY628968.1

CeHV-1 Herpes B E90–136 Macaca fascicularis 155,157 KJ566591.2
aSubsequent studies following isolation show that the natural reservoir for SA8 is baboons [38–40]
bHost species differs between the Genbank annotation and the corresponding publication [12]
cStrain was originally isolated from C. neglectus, however subsequent work showed the natural reservoir is M. silenus [41]
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PaHV-2 clade structure
The phylogenetic structure of the seven available PaHV-
2 genomic sequences was examined examined. Both the

phylogenetic network and maximum likelihood tree re-
covered three groupings (Fig. 4a and b). The clade cut-
offs were performed in the same manner as described

Fig. 1 (See legend on next page.)
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above, with the cutoff value calculated at 1.9611% dis-
tance (Fig. 4c). The distances between groups 1, 2 and 3
were above the cutoff (Fig. 4d), thus validating their
clade status.

Discussion
In the current study we utilized a genomic nucleotide
distance-based method previously used for identifying
phylogenetic clades and applied it to detect viral species.
The results suggest that herpes simplex viruses isolated
from lion and pig-tailed macaques should be designated
as separate species. To our knowledge this is the first

time this technique was been applied to virus species
and may be useful in detecting cryptic viral species.

Host-virus co-speciation
Herpesviruses have been shown to cospeciate with their
hosts [47], however they can cross species barriers [48],
especially in captivity [38, 39, 41, 49–53]. These captive
transmissions, especially between macaque species can
complicate phylogenetic analysis. In particular, cross-
species transmission appears to be fairly common among
the core herpes B strains, and has been discussed previ-
ously in depth by Eberle et al. [12]. In some of the her-
pes B strains, the original source of the virus appears to

Fig. 2 Establishing viral species cutoff value. Pairwise distances in the Old World monkey virus alignment were calculated using Mega 7 [46], and
the frequencies plotted using the R package. A kernel density plot was also generated and combined with the distance frequencies (a). A
distance cutoff value was established by determining the trough of the kernel plot, which is depicted by a vertical dotted line (8.94%). Mega 7
was used to calculate between group distances which is shown in Figure b

(See figure on previous page.)Fig. 1 Phylogenetic analysis of Old World monkey (OWM) derived simplex viruses. OWM viral genomic sequences
(Table 1) were aligned with MAFFT ver. 7.394 and the optimal substitution model was calculated by IQ-Tree [42, 43]. a Phylogenetic network
generated from the alignment using Splitstree ver. 4.14 and the HKY + G + I substitution model (gaps deleted; p-inv = 0.469; gamma = 1.138) [44]
was used. b Maximum Likelihood tree was generated from an alignment using HSV-1 as an outgroup using RAxMLGUI (GTRCATI; ver 1.3) [45].
Figure c shows a macaque monkey phylogenetic tree based on data presented by Li et al. [15]
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be unclear. For instance, the cynomolgus macaque de-
rived strain E90–136 is more distant and phylogenetic-
ally separated from the core herpes B strains (Fig. 1),
however it was not sufficiently distant (Fig. 2) to be con-
sidered a separate species. Interestingly, strain E90–136
was isolated from a cyno macaque which died due to a
disseminated infection caused by the virus [54]. Herpes
B strains are generally asymptomatic within the natural
host, which may suggest that cyno macques are not the
natural reservoir for this particular viral strain. For other
OWM strains, interspecies spread is well documented.
The isolate 8100812 was originally isolated from a DeB-
razza monkey, however restriction digest patterns
showed that the lion-tailed macaque was the natural
host [41]. Phylogenetically, this appears appropriate as
strain 8100812 forms a node with the two pig-tailed ma-
caque isolates (Fig. 1a and b), and importantly matches
phylogenetic profile of the macaque species themselves
(Fig. 1c). The correlation between lion and pig-tailed
viruses and macaque phylogeny strongly suggests host-
virus co-speciation. Additionally, while natural cross-

species viral transmissions between animals does occur
[48, 55–57], natural species viral transmissions between
the animals and viruses in this study are fairly unlikely
given the natural host ranges of the monkeys (Fig. 5).
The reduced likelihood of natural cross species transmis-
sion is important as it increases the probability of host-
virus co-evolution. Further, for example while lion-tailed
and bonnet macaques ranges overlap, different living
strategies (frugivorous and arboreal vs generalist in human
dominated environments respectively) [58, 59] between
these animals make cross transmission unlikely.

