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ABSTRACT

Acute respiratory infection is a frequently transmitted illness of concern to doctors and
patients. Considering its airborne transmission, early diagnosis of such disease is particu-
larly important. This study explored respiratory viral infections with influenza virus, par-
ainfluenza virus, respiratory syncytial virus, human metapneumovirus, human bocavirus,
coronavirus, and other early diagnostic substances as confirmed by literature resources.
This study also used the corresponding monoclonal antibodies that were produced with the
use of hybridoma technology, which were fixed on the chip after purification, for further
serum detection. Using this method, a new technique to simultaneously detect 6 kinds of
febrile respiratory viruses in a protein chip was developed. The accuracy rate of this
method can be >99.65%. This product is inexpensive and capable of high-precision and
high-throughput screening, which are prominent advantages.
The first 3 authors should be regarded equally as 1st authors.
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ACUTE RESPIRATORY INFECTION (ARI) accounts
for a large proportion of all acute morbidities in

developed countries, and the majority of these infections
(w80%) have a viral etiology [1e3]. Acute viral respiratory
tract infection is the leading cause of hospitalization for
infants and young children in developed countries and is a
major cause of death in developing countries [4,5]. In
developed countries, the number of viral respiratory epi-
sodes per year has been estimated to be 6e10 in children
before school age versus 3e5 in those after this age, and ARI
represents the cause of 30%e40% of hospital admissions in
this category of patients [6,7]. Respiratory tract infection
can lead to acute asthma exacerbations, acute otitis media,
or other lower respiratory tract presentations, including
bronchitis, bronchiolitis, and pneumonia [8]. A wide range
of pathogens are involved in ARI, including bacteria and
viruses [9]. In clinical practice a specific virus is often not
identified, owing to the lack of available sensitive tests, the
presence of as yet unidentified pathogens, or the failure to
use appropriate tests.
Themajor causes of ARI in children and adults are influenza

virusesA, B, andC [10,11]; parainfluenza virus (PIV) types 1, 2,
and 3; adenovirus [12,13]; respiratory syncytial virus (RSV)
[14]; and rhinovirus [15]. In the past decade, several new res-
piratory viruses, including avian influenza viruses (H5N1,
H7N7, H7N3), humanmetapneumovirus (hMPV) [16], human
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bocavirus (hBoV); severe acute respiratory syndrome corona-
virus (SARS CoV), human coronaviruses (hCoV) NL63 and
HKU1, polyomavirus WU/KI, parvovirus 4 and 5, mimivirus,
and the swine-origin pandemic A/H1N1 influenza (H1, hem-
agglutinin type 1 protein; N1, neuraminidase type 1), have
emerged and been recognized as causing upper respiratory
tract infections and lower respiratory tract infection. The clin-
ical importance of some of these newly discovered viruses is
currently under investigation [17,18]. It is now clear that rhi-
noviruses and coronaviruses, once thought to cause only a
common cold, can infect the respiratory tract [19] and in some
cases may cause fatalities. All of the viruses mentioned above
can cause both upper and lower tract infections [20] and
have overlapping clinical presentations, and physicians usually
can not distinguish the causative agent without a laboratory
diagnosis.
Conventional methods of viral diagnosis, including cyto-

logic, immunologic, and molecular biologic detection, are
limited both by the ability to isolate only a limited range of
ª 2015 by Elsevier Inc. All rights reserved.
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Fig 1. Cellular porin chip spotting hole arrangement diagram.
From left to right: influenza virus, parainfluenza virus, respiratory
syncytial virus, human metapneumovirus, bocavirus, and
coronavirus.
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the viruses causing respiratory diseases and by the restricted
range of viruses that can be diagnosed rapidly with the use
of antigen detection [21]. However, given the high cost of
testing, complex operation, long cycle, high requirements of
equipment and operators, and other factors, this technology
has significantly limited applications in rapid diagnosis of
respiratory viral infections, particularly early diagnosis,
which has a decisive role in developing rapid and accurate
treatment programs. Nucleic acid amplification tests
(NATs) have been recognized to play an important role in
diagnosing respiratory virus infection since the mid-1990s,
but it was the emergence of CoV in 2003 that showcased
the importance of these tests for diagnosing respiratory
virus infection [22,23]. NATs have been developed for
all respiratory viruses, including both conventional and
emerging viruses [22].
Protein microarrays were developed because of the limi-

