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Abstract

Measuring gene flow between malaria parasite populations in different geographic locations

can provide strategic information for malaria control interventions. Multiple important ques-

tions pertaining to the design of such studies remain unanswered, limiting efforts to operatio-

nalize genomic surveillance tools for routine public health use. This report examines the use

of population-level summaries of genetic divergence (FST) and relatedness (identity-by-

descent) to distinguish levels of gene flow between malaria populations, focused on field-rel-

evant questions about data size, sampling, and interpretability of observations from genomic

surveillance studies. To do this, we use P. falciparum whole genome sequence data and

simulated sequence data approximating malaria populations evolving under different cur-

rent and historical epidemiological conditions. We employ mobile-phone associated mobility

data to estimate parasite migration rates over different spatial scales and use this to inform

our analysis. This analysis underscores the complementary nature of divergence- and relat-

edness-based metrics for distinguishing gene flow over different temporal and spatial scales

and characterizes the data requirements for using these metrics in different contexts. Our

results have implications for the design and implementation of malaria genomic surveillance

studies.

Author summary

Malaria is a leading infectious cause of illness and death worldwide. Understanding how

malaria parasites are spread between different geographic locations can provide useful

information for disease control efforts. Examples include identifying source locations for

imported infections in lower-incidence “sink” locations and delineating the routes over

which drug-resistant malaria strains disperse across geographic space. Genomic surveil-

lance methods use geolocated genetic sequence data from malaria infections to estimate

gene flow and connectivity between parasites populations in different locations. This

approach has yielded important insights into patterns of connectivity between malaria
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populations over local, national, and global scales. However, there are multiple unresolved

questions about the design and interpretation of these studies. This study evaluates how

much data is needed to distinguish different levels of gene flow between parasite popula-

tions (“Are the malaria populations in locations i and j linked by higher or lower connec-

tivity than those in locations k and l?”). We examine data size requirements (including the

number of genetic markers and number of individual infections analyzed) for this impor-

tant, implementation-relevant task across multiple epidemiological scenarios, providing

practical guidance for the design and interpretation of similar studies.

Introduction

Measuring the extent to which malaria parasite populations are linked across different geo-

graphic locations (“connectivity”) can provide important guidance for the design and imple-

mentation of malaria control interventions. Multiple approaches are available for this task,

including methods that measure human host mobility (using census-derived [1] or mobile

phone-associated mobility data [2, 3]) as a proxy for parasite migration and genomic surveil-

lance strategies that directly measure parasite gene flow between locations.

Recent studies have combined these two approaches, using both human mobility data and

estimated parasite gene flow to examine previously undescribed aspects of malaria spatial epi-

demiology [3] (for example, source-sink dynamics in endemic areas of Bangladesh [2]). Other

recent work has focused on estimating the probability that a pair of genomes are identical by

descent (IBD) at a particular locus [4] and using population-level summaries of IBD estimates

to assess gene flow between malaria populations [5]. These relatedness-based approaches have

uncovered spatial structure in malaria populations at small, local scales, where conventional

methods using differentiation-based estimators (including the fixation index, FST) fail to iden-

tify population structure [5]. IBD-based measures capture variation due to recombination and

as such may be well suited for measuring more recent gene flow between malaria populations

(in which mutation rates are relatively slow, but variation due to recombination can accrue

more quickly).

These studies and others evaluate for the presence or absence of spatial structure by evaluat-

ing for isolation by distance, i.e. by testing whether estimated pairwise differentiation or relat-

edness correlates with inter-location distance (for example, see [6, 7]). Importantly, methods

based on isolation by distance may be difficult to interpret if migration is not spatially coher-

ent, i.e. if human and/or parasite migration rates do not consistently correlate with distance, as

has been observed in multiple contexts [8–10]. Another common approach used in malaria

genomic surveillance studies classifies two malaria populations as somewhat connected (versus

not connected) if the confidence interval of their pairwise FST value does not include zero [11–

14]. This binary approach may have limited value in situations where ranking weakly versus

strongly connected populations is important. From a practical standpoint, important use cases

for gene flow estimation include ranking different levels of connectivity between locations

(“Are the malaria populations in locations i and j linked by higher or lower connectivity than

those in locations k and l?”) and classifying location pairs by their relative levels of connectivity

(“Among the malaria populations in locations i, j, k, and l, which of the six total location pairs

are most highly connected?”). Isolation by distance can be considered a special case of ranking,

in which the ranks of estimated gene flow are compared to the ranks of inter-location geo-

graphic distances.
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The properties of various estimators of FST have been studied extensively and there is a rich

and longstanding literature on IBD [15]. However, there is currently only limited guidance on

the size [5] and type [16] of genetic data needed for measuring gene flow between malaria par-

asite populations, and none specific to the questions of ranking and classification. Most studies

of this kind use genetic data of widely varying sizes and types, including both whole genome

sequence data and SNP ‘barcode’ data (typically consisting of 24- to 100-SNPs [17, 18]), limit-

ing generalizability and comparability between studies. Importantly, population-level summa-

ries of differentiation and relatedness capture genetic signatures resulting from multiple,

interconnected processes, including recent prior and ancestral migration, changes in popula-

tion size over time, and selection. Multiple studies indicate that effective sizes of malaria popu-

lations are dynamic, often over relatively short periods of time (for example, marked

contraction of effective population size following the successful introduction of various

malaria control interventions [19, 20]). For these reasons, it is likely that the amount or type of

data needed for estimating gene flow, and reliably ranking or classifying these estimates, will

vary across different epidemiological contexts.