Viral species concept
Standard definitions of what constitutes a biological spe-
cies, such as a reproductively isolated population [16],
are insufficient for viruses as they replicate, but do not
reproduce like other organisms. Originally, viruses were
simply classified according to the host that was infected,
i.e. bacterial, plant or animal [60]. It wasn’t until 1950
that official principles of animal virus classification were
established, with categories such as morphology,

Fig. 3 Core herpes B phylogeny and clades. A genome sequence alignment was generated with the core herpes B strains identified in Fig. 1. A
phylogenetic network using the HKY + G + I substitution model (gaps deleted; p-inv = 0.686; gamma = 0.927) (a) and maximum likelihood tree (b)
were then produced, finding three provisional clades. Pairwise distances between the strains were plotted (shown in Figure c) and a clade cutoff
value (vertical dotted line) was calculated (0.0203%). Figure d contains a table showing the between group genetic distances
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chemical composition, method of transmission, tropism
and symptomatology [60]. In 1963 the International
Committee on Nomenclature of Viruses (ICNV) was
established and in 1966 the body proposed a taxonomic
framework and classification rules which included class,
order, family. This organization is now known as the
International Committee for Taxonomy of Viruses
(ICTV) [60, 61]. In 1990 the ICTV established an official
definition of viral species which was stated as “a virus
species is a polythetic class of viruses that constitutes a
replicating lineage and occupies a particular ecological
niche” [62], and has since evolved to state “a

monophyletic group of viruses whose properties can be
distinguished from those of other species by multiple
criteria … .not limited to natural and experimental host
range, cell and tissue tropism, pathogenicity, vector spe-
cificity, antigenicity, and the degree of relatedness of
their genomes or genes [63]. While this statement rec-
ommends distinguishing properties for determining spe-
cies, the process is still ambiguous.
We chose to focus our efforts on genomic distance in

order to apply a quantitative measure to delimit viral
species. Several species delimitation methods have been
used in bacteria and eukaryotes. One of the most

Fig. 4 PaHV-2 phylogeny and clades. A genome sequence alignment was generated with the available PaHV-2 strains (Table 1). A phylogenetic
network (Figure a) was generated using the HKY + G + I substitution model recommended by IQ-Tree (gaps deleted; p-inv = 0.572; gamma =
0.739). Figure b shows a maximum likelihood tree which shows three clades. Pairwise distances between the strains were plotted (Figure c) and a
clade cutoff value calculated (1.96%). Figure d includes a table showing the between group genetic distances
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common and recent methods for species delimitation in
bacteria and eukaryotes is generalized mixed Yule co-
alescent, where branching patterns of a single tree tran-
sition from Yule process inter-species branching to
coalescent process intra-species branching [33]. Single
loci can be used for this method, however more recently
multiple genes and morphological characters can be
used [64]. Previously, a distance method based on gene
homology and sharing was used to reevaluate viral fam-
ily classifications [65]. A relatively simple genomic dis-
tance cutoff method has been used to validate viral

clades [34–37] and was applied to delimit species in the
current study. While the kernel density plot combined
with genetic distance cutoff method described here is
simplistic compared to the computation heavy general-
ized mixed Yule coalescent method, whole genomes and
therefore more phylogenetic signal is available for ana-
lysis. We did not compare the various species delimiting
methods to the genetic distance cutoff method as this
was beyond the focus of the study. A caveat with the dis-
tance cutoff value used in the current study is that the
cutoff value is not universal, but dataset dependent. A

Fig. 5 Maps depicting macaque species ranges. The figure shows the natural ranges for the pig-tailed, lion-tailed, bonnet, crab eating/
cynomologous, Japanese and rhesus macaques. The maps were generated in R (version 3.4.2, “maps” package), with colors and species ranges
added using Adobe Illustrator. The maps were based on those available from Wikimedia Commons, and are free use upon citing the authors of
the images in accordance with the Creative Commons license (https://creativecommons.org/licenses/by-sa/3.0/deed.en). The authors of all the
Wikimedia Commons maps were Chermundy and the IUCN Red List (https://www.iucnredlist.org/)
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potential issue with using the distance cutoff method to
establish species boundaries is that as the genomes of
additional viruses are sequenced, the species cutoff value
could potentially shift, resulting in species cutoff values
that could vary over time. A general complication of the
method used in the current study and in other genetic
data delimitation techniques is that the methods may be
delimiting populations, and not necessarily species [66].
We cannot eliminate this possibility in our analysis how-
ever this is unlikely given the large distance values be-
tween species in the dataset.
In our study to determine if the lion and pig-tailed de-