tations of using DNA microarrays for determining gene
expression levels in proteomics. The quantity of mRNA in
the cell often does not reflect the expression levels of the
proteins they correspond to. Because it is usually the pro-
tein, rather than the mRNA, that has the functional role in
cell response, a novel approach was needed. Additionally
post-translational modifications, which are often critical for
determining protein function, are not visible on DNA
microarrays. Protein microarrays replace traditional prote-
omics techniques such as 2-dimensional gel electrophoresis
and chromatography, which were time consuming, labor-
intensive, and ill-suited for the analysis of low-abundant
proteins.
Among the respiratory viral infections, influenza virus,

PIV, RSV, hMPV, hBoV, andCoV, which cause severe acute
respiratory syndrome, have become exceedingly common.
The objective of the present study was to identify the early
diagnostic substances of these 6 kinds of respiratory viruses
and prepare monoclonal antibodies to develop a corre-
sponding protein chip for rapid diagnostic kits.

MATERIALS AND METHODS
Identification and Sources of Early Diagnosis Substances

Given the simple virus structure, virus antigen determination is
generally focused on the genetic material and proteins, particularly the
nucleocapsid proteins, which have strong species-specific patterns.
Therefore, nucleocapsid proteins can be good markers for early diag-
nosis. Based on the literature, the present study identified the early
diagnostic markers of these 6 viruses: influenza virus (A and B) and
nucleocapsid proteins of CoV (all kept in our laboratory), nucleocapsid
proteins of PIV (Guangzhou Huayin Medical Technology Co), PV2
proteins of BoV (State Key Laboratory of Virology), fusion protein of
hMPV F (Capital Institute of Pediatrics), and fusion protein of RSV F
(Wuhan Institute of Biologic Products).

Laboratory Animals

Six- to 8-week-old female BALB/c mice were used in this
experiment.

Preparation of Monoclonal Antibody

Animal Vaccination and Screening of Hybridoma. According
to conventional methods, the BALB/c mice were immunized. Anti-
genic proteins were collected using Freund complete adjuvant at
100:100 mg/mice. The fusion of spleen cells and SP2/0 cells in mice was
detected, and indirect enzyme-linked immunosorbent assay (ELISA)
was used to screen hybridoma cells that secrete positive antibodies.
Phalanx titration method was used to determine the most viable
antigen protein concentration and to clone positively screened
hybridoma cells. Cloning and subcloning of positive holes were
repeated. Finally, a high A450 value was selected, as well as good-
cell viability and single-hole cell lines for culture proliferation.
Cloning and Purification of the Positive Cell Lines. The

positive hybridoma cell lines were cloned and purified from positive
clone holes with the use of conventional methods until all cloned
cell holes were positive in hemagglutination inhibition (HI) testing.
Hybridoma cell lines received a continuous passage of 10, 20, and
30 generations. With the use of indirect ELISA determination of
cell supernate titer, hybridoma cell lines were screened, which sta-
bilized antibody secretion.

Measurement of Biologic Characteristics of Monoclonal
Antibodies

Titers of monoclonal antibody in ascites were measured by means
of indirect ELISA and HI test. Monoclonal antibody subtypes
were detected by SBA Clonotyping System/HRP antibody subtype
identification kits. Antibody specificity was identified with the use
of Western blot.

Preparation of Microhole Plate Protein Chips

The microhole plate was placed on a vacuum filtration apparatus.
Up to 50 mL 70% methanol concentration was added into each
hole. Samples were incubated at room temperature for 30 seconds,
and the filtration device was set to low vacuum. Each hole was
rinsed with 200 mL ultrapure water twice and then activated.