This report examines the use of both relatedness- and differentiation-based methods for

estimating gene flow between malaria populations. We numerically evaluate data size require-

ments for ranking and classification of these estimates, using P. falciparum genetic data from

field isolates and a coalescent simulation informed by mobile phone-associated human mobil-

ity data. In addition, we explore how changes in population size and migration rates over time

influence IBD- and FST-based estimates of gene flow. (Although a multitude of other methods

and estimators exist for studying differentiation and relatedness between populations, we

focus here on FST given its common usage in malaria genomic epidemiology studies and IBD-

based methods given their increasing use in similar applications.) We specifically examine

populations that have undergone recent reduction in their effective population sizes or

changes in relative parasite migration rates between locations, given the direct relevance of this

scenario to real-world malaria populations. Findings from these analyses have important

implications for the design and implementation of malaria genomic surveillance studies.

Methods

P. falciparum genomic data

We obtained P. falciparum whole genome variant call data, generated using the Genome Anal-

ysis Toolkit (GATK, [21]), from the MalariaGen database (Pf3k data release 5.1 [22]). We

restricted our analysis to samples from the Greater Mekong Subregion (GMS), excluding more

widely divergent P. falciparum populations from Sub-Saharan Africa and Bangladesh that are

less relevant to the context of our analysis (i.e. genomic surveillance at the regional and

national level), and including only individual sequences from clinical cases or survey partici-

pants. After excluding “un-callable” regions of the P. falciparum genome (i.e. highly repetitive

or highly variable regions in which short-read based genotyping is unreliable [23]) and sites

failing any GATK quality filter, we removed suspected polyclonal sequences and those with

poor quality sequence data based on the proportions of heterozygous and missing SNP calls

across all sites for each sample, and removed low-quality SNPs based on site-wise missingness

and heterozygosity (similar to [24]). We first removed SNP sites for which > 1% of sequences

had missing or heterozygous calls and then removed sequences for which > 5% SNP sites were

missing or heterozygous. This filtering protocol yielded 472 individual sequences and 143,480

SNPs. Of the 143,480 SNPs, 437 had estimated minor allele frequencies > 0.35 and 5537 had

estimated minor allele frequencies > 0.05 (estimated using all 472 sequences in this collection,

Fig A in S1 Appendix). We conducted analyses with both of these SNP sets, with the goal of

PLOS GENETICS Distinguishing levels of malaria gene flow

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009335 December 20, 2021 3 / 20

https://doi.org/10.1371/journal.pgen.1009335


examining how SNP allele frequency influences gene flow estimates. In terms of precision,

markers with equifrequent alleles (thus high minor allele frequencies) are most informative for

relatedness estimation [4]. The first SNP set (estimated minor allele frequencies > 0.35) aligns

with prior and ongoing efforts to design other barcodes for malaria surveillance [17, 25].

Given evidence that a selective sweep on genes linked to artemisinin and piperaquine resis-

tance (kelch13 and plasmepsin2–3, respectively) substantially altered P. falciparum population

structure across the GMS after 2012 [26–28], we included only sequences from 2009–2011 and

excluded all sequences carrying the kelch13 haplotype associated with this selective sweep

(called KEL1 and identified using the haplotype scoring system in [28]). Lastly, we excluded

two Pf3k study locations (Sisakhet and Ranong, Thailand) from the analysis that

included < 10 P. falciparum individual sequences after removing post-2011 sequences and

KEL1 mutants. Fig B in S1 Appendix provides information on the number of individual sam-

ples included from each location. To evaluate whether estimated gene flow decays with dis-

tance between locations, we obtained shortest road distances between Pf3k study locations

from the Google Maps Distance Matrix API [29]. Between location distances ranged from 34

km (Bu Gia Map-Phouc Long) to 1783 km (Bu Gia Map-Bago Division).

Mobility-informed coalescent simulation

We used a multi-population coalescent simulation to extend our analysis to a wider range of

possible population genetic and epidemiological conditions. This approach also allows for

unbiased sampling of the simulated populations, avoiding issues with sampling bias inherent

to real sequence data collected in the field (as discussed in more detail below). We simulated

sequence data for a metapopulation with five demes using the msprime implementation of

Hudson’s ms coalescent simulator [30, 31]. For consistency with the terms used to describe the

Pf3k data, we hereafter refer to populations in the coalescent simulation as “locations”. Here

“individual” refers to either sequence data obtained from a single monoclonal P. falciparum
infection in the Pf3k data or sequence data from a single individual in the simulations. Our

analysis uses two coalescent modeling frameworks. Motivated by observations from existing

studies [5, 32], and in our analysis of the Pf3k dataset, these models seek to approximate situa-

tions where migration patterns and effective population sizes vary over time, resulting in dif-

ferent population genetic signatures from ancestral versus more recent migration events. The

first framework (Model A, Fig C in S1 Appendix) approximates an ancestral metapopulation

with high mixing between locations, followed by a more recent period with lower migration

rates with higher statistical variation. Specifically, Model A incorporates two different sets of

migration rates between locations (ρi,j), an ancestral set in which migration is high and equal

for all location pairs followed at time = g generations in the past by a more recent set that is

specified using aggregated, anonymized call detail records (CDRs) from mobile phone users in

Thailand (rCDR
i;j ). We estimated migration rates (measured as the proportion of the population

in j that are migrants in i per generation) between 930 districts in Thailand (Supplementary

Methods in S1 Appendix) and sampled sets of districts over two spatial scales: “local” or nearby

district sets separated by short geographic distances (approximately 100 km or less) and “sub-

national’ district sets separated by larger geographic distances (Figs D, E, and F in S1 Appen-

dix). We used sets of five districts each, sampling 10 local district sets and 10 subnational

district sets, and used the resulting 5 × 5 migration rate matrices to parameterize the coalescent

simulation. Effective population size is constant in Model A and denoted Nf.

The second framework (Model B, Fig C in S1 Appendix) seeks to approximate a metapopu-

lation with recent-onset contraction in effective population sizes (for example, following suc-

cessful implementation of malaria control interventions [32]). Model B uses the same mobility
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data to specify a constant set of migration rates between locations, with an exponential

decrease in effective population size from initial size (Ni) to current size (Nf) starting at time =

g generations in the past. The total number of migrants in each generation is a function of

both migration rate and population size and contraction of effective population size reduces

the total number of migrants starting after time = g.