rived simplex viruses were species separate from herpes
B, we included all sequenced Old World monkey strains
in an effort not to bias the results and establish a general
cutoff for the Old World monkey group. The results of
our study showed the genome-based genetic distance be-
tween lion/pig-tailed macaque derived viruses and the
core herpes B strains were both approximately 14%,
which was actually greater than the distance observed
(~ 10%) between SA8 and PaHV-2 (Fig. 2b), previously
established viral species. The recovery of SA8 and
PaHV-2 as separate species helps to validate the method.
Both of these values were well above the species cutoff
value (8.94%; Fig. 2b). The genetic distance data, and the
data supporting co-speciation of the lion and pig-tailed
macaque viruses reinforces the idea that these should be
designated as separate, individual species from herpes B,
and each other.

Cryptic viral species
The term cryptic species is related to similar concepts
such as sibling species, species complex, and superspe-
cies, with the definitions between these concepts often
blurred. Cryptic species are generally defined as species
which appear virtually identical phenotypically, but be-
long to different taxa, and were thus “hidden”. It should
be noted that it is not unusual for non-viral cryptic spe-
cies to have some morphological differences in terms of
color, size, and markings [67, 68]. Cryptic species were
originally described three centuries ago [28, 29], and
with modern molecular techniques have been increas-
ingly identified across multiple organisms [69–73]. To
our knowledge, the concept of cryptic species has not
been applied to viruses, however species complex occa-
sionally has [74, 75]. From the phylogenetic network of
the Old World monkey simplex viruses (Fig. 1a), these
viruses could be described as a series of species com-
plexes (i.e. a group closely related viruses that are diffi-
cult to separate), one comprising the macaque viruses
and a second encompassing the baboon simplex viruses.
The genetic distance cutoff method may be useful in es-
tablishing species boundaries in these complexes, as the
method confirmed species status for the baboon derived

PaHV-2 and SA8. Importantly, the method identified
lion and pig-tailed simplex viruses as separate species
(Fig. 2), defining these viruses essentially cryptic species.
The genetic distance cutoff method provides a quantita-
tive threshold to determine species status and could be
another tool for establishing species status among viral
cryptic species complexes.

Challenges and issues
There are multiple challenges in defining species, for ex-
ample recently, even in defined species, fertile hybrids
among plants, birds, fish, and even mammals are not un-
common [76–79], suggesting reproductive barriers may
not always separate species. This may call into question
as to what constitutes a species. As previously stated, vi-
ruses do not reproduce per se, however they do recom-
bine, and herpesviruses have been shown to be highly
recombinogenic [26, 80]. Several recent studies have
found natural interspecies recombinants between HSV-1
and HSV-2 [18, 20], although they share approximately
70% sequence similarity [81]. While natural recombi-
nants between OWM viruses, which have lower genetic
distances than HSV-1 and 2 have not been reported, it
seems reasonable to assume it is possible. It is therefore
unlikely that the ability to recombine in a host would be
a factor in defining species in primate herpes simplex
viruses.
Species defining methods related to virion morph-

ology, serology, as well as gene homology and function
are problematic in primate herpes simplex viruses as
these characteristics are highly similar, with one of the
only differences being the apparent lack of γ134.5 in the
Old World monkey simplex viruses [40]. Virus morph-
ology in particular is difficult to distinguish between
simplex viruses, as an older study found that virion
morphology is nearly the same between HSV and herpes
B, however there may some minor differences in mor-
phogenesis [82]. Further, to our knowledge, differences
in virus morphology between in the various herpes B
strains has not been investigated. From the studies per-
formed so far, the herpes B strains examined here appear
to be nearly identical in nearly every respect, including
the ability to infect multiple monkey species. Future
studies may be able to detect morphological difference
in the viral virions or at the protein structure level.
Pathogenicity is one determinative method in which
there appears to be a difference between the pig and
lion-tailed macaque viruses and the remaining herpes B
strains. Studies performed by Eberle et al. examining the
lethal dose (LD50) of the sequenced herpes B strains in
mice showed that the pig and pion-tailed macaque sim-
plex viruses had different lethality phenotypes compared
to the remaining herpes B strains [12]. Importantly, the
LD50 values for the pig and lion-tailed viruses were > 107
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PFU, while the average for the remaining herpes B
strains was approximately 104 PFU. In addition to the
species delimiting method described here, pathogenicity
differences support separate species designations for the
pig and lion-tailed macaque simplex viruses.