Fig 2. Six kinds of respiratory viruses in microhole plate chip serum detection. (1) influenza virus; (2) parainfluenza virus; (3) respiratory
syncytial virus; (4) human metapneumovirus; (5) bocavirus; and (6) coronavirus.
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The determined optimal concentration of dilution of the anti-
body proteins was detected in a well that raised and activated the
microhole plate, 25 nL antibody proteins was sprayed using a tiny
sprayer, much like that found in an inkjet printer (SmartArrayer 48,
Bio-Rad, USA) in each hole with a microarrayer. Samples were
quickly placed in the microhole plate into a wet box at 37�C and
were fixed for 2 hours. The slide was removed after hydration,
washed thrice with phosphate-buffered saline solution with Tween
(PBST) for 5 minutes each time, dried at 37�C, and then placed in a
sealed bag for preservation at 4�C.
Clinical Sample Test

We collected 299 patients with influenza virus infection, 288 with
PIV infection, 305 with RSV infection, 278 with hMPV infection,
291 hBoV-infected patients, and 28 CoV-infected patients, and 120
healthy control subjects from the Department of Clinical Labora-
tory, Guangzhou Center for Disease Control and Prevention,
People’s Republic of China, to evaluate the rapid antigen tests for
diagnosis of respiratory viral pathogens. All patients were affirmed
as a single virus infection with the use of conventional respiratory
virus detection methods. The normal control subjects were diag-
nosed without any kind of respiratory infections. Written informed
consent conforming to the tenets of the Declaration of Helsinki was
obtained from each participant before the study. The Institutional
Review Board of Guangzhou Center for Disease Control and
Prevention approved this study.

Up to 50 mL was obtained from each serum sample, which was
added into 500 mL sample diluent (containing goat antiehuman
IgG), and then incubated for 15 minutes to neutralize the IgG.
About 50 mL of the diluted serum was added into the detection
hole, which was incubated for 1 hour at 37�C. The chips were
washed with PBST thrice for 5 minutes each time. Approximately
50 mL horseradish peroxidase (HRP)elabeled mouse antiehuman
IgM monoclonal antibody was added, and the sample was incubated
for 0.5 hour at 37�C. The chips were washed again with PBST thrice
for 5 minutes each time. Up to 30 mL tetramethylbenzidine (TMB)
chromogenic reagent was added into each hole and kept chromo-
genic for 5 minutes at 37�C. The results were recorded visually with
the use of a digital camera or scanner.

Validation and Analysis of Results

When a signal was detected, it was considered to be positive. The
receiver operating characteristic (ROC) curve is a fundamental
tool for diagnostic test evaluation [24]. In an ROC curve the true
positive rate (sensitivity) is plotted as a function of the false pos-
itive rate (100 � specificity) for different cutoff points of a
parameter. Each point on the ROC curve represents a sensitivity-
specificity pair corresponding to a particular decision threshold.
The area under the ROC curve (AUC) is a measure of how well a
parameter can distinguish between 2 diagnostic groups (diseased/
normal). The sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) of cellular porin chip
kit were calculated.

RESULTS

Serum chips revealed the contents of influenza virus, PIV,
RSV, hMPV, BoV, and CoV in the serum microarray. The
microhole distribution of each type of virus antibody is
shown in Fig 1. Part of the microhole plate test results is
shown in Fig 2, which indicated no cross-influence among
the results.
The ROC curves for patients with acute respiratory

infection compared with patients without respiratory infec-
tion were plotted. The AUCs for protein chip detection
were: influenza virus, 0.985 (95% CI, 0.97e1; P < .001);



Table 1. Cellular Porin Chip Serum Pathogen Test Results

Pathogen Test

Diagnosis (Gold Standard)

Sensitivity Specificity PPV NPV AccuracyCase Control

Influenza (n ¼ 299) (n ¼ 120) 98.66 98.33 99.32 98.33 98.56
Positive (þ) 295 2
Negative (�) 4 118

PIV (n ¼ 305) (n ¼ 120) 98.36 96.66 98.68 96.66 97.88
Positive (þ) 300 4
Negative (�) 5 116

RSV (n ¼ 305) (n ¼ 120) 98.36 97.5 99.00 97.5 98.11
Positive (þ) 300 3
Negative (�) 5 117

hMPV (n ¼ 278) (n ¼ 120) 98.2 95 97.84 95 97.23
Positive (þ) 273 6
Negative (�) 5 114

hBoV (n ¼ 291) (n ¼ 120) 98.97 95.83 98.29 95.83 98.053
Positive (þ) 288 5
Negative (�) 3 115

CoV (n ¼ 28) (n ¼ 120) 100 99.16 96.55 99.16 99.32
Positive (þ) 28 1
Negative (�) 0 119