For each simulation, we examine a range of parameters for Nf, Ni, g, and the recombination

rate ϕ. The mutation rate was set at 6.82E-9 mutations per site per generation for all simula-

tions [19, 33]. We obtained a total of 1000 simulation replicates for each parameter set (100

simulation replicates for each of 10 sets of CDR-estimated migration rates). We calculated esti-

mated allele frequencies for each site in the simulated data from a random sample of 80% of all

individual sequences. Subsequent analysis was restricted to sites with estimated minor allele

frequency> 0.35.

Estimating gene flow between malaria parasite populations

Following [4], we define relatedness, r, between two individuals as the probability that, at any

locus across the genome, the alleles for both individuals are IBD. In this study, we use the

fract_sites_IBD output from hmmIBD [34]to estimate r and let r̂ denote this inter-indi-

vidual relatedness estimate. To summarize numerous relatedness estimates between individu-

als from different locations, let r̂a denote the proportion of between-location estimates greater

than some specified threshold, α. We estimate inter-location differentiation using Hudson’s

estimator of FST [35] and let F̂ ST denote this estimate of inter-location differentiation. We refer

to r̂a and F̂ ST as estimates of gene flow since we expect gene flow between malaria parasite pop-

ulations to correlate with both (positively with r̂a and negatively with F̂ ST).

We calculate r̂a and F̂ST using different numbers of individuals per location, n, and different

numbers of SNPs, p. For the Pf3k data, we calculate F̂ STNP
and r̂aNP

using all 437 SNPs with

minor allele frequency estimates > 0.35 and, for each location pair, the maximum number of

individuals available for each location. To distinguish IBD sharing due to ancestral versus

more recent migration events, we also examine mean shared IBD sequence length for

between-location sequence pairs and stratify this analysis over IBD segments of different

lengths [36, 37]. Shorter IBD segment lengths, reflecting haplotypes that have been broken

down by recombination over time, represent more distant ancestral events; longer IBD seg-

ments reflect sharing due more recent migration events.

Ranking, classification, and isolation by distance for gene flow estimates

We calculate Kendall’s τ for the correlation between F̂ST or r̂a and geographic distance between

locations, using distance between study cities for the Pf3k and distance between district cen-

troids in Thailand for the simulated data (which uses administrative districts as the unit of

aggregation for mobile phone-associated movement data). A Mantel test with 1000 permuta-

tions was used to evaluate the statistical significance of each τ value.

For the simulated data, where the migration rate between locations is known a priori, we

compared differences in estimated gene flow to differences in pre-specified migration rates to

determine whether F̂ ST or r̂a values correctly rank pairs of location pairs. For example, if a loca-

tion pair with a high migration rate has a higher estimated value for r̂a than a location pair

with a lower pairwise migration rate, we consider these two location pairs as ranked correctly

by their respective r̂a values. We calculate the proportion of all 45 pairs of location pairs (five

choose two choose two) that are ranked correctly by their F̂ ST or r̂a values (proportion ranked

correctly, “PRC”). We examine PRC as a practical measure for contextualizing observed values
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of F̂ST or r̂a (i.e. if n total individuals are sampled and genotyped across p SNPs, what is the

probability that the observed values for F̂ST or r̂a correctly rank location pairs by their shared

gene flow?).

Motivated by expected practical use cases in malaria genomic surveillance, we also consider

how well F̂ST or r̂a identify or classify highly connected location pairs. Specifically, for each

individual simulation, we evaluate whether (1) the single location pair with the highest migra-

tion rate also has the highest estimated pairwise gene flow and (2) whether the location pairs

with the five highest migration rates also have the five highest gene flow estimates. For each

parameter set, we report the proportion of all simulations in which these location pairs are

classified correctly.

Results

Relatedness and differentiation between P. falciparum populations

We first estimated connectivity between P. falciparum sequences collected in multiple study

sites across the Greater Mekong Subregion using both differentiation-based and relatedness-

based estimates of gene flow (Fig 1). We observed distinct signatures of isolation by distance

with both F̂ STNP
(increasing differentiation with distance) and r̂0:1NP

and r̂0:5NP
(decreasing relat-

edness with distance). The strength of these correlations decreases with smaller data sizes,

most markedly with p (the number of SNPs used) < 100, and by SNP ascertainment scheme

(Fig 2). Using SNPs with higher estimated minor allele frequencies (> 0.35) yielded stronger

correlations with distance for both F̂ STNP
and r̂0:5NP

; using SNPs from a wider range of estimated

minor allele frequencies (> 0.05), and thus including more rare alleles, yielded less consistent

correlations with distance.

Examining location pairs with the highest estimated shared gene flow, we found largely

similar geographic patterns for F̂STNP
and r̂0:1NP

(Fig 1A and 1B), with the strongest estimated

gene flow observed between geographically-proximate locations in southern Laos, eastern

Cambodia, and Vietnam. However, r̂0:5NP
values were highest (consistent with higher gene

flow) for location pairs within southern Cambodia and Vietnam. We found an identical geo-

graphic pattern when examining mean pairwise IBD sequence length for long IBD tracts

(> 95th percentile, equal to tract length� 285.64 kb), indicating that these patterns reflect

more recent migration events (Fig G in S1 Appendix) [36, 37]. Location pairs with the highest

r̂0:5NP
values also have relatively higher numbers of nearly clonal individual-individual pairs

(Fig H in S1 Appendix), which result from recent migration events (where the time since

migration is short enough that there is limited or no out-crossing between imported individu-

als and the receiving population). Mean IBD segment length for between-location individual-

individual pairs is also longer for location pairs with the highest r̂0:5NP
(Fig H in S1 Appendix).