Implications of separate species designation
There are several related scientific threads derived from
giving species designations to the pig and lion-tailed ma-
caque species. The first is acknowledging that these vi-
ruses are on separate evolutionary paths from each
other, and from other herpes B strains. This may result
in closer examination of possible phenotypic differences
between herpes B strains, and among other groups of
closely related viruses. Further, possible future transcrip-
tomic or proteomic data conclusions from core herpes B
strains for example will not be assumed for the pig and
lion-tailed herpes simplex viruses and would require
separate experimentation.

Herpes B core phylogeny
Phylogenetic analysis of the remaining herpes B strains
showed a core group, designated core herpes B, contain-
ing two main clades (Fig. 3a and b). Core herpes B clade
1 contained strains with longer branch lengths compared
to clade 2, with strains derived from M. mulatta, M.
radiata (strain M12-O), and M. fuscata (strain
7709642). It is unclear why the branch lengths are longer
in clade 1, however the isolation locations and host spe-
cies are variable [12] and may contribute to the greater
genetic distances. The strains comprising clade 2 were
all isolated from M. mulatta, and from two locations. It
is possible that clade two represents a rhesus only strain
grouping. Herpes B core strain 9400371 may represent a
sole member of a third clade, with genetic distances
from clades one and two that were above the cutoff
threshold (Fig. 3d). The original host for this virus is un-
clear as the Genbank annotation (KY628983.1) states
that it is rhesus macaque, however the corresponding
publication [12] states it is from a cynomolgus macaque.
If strain 9400371, is derived from a cynomolgus ma-
caque, future research will help determine if is the first
member of a cynomolgus macaque clade.

Conclusion
In conclusion, genome-based phylogenetic and genetic
distance cutoff techniques were applied to the available
Old World monkey simplex virus genome sequences.
The results showed that lion and pig-tailed macaque
simplex viruses were approximately 14% distant from
core herpes B strains, which was more distant than be-
tween PaHV-2 strains and SA8, previously established
viral species. The genomic distance cutoff method recov-
ered PaHV-2 and SA8 as separate species, and lion and

pig-tailed macaque simplex viruses as separate species,
effectively identifying these macaque viruses as cryptic
species. Based on the genetic distance analysis, the fact
that the OWM hosts are designated as separate species,
and herpes viruses co-evolve with their hosts, we
propose establishing lion and pig-tailed macaque sim-
plex viruses as separate species. This may be the first
identification of cryptic viral species.

Methods
Genome sequences and genomic sequence alignment
The genomic sequences of the viral strains used in the
current study were downloaded from NCBI and can be
found in Table 1. Several genomic multiple sequence
alignments (MSAs) were generated with MAFFT (Linux
ver. 7.394) using the FFT-NS-1 strategy option [42, 83].
MSAs with and without an outgroup were generated for
herpes B, PaHV-2, and all available Old World monkey
(OWM) genomic sequences. The generated MSAs were
manually inspected, and locally aligned for optimization
using ClustalW within the MEGA 7 package [46, 84].
The alignments generated for this study can be down-
loaded at https://brandt.ophth.wisc.edu/data-sets/.

Nucleotide substitution model optimization and
phylogeny
Prior to phylogenetic network construction, the optimal
substitution model for each MSA, and subsequent opti-
mal model parameters were calculated using IQ-TREE
version 1.6.3 [43]. Phylogenetic networks for each of the
alignments were generated using Splitstree 4 [44] using
the optimal substitution model and parameters calcu-
lated by IQ-TREE. Maximum likelihood trees were gen-
erated using RAxMLGUI (ver. 1.3) using the GTRCATI
option with 1000 bootstrap replicates [45].

Genomic nucleotide distance and clade cutoff calculations
To determine clade cutoff parameters, pairwise distances
were first calculated using the genomic MSAs without
outgroups. The genomic MSAs without outgroups were
used in order to minimize alignment gaps usually cre-
ated by including an outgroup sequence. A statistical de-
scription of establishing clades using genomic nucleotide
distance has been previously described [35]. Briefly a
variance analysis framework was used, where the F
statistic.
was calculated for each dataset and plotted as a curve.

Maximum composite likelihood (MCL) pairwise dis-
tances were calculated with MEGA 7 rather than uncor-
rected p-distances as have been used previously [34–37].
Species distance cutoffs were established by using the
Old World monkey MSA, followed by graphing the fre-
quency of the pairwise MCL distances using the R soft-
ware package (ver. 3.4.4) [85]. A kernel density plot was
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also generated in R to assist in determining the clade
cutoff value by finding the trough between the low and
high MCL distance populations. Intraspecies clade cut-
offs were established in a similar manner, using the core
herpes B, and herpes papio MSAs (minus outgroup)
respectively.
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