Abbreviations: PPV, positive predictive value; NPV, negative predictive value; PIV, parainfluenza virus; RSV, respiratory syncytial virus; hMPV, human meta-
pneumovirus; hBoV, human bocavirus; CoV, coronavirus.
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PIV, 0.984 (95% CI, 0.921e1.062; P < .001); RSV, 0.979
(95% CI, 0.961e0.997; P < .001); hMPV, 0.966 (95% CI,
0.942e0.990; P < .001); BoV, 0.974 (95% CI, 0.701e0.859;
P < .001); and CoV, 0.996 (95% CI, 0.986e1.005; P < .001),
respectively. Sensitivity, specificity, PPV, NPV, and diag-
nostic accuracy of acute respiratory virus were calculated
according to the ROC and listed in Table 1.
DISCUSSION

The diagnosis of ARI relies on clinical examination [25],
radiologic exploration [26], and biologic nonspecific in-
flammatory tests (including the level of C-reactive protein
or procalcitonin). The identification of the causative
agent(s) is often omitted or limited to a few pathogens easy
to detect by rapid antigen direct tests (influenza viruses and
RSV in respiratory specimens [27e29], Streptococcus pneu-
moniae and Legionella pneumophila in urine specimens).
However, the distinction between viral and bacterial in-
fections is often impossible with the use of nonmicrobiologic
criteria [30].
The need for precise and rapid identification of the

causative agents of ARI has been recently reviewed [31e33].
The main advantages of this strategy are: (1) better use of
antimicrobials, including antiviral drugs and antibiotics, thus
limiting the development of bacterial resistance; (2) reduc-
tion of unnecessary paraclinical explorations and of the
duration of hospitalization; (3) rapid implementation of
isolation measures when necessary, thus limiting the risk of
nosocomial transmission; (4) collection in real time of new
epidemiologic data on the seasonal spread of pathogens;
and (5) identification of simultaneous or successive in-
fections that may justify specific intervention or explain the
severity of the clinical picture.
Protein chip has been recognized to play an important
role in diagnosing respiratory virus infection. Protein chip is
a high-throughput method used to track the interactions
and activities of proteins and to determine their function,
including on a large scale [34]. Its main advantage lies in the
fact that large numbers of proteins can be tracked in par-
allel. The chip consists of a support surface, such as a glass
slide, nitrocellulose membrane, bead, or microtiter plate, to
which an array of capture proteins is bound [35]. Probe
molecules, typically labeled with a fluorescent dye, are
added to the array. Any reaction between the probe and the
immobilized protein emits a fluorescent signal that is read
by a laser scanner [36]. Protein microarrays are rapid,
automated, economical, and highly sensitive, consuming
small quantities of samples and reagents [37]. The concept
and methodology of protein microarrays was first intro-
duced and illustrated in antibody microarrays (also referred
to as antibody matrix) in 1983 in a scientific publication and
a series of patents [38]. The high-throughput technology
behind the protein microarray was relatively easy to
develop, because it was based on the technology developed
for DNA microarrays, which have become the most widely
used microarrays [39].

Protein array detection methods must give a high signal
with a low background. The most common and widely used
method for detection is fluorescence labeling, which is
highly sensitive, safe, and compatible with readily available
microarray laser scanners. Other labels can be used, such as
affinity, photochemical, or radioisotope tags. These labels
are attached to the probe itself and can interfere with the
probe-target protein reaction [40]. Therefore a number of
label-free detection methods are available, such as surface
plasmon resonance, carbon nanotubes, carbon nanowire
sensors (where detection occurs via changes in
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conductance), and microelectromechanical system cantile-
vers [41,42]. All of these label-free detection methods are
relatively new and are not yet suitable for high-throughput
protein interaction detection; however, they do offer much
promise for the future [43,44].
Protein chip is widely used for rapid detection of various

diseases and establishes a certain foundation for early
detection of febrile respiratory diseases. In the present
study, 6 fixed early markers of corresponding febrile respi-
ratory virus antibodies on an antibody chip were detected by
means of fixing the antibodies and specific recognition of
early virus markers that are found in human serum. The
results showed that the specificity of selected antibodies for
early markers are extremely strong, and the positive rate is
w100%, in which PIV, RSV, and BoV had 1 undetected
case, probably because of experimental operation and other
operator factors. However, the overall positive detection
rate meets the required standard for a rapid-detection chip
and has consistent accuracy compared with the ELISA
method. The chip can be extremely useful for rapid detec-
tion of these 6 kinds of viral infection at an early stage.
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