These findings indicate that population-level summaries of between-location relatedness, if

used with appropriate thresholds that can identify highly-related individual-individual pairs,

can provide useful estimates of recent migration between P. falciparum populations. F̂ST

reflects gene flow due to both recent and more historically distant migration events and in

some contexts may be strongly influenced by more ancestral population structure.

Sequence data in the Pf3k database was obtained during multiple clinical and cross-sec-

tional studies [38], each of which may be subject to different forms of sampling bias. We

observed marked heterogeneity across study sites in the within-location distributions for r̂
(Fig I in S1 Appendix). The proportion of clonal or nearly-clonal individual-individual pairs

(where r̂ � 1) differs widely across study locations, likely reflecting both true differences in

PLOS GENETICS Distinguishing levels of malaria gene flow

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009335 December 20, 2021 6 / 20

https://doi.org/10.1371/journal.pgen.1009335


Fig 1. Gene flow versus distance for P. falciparum isolates. (A) FST (Hudson’s estimator), (B) r̂0:1, and (C) r̂0:5. Kendall’s τ
for divergence or relatedness versus distance and the corresponding p-value obtained via Mantel testing are listed for each

metric. The four location pairs with highest estimated gene flow (as measured by FST,r̂0:1,or r̂0:5) are circled in the left panels.

Contains information from OpenStreetMap and OpenStreetMap Foundation, which is made available under the Open

Database License.

https://doi.org/10.1371/journal.pgen.1009335.g001
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levels of within-population diversity and/or sampling bias (for example, if samples were col-

lected from individuals infected with the same clone during an outbreak or other shared trans-

mission event).

Data size and isolation by distance over local and subnational scales

To extend this analysis, we used a mobility-informed coalescent simulation to numerically

evaluate F̂ ST and r̂a under a wider range of possible epidemiological and evolutionary condi-

tions. This approach also allows for unbiased sampling of individuals in each location,

Fig 2. Gene flow versus distance for P. falciparum isolates by SNP number and estimated minor allele frequency (AF). Kendall’s

τ for distance versus FST (A & B) or r̂0:5 (C & D) for SNPs with estimated minor allele frequency of> 0.35 (A & C) or> 0.05 (B & D).

Points show τ values for 1000 SNP sets of size p randomly sampled from the subsets of SNPs with estimated minor allele frequency of

either> 0.35 or> 0.05.

https://doi.org/10.1371/journal.pgen.1009335.g002
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obviating the aforementioned issues with sampling bias in real P. falciparum sequence data

sets. The two models used for this purpose (Fig C in S1 Appendix, Models A and B) yield F̂ST

and r̂0:5 values that closely approximate those observed for P. falciparum populations over

both subnational and local geographic scales (Figs J, K, and L in S1 Appendix) [5, 38]. Simula-

tions with higher recombination rates better approximated observed F̂ ST and r̂0:5 vales in the

Pf3k dataset (Figs M and N in S1 Appendix). The CDR-derived mobility data used to parame-

terize these models indicates that between-district migration in Thailand is less strongly corre-

lated with distance over local geographic areas (i.e. between nearby districts) compared to

subnational movement over a wider range of distances (Fig D in S1 Appendix). This suggests

that migration may be less spatially coherent over short distances, such that the presence or

absence of isolation by distance may be difficult to interpret as a signature of population struc-

ture under certain conditions.

Consistent with this finding, we observe weaker correlations between geographic distance

and both F̂ ST and r̂0:5 for migration over local scales (Fig 3) when compared to migration over

larger subnational scales (Fig 4). Similarly, F̂ST and r̂0:5 are more closely correlated with migra-

tion rates (as specified in the coalescent model) than distance (Figs O and P in S1 Appendix).

These findings are in part attributable to the wider variation of distances, and larger differences

in migration rates, for the districts sampled to represent subnational migration, which include

districts separated by both large and small distances (Figs D and F in S1 Appendix). Migration

rates between nearby or local districts are higher overall and restricted to a narrower range of

values with lower dispersion, resulting in F̂ ST and r̂0:5 values that are less strongly correlated

with distance (Figs J and K in S1 Appendix).

We next examined how the ability to detect isolation by distance is influenced by data size.

To do this, we evaluated the proportion of all simulation replicates, of data size of p SNPs and

n individuals, for which the correlation between distance and F̂ST or r̂0:5 is significant by Man-

tel testing. These proportions (proxy measures for the power to detect isolation by distance)

are markedly decreased for data sizes with< 100 SNPs or< 50 individuals, across both models

A and B and for both local and subnational migration rates (Figs 3 and 4 and Fig Q in S1

Appendix).

In both models A and B, we found r̂0:5 identified isolation by distance more reliably than

F̂ST over almost all data sizes (Figs 3 and 4 and Fig Q in S1 Appendix). This likely reflects the

relatively short number of post-ancestral generations used in our simulations, in which the

change from “ancestral” to “recent” migration rates (Model A) or the onset of population size

contraction (Model B) occurs at 10–50 generations before present. These findings are consis-

tent with recent studies on the Thai-Myanmar border, where contraction of P. falciparum
effective population size began approximately 20 years ago [32] (80–120 generations, assuming

4–6 generations per year) and where IBD-based methods for estimating gene flow delineated

hyperlocal spatial population structure that could not be resolved by FST [5]. Supporting this

observation, sensitivity analysis examining different values for g (in Model A, the number of

generations before present when ancestral migration rates are supplanted by recent migration

rates) indicates that r̂0:5 values are strongly influenced by g, whereas FST values are largely simi-

lar for both large and small values of g (Fig R in S1 Appendix).

Data size and ranking gene flow estimates

Motivated by practical questions in malaria surveillance, and acknowledging the potential lim-

itations of isolation by distance in contexts where migration is poorly correlated with distance,

we sought to evaluate data size requirements for ranking and classification of gene flow
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estimates. To examine ranking, we calculated for each simulation replicate the proportion of

all pairs of locations where ranking by F̂ ST or r̂0:5 matches ranking according to the migration

rates specified in the coalescent simulation (“proportion ranked correctly”). This proportion

approximates the probability, for a given simulation replicate with data size p SNPs and n

Fig 3. Gene flow versus distance for simulated sequence data (local migration, model A). Migration rates are estimated using CDR data for

neighboring districts in Thailand (separated by� 100 km). (A) and (B): correlation between distance and observed values of FST and r̂0:5, respectively.

Points show τ values for 1000 independent simulation replicates. (C) and (D): proportion of simulation replicates where Mantel-estimated p-values for

observed τ values are� 0.05, by number of SNPs (p) and number of individuals (n). Model parameters: recombination rate, ϕ = 0.7, multiplier for

recent migration rates, m = 15; multiplier for ancestral migration rates, M = 5; population size, Nf = 500; time since ancestral migration rates, g = 10

generations.

https://doi.org/10.1371/journal.pgen.1009335.g003
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individuals, that the F̂ ST or r̂0:5 values for two location pairs will correspond to the true order-

ing of their respective migration rates. Overall, a lower proportion of location pairs were

ranked correctly when migration is specified using local (Fig S in S1 Appendix) rather than

subnational migration matrices (Fig T in S1 Appendix). Notably, when migration is specified

Fig 4. Gene flow versus distance for simulated sequence data (subnational migration, model A). Migration rates are estimated using CDR data for

neighboring districts in Thailand. Distances are (A) and (B): correlation between distance and observed values of FST and r̂0:5, respectively. Points show

τ values for 1000 independent simulation replicates. (C) and (D): proportion of simulation replicates where Mantel-estimated p-values for observed τ
values are� 0.05, by number of SNPs (p) and number of individuals (n). Model parameters: recombination rate, ϕ = 0.7, multiplier for recent migration

rates, m = 15; multiplier for ancestral migration rates, M = 5; population size, Nf = 500; time since ancestral migration rates, g = 10 generations.

https://doi.org/10.1371/journal.pgen.1009335.g004
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using subnational district sets, the proportion of location pairs ranked correctly by F̂ST is

greater than the proportion ranked correctly by r̂0:5 over almost all data sizes (Fig T in S1

Appendix).

Lastly, we examined, for a given data size, the ability to correctly distinguish highly con-

nected location pairs from less highly connected pairs using F̂ST or r̂0:5. We found that misclas-

sification of highly connected location pairs was more frequent when local rather than

subnational district sets were used to specify migration (Figs S and T in S1 Appendix). The five

location pairs with highest connectivity were correctly classified in only a small proportion of

simulation replicates (Figs S and T in S1 Appendix), indicating that distinguishing highly con-

nected groups of location pairs may be difficult in many epidemiological contexts.

Discussion

Genomic and genotype-based methods have become increasingly important tools for malaria

surveillance and control, providing valuable information on the impact of disease control

interventions [20], the geographic dispersal of antimalarial drug resistance [36], and connec-

tivity between regional and local parasite populations [5], among other critical insights. There

is an ongoing effort to operationalize these tools for use in routine disease surveillance activi-

ties, and developing the evidence base around their optimal use is a central scientific and pub-

lic health priority. In this study, we used genome sequence data from naturally-occurring P.
falciparum infections and sequence data simulated using parameters associated with different

epidemiological conditions to examine a specific but potentially important use cases in malaria

genomic surveillance, i.e. testing for isolation by distance and ranking gene flow between dif-

ferent P. falciparum population pairs.

We highlight the following observations:

1. Recent and ancestral population dynamics, together with the magnitude and dispersion of

migration rates, all influence the ability to distinguish levels of gene flow between malaria

populations.

2. Identifying highly related or nearly clonal between-location sequence pairs provides an

important measure for recent parasite migration events. IBD-based measures that capture

these recent migration events (including r̂a) are less influenced by ancestral migration than

FST.

3. The ability to identify isolation by distance and rank gene flow is lower when 24-SNP data-

sets are used or when fewer than 50 individuals are sampled per location. Larger data sizes

(100 or more SNPs and> 50 individuals per location) are recommended.

4. SNPs with higher estimated minor allele frequencies more reliably identify isolation by dis-

tance. For r̂a, these results are consistent with prior work [4]. FST estimates can be biased by

the allele frequencies of the marker set under analysis, with the inclusion of more rare poly-

morphisms leading to under-estimation of FST and enrichment for more equifrequent poly-

morphisms resulting in over-estimation [39]. Bias toward lower FST estimates when using

the SNP set with more rare alleles (estimated minor allele frequency> 0.05) may explain

why this ascertainment scheme yielded weaker correlations between FST and distance

(when compared with the set of more equifrequent SNPs). Identifying optimal SNP ascer-

tainment strategies for malaria genomic surveillance studies is an area of active research

[16].

5. Detecting or failing to detect isolation by distance may be less informative if parasite migra-

tion rates are not consistently correlated with distance [40], as observed in our analysis of
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mobile phone-associated movement data (specifically, for migration between nearby or

local districts in Thailand) and in other studies [8–10]. In these contexts, the ability to reli-

ably rank gene flow estimates or distinguish highly connected versus less highly connected

location pairs may be more useful from a programmatic standpoint.

6. Reliable ranking of gene flow between pairs of populations may be difficult in situations

where migration rates are high or highly uniform across location pairs (for example,

between local or nearby districts), even when using larger numbers of highly informative

SNPs and sampling large numbers of individuals.

There are multiple limitations that are important for understanding these observations in

context. The P. falciparum sequence data we obtained from the Pf3k database includes only a

small number of individuals from certain locations (for example, Pailin, Cambodia and Bago

Division, Myanmar). This analysis is limited to samples collected over a two-year period

(2009–2011) in a relatively small number of locations in Southeast Asia, and observations

from this dataset are not generalizable beyond the epidemiological and ecological conditions

specific to this context. In addition, our analysis is likely influenced by biases inherent to sam-

ple collection in each Pf3k study location, making it difficult to disambiguate whether observed

patterns in relatedness and differentiation are due to underlying P. falciparum population

structure or sampling biases. Potential sampling biases in field studies include over-sampling

of clinical or outbreak related infections, with resultant undersampling of subclinical infec-

tions, and laboratory-based sources of bias related to difficulties genotyping infections with

low parasite density. Our analysis also excluded polyclonal infections and individuals carrying

resistance-associated KEL1 haplotypes. Removal of polyclonal infections may result in sub-

stantial levels of missingness, particularly in highly endemic contexts where polyclonal infec-

tions are more common. Moreover, the distribution of polyclonal infections across locations

may provide important information about gene flow between malaria populations. Likewise,

exclusion of individuals carrying known resistance-associated mutations may result in sub-

stantial loss of potentially informative data and focusing on these isolates may provide insights

into patterns of connectivity underlying dispersal of drug resistance-associated genetic poly-

morphisms. Lastly, it is not clear that geographic distance between Pf3k study locations should

correlate with parasite migration rates and signatures consistent with isolation by distance

should be interpreted with caution here.

We sought to address some of these limitations via coalescent simulation, allowing for

numerical evaluation of relatedness- and differentiation-based approaches over a wider range

of possible epidemiological conditions. This approach avoids the potential biases inherent to

sampling from naturally-occurring P. falciparum populations in the field and allows for direct

comparison between known migration rates between locations and their corresponding FST
and r̂a values. Parameters used for coalescent simulation are subject to potential mis-specifica-

tion, particularly those parameters where there is uncertainty about their true values in natu-

rally-occurring P. falciparum populations (for example, recombination rate). Although we do

not statistically infer model parameters, the parameters used in our simulations yield FST and

r̂a values that are consistent with the range and distribution of values observed in Pf3k data.

Importantly, we specified equal population sizes across the five locations in the coalescent sim-

ulation, despite the fact that differential transmission between locations (resulting in larger

and smaller effective population sizes) could have important impacts on gene flow estimates.

There are other aspects of our approach that may limit generalizability to real P. falciparum
populations in the field. For example, we have assumed the ability to sample individuals evenly

across populations, and that sampling by default captures every population in the metapopula-

tion; in real-life genomic surveillance applications, sampling is likely to be unbalanced and

PLOS GENETICS Distinguishing levels of malaria gene flow

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009335 December 20, 2021 13 / 20

https://doi.org/10.1371/journal.pgen.1009335


imperfect, such that individuals from certain populations may be undersampled or not cap-

tured at all. In addition, our analysis only considers direct connectivity between locations and,

in certain contexts, indirect migration between locations may be an important contributor to

gene flow. Lastly, our analysis assumes perfect overlap of survey catchment area and popula-

tion, whereas in real-life surveillance applications, it is more difficult to ascribe a known geolo-

cation to each individual infection (given that individuals may move location between

infection and medical diagnosis or survey participation) and thus the task of assigning individ-

ual infectious to specific locations involves much more uncertainty.

Conclusion

In conclusion, we have examined numerically the properties of F̂ ST and r̂a as estimates of pop-

ulation-level gene flow between P. falciparum populations, and outlined, insofar as our simula-

tions allow, basic data requirements (number of individuals and number of SNPs) for their

use. Although this study is focused on a limited set of genomic surveillance applications (iden-

tifying isolation by distance and correctly ranking location pairs versus less highly connected

ones), our work underscores an important limitation that applies across a wider range of sur-

veillance applications: under certain epidemiological conditions (high migration between

large populations) it likely becomes infeasible to reliably rank gene flow between P. falciparum
populations, even with dense sampling of individuals and sequence data for large numbers of

highly informative genetic markers. Additional scientific work is needed to understand how

unbalanced sampling of individuals, incomplete sampling of metapopulations (for example,

non-sampling of entire demes), and other exigencies of real-world genomic surveillance

impact the ability to rank different levels of gene flow between P. falciparum populations in the

field.

Supporting information

S1 Appendix. Supplementary methods and figures. Fig A. Positions for filtered SNPs from

the Pf3k dataset. (A) SNPs with estimated minor allele frequency > 0.35. (B) SNPs with esti-

mated minor allele frequency > 0.05. Fig B. Number of monoclonal P. falciparum sequences

from the Pf3k database included in this study by location. Data includes only those

sequences collected between 2009 and 2011 and excludes KEL1 mutants (as described in

Methods). Contains information from OpenStreetMap and OpenStreetMap Foundation,

which is made available under the Open Database License. Fig C. Coalescent models used to

generate simulated sequence data. (A): Constant population size with change from ancestral

migration rates to current migration rates at time = g generations in the past. The ancestral

migration rate is equal for all location-location pairs and specified as ρij = M × max(ρCDR),

where M is a multiplier. Recent migration rates are specified using CDR-estimated mobility

data (ρCDR, as described in the Methods and Supplementary Methods) and a multiplier value

m. (B): Constant migration rates with exponential decrease in population size from an initial

size (Ni) to current size (Nf) starting at time = g generations in the past. (C): Constant popula-

tion size and constant migration rates. Fig D. CDR-estimated migration rates. (A) Relative

migration rates (ρCDR/max(ρCDR)) between 930 districts in Thailand with adequate CDR data.

(B) 10 randomly sampled sets of n = 5 neighboring districts with distances between district

centroids of approximately 100 km or less. (C) 10 randomly sampled sets of n = 5 distantly-

separated districts, selected to include districts > 600 km from randomly chosen a center dis-

trict. Sampling procedures for the district sets in (B) and (C) and their use for specifying

migration rates in the coalescent simulation are described in the Methods and Supplementary

Methods. Fig E. Example sets of nearby districts. Figure shows four of ten total randomly
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selected district sets used to specify migration rates in the coalescent model (corresponding to

Panel B in Fig D). Contains information from OpenStreetMap and OpenStreetMap Founda-

tion, which is made available under the Open Database License. Fig F. Example sets of distant

districts. Panels show four of ten total randomly selected district sets used to specify migration

rates in the coalescent model (corresponding to Panel C in Fig D). Contains information from

OpenStreetMap and OpenStreetMap Foundation, which is made available under the Open

Database License. Fig G. Distance versus alternative population-level estimates of related-

ness. (A) Distance versus mean pairwise IBD sequence length when only the longest IBD tract

lengths are considered (> 95th percentile, equal to tract length� 285.64 kb). (B) Distance ver-

sus r̂0:8, the proportion between-location individual-individual pairs with r> 0.8. Contains

information from OpenStreetMap and OpenStreetMap Foundation, which is made available

under the Open Database License. Fig H. Between-location relatedness for P. falciparum
individual-individual pairs. (A) Distribution of r values (proportion of SNPs that are IBD

between pairs) for between-location individual-individual pairs across 36 location-location

pairs in the Great Mekong Subregion. (B) Distribution of mean pairwise IBD segment length

(the mean length of shared IBD tracts for individual-individual pairs) for the same location-

location pairs. Symbols show location-location pairs with the highest estimated gene flow per

FST (red circles), r̂0:1 (blue circles), r̂0:5 (open blue squares), and mean pairwise IBD sequence

length (as described in Fig G, filled blue squares). Fig I. Pairwise relatedness for intra-loca-

tion individual-individual pairs. Plots show distribution of intra-location r values for 9 loca-

tions (proportion of SNPs that are IBD between within-location pairs of sequences) included

from the Pf3k dataset. Fig J. Observed values for FST and r̂0:5 coalescent-simulated sequence

data (local migration, model A). Data was simulated using constant population size and

instantaneous change from ancestral migration rates to recent migrations at time = g genera-

tions in the past (as described in Panel A of Fig C). Model parameters: recombination rate, ϕ =

0.7, multiplier for recent migration rates, m = 15; multiplier for ancestral migration rates,

M = 5; population size, Nf = 500; time since ancestral migration rates, g = 10 generations. (A)

and (B): Observed FST values compared to specified migration rates and distance between dis-

tricts, respectively. (C) and (D): Observed r̂0:5 values compared to specified migration rates

and distance between districts, respectively. Filled circles show values for 1000 independent

simulations using 10 randomly sampled district sets specifying CDR-estimated migration rates

(as shown in Fig D). Open circles show the mean FST or r̂0:5 values for each migration rate or

distance. Rug plot on y-axis shows estimated FST or r̂0:5 values obtained from the Pf3k P. falcip-
arum data (for comparison with the model-derived values). Fig K. Observed values for FST
and r̂0:5 coalescent-simulated sequence data (subnational migration, model A). Data was

simulated using constant population size and instantaneous change from ancestral migration

rates to recent migrations at time = g generations in the past (as described in Panel A of Fig C).

Model parameters: recombination rate, ϕ = 0.7, multiplier for recent migration rates, m = 15;

multiplier for ancestral migration rates, M = 5; population size, Nf = 500; time since ancestral

migration rates, g = 10 generations. (A) and (B): Observed FST values compared to specified

migration rates and distance between districts, respectively. (C) and (D): Observed r̂0:5 values

compared to specified migration rates and distance between districts, respectively. Filled cir-

cles show values for 1000 independent simulations using 10 randomly sampled district sets

specifying CDR-estimated migration rates (as shown in Fig D). Open circles show the mean

FST or r̂0:5 values for each migration rate or distance. Rug plot on y-axis shows estimated FST or

r̂0:5 values obtained from the Pf3k P. falciparum data (for comparison with the model-derived

values). Fig L. Observed values for FST and r̂0:5 coalescent-simulated sequence data (local

migration, model B). Data was simulated using a coalescent model with a constant set of
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migration rates and exponential decrease from an ancestral population size (Ni) to current

populations size (Nf) starting time = g generations in the past (as described in Panel B of Fig

C). Migration rates are specified using CDR-estimated mobility between nearby districts in

Thailand separated by approximately 100 km or less (“local” migration). Model parameters:

recombination rate, ϕ = 0.7, multiplier for migration rates, m = 15; final population size, Nf =

100; ancestral population size, Ni = 1000; time since onset of exponential decrease in popula-

tion size, g = 50 generations. (A) and (B): Observed FST values compared to specified migration

rates and distance between districts, respectively. (C) and (D): Observed r̂0:5 values compared

to specified migration rates and distance between districts, respectively. Filled circles show val-

ues for 1000 independent simulations using 10 randomly sampled district sets specifying

CDR-estimated migration rates (as shown in Fig D). Open circles show the mean FST or r̂0:5

values for each migration rate or distance. Rug plot on y-axis shows estimated FST or r̂0:5 values

obtained from the Pf3k P. falciparum data (for comparison with the model-derived values).

Fig M. Sensitivity analysis for recombination rate ϕ used in coalescent simulations (local

migration, model A). Model parameters: recombination rate, ϕ = 0.1 or 0.7, multiplier for

recent migration rates m = 15, multiplier for ancestral migration rates M = 5; final population

size, Nf = 500; time since ancestral migration rates, g = 10 generations. (A) and (B): Observed

FST values compared to specified migration rates between districts for ϕ = 0.1 and 0.7, respec-

tively. (C) and (D): Observed r̂0:5 values compared to specified migration rates. Filled circles

show values for 1000 independent simulations using 10 randomly sampled district sets specify-

ing CDR-estimated migration rates. Open circles show the mean FST or r̂0:5 values for each

migration rate or distance. Rug plot on y-axis shows estimated FST or r̂0:5 values obtained from

the Pf3k P. falciparum data (for comparison with the model-derived values). Fig N. Sensitivity

analysis for recombination rate ϕ used in coalescent simulations (local migration, model

B) Model parameters: recombination rate, ϕ = 0.1 or 0.7, multiplier for migration rates

m = 15; final population size, Nf = 100; ancestral population size, Ni = 1000; time since onset of

exponential decrease in population size, g = 50 generations. (A) and (B): Observed FST values

compared to specified migration rates between districts for ϕ = 0.1 and 0.7, respectively. (C)

and (D): Observed r̂0:5 values compared to specified migration rates. Filled circles show values

for 1000 independent simulations using 10 randomly sampled district sets specifying CDR-

estimated migration rates. Open circles show the mean FST or r̂0:5 values for each migration

rate or distance. Rug plot on y-axis shows estimated FST or r̂0:5 values obtained from the Pf3k

P. falciparum data (for comparison with the model-derived values). Fig O. Gene flow versus

migration rate for coalescent-simulated sequence data (local migration, model A). Migra-

tion rates are estimated using CDR data for neighboring districts in Thailand (separated

by� 100 km). (A) and (B) correlation between migration rate (as specified in the coalescent

model) and observed values of FST and r̂0:5, respectively. Points show τ values for 1000 inde-

pendent simulation replicates. (C) and (D): proportion of simulation replicates where Mantel-

estimated p-values for observed τ values are� 0.05, by number of SNPs (p) and number of

individuals (n). Fig P. Gene flow versus migration rate for coalescent-simulated sequence

data (subnational migration, model A). Migration rates are estimated using CDR data for

distant districts in Thailand. (A) and (B) correlation between migration rate (as specified in

the coalescent model) and observed values of FST and r̂0:5, respectively. Points show τ values

for 1000 independent simulation replicates. (C) and (D): proportion of simulation replicates

where Mantel-estimated p-values for observed τ values are� 0.05, by number of SNPs (p) and

number of individuals (n). Fig Q. Gene flow versus distance for simulated sequence data

(local migration, model B) Data was simulated using a coalescent model with a constant set

of migration rates and exponential decrease from an ancestral population size (Ni) to current
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populations size (Nf) starting time = g generations in the past (as described in Panel B of Fig

C). Migration rates are estimated using CDR data for neighboring districts in Thailand (sepa-

rated by� 100 km). (A) and (B): correlation between distance and observed values of FST and

r̂0:5, respectively. Points show τ values for 1000 independent simulation replicates. (C) and

(D): proportion of simulation replicates where Mantel-estimated p-values for observed τ val-

ues are� 0.05, by number of SNPs (p) and number of individuals (n). Fig R. Time since

ancestral migration events versus F̂ST or r̂0:5 (Model A). Top panels: Each point compares

the F̂ST value for the same location pair in the simulation using g = 10 (x-axis) versus g = 500

(y-axis). Bottom panels: Model parameters: M, the multiplier for ancestral migration rates

(before g generations in the past), is equal to either 5 (left panels) or 50 (right panels). m, the

multiplier for recent migration rates, is equal to 15 and the recombination rate, ϕ, is 0.7 for all

simulations shown. Points are colored by the number of migrants per generation in the

“recent” migration matrix (from 0 to g generations in the past). The dashed line shows where

x-axis and y-axis values are equal. Fig S. Ranking and classification metrics for coalescent-

simulated sequence data (local migration, model A) (A) and (B): Proportion of all location-

location pairs that are ranked correctly by either FST or r̂0:5, respectively, when compared to

the migration rate specified in the coalescent simulation. Points show these values for 1000

independent simulation replicates over different numbers of individuals (n) and SNPs (p) used

to calculate FST or r̂0:5. (C) and (D): Proportion of all simulation replicates where the location-

location pair with the highest migration rate is correctly identified as such by FST or r̂0:5,

respectively. (E) and (F): Proportion of all simulation replicates the location-location pairs

with the five highest migration rates are correctly classified as such as such by FST or r̂0:5. Fig

T. Ranking and classification metrics for coalescent-simulated sequence data (subnational

migration, model A). (A) and (B): Proportion of all location-location pairs that are ranked

correctly by either FST or r̂0:5, respectively, when compared to the migration rate specified in

the coalescent simulation. Points show these values for 1000 independent simulation replicates

over different numbers of individuals (n) and SNPs (p) used to calculate FST or r̂0:5. (C) and

(D): Proportion of all simulation replicates where the location-location pair with the highest

migration rate is correctly identified as such by FST or r̂0:5, respectively. (E) and (F): Proportion

of all simulation replicates the location-location pairs with the five highest migration rates are

correctly classified as such as such by FST or r̂0:5.
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7. Machado RLD, Póvoa MM, Calvosa VSP, Ferreira MU, Rossit ARB, dos Santos EJM, et al. Genetic

Structure of Plasmodium falciparum Populations in the Brazilian Amazon Region. The Journal of Infec-

tious Diseases. 2004; 190(9):1547–1555. https://doi.org/10.1086/424601 PMID: 15478058

8. Brown TS, Engø-Monsen K, Kiang MV, Mahmud AS, Maude RJ, Buckee CO. The impact of mobility

network properties on predicted epidemic dynamics in Dhaka and Bangkok. Epidemics. 2021;

35:100441. https://doi.org/10.1016/j.epidem.2021.100441 PMID: 33667878

9. Mahmud AS, Kabir MI, Engø-Monsen K, Tahmina S, Riaz BK, Hossain MA, et al. Megacities as drivers

of national outbreaks: The 2017 chikungunya outbreak in Dhaka, Bangladesh. PLOS Neglected Tropi-

cal Diseases. 2021; 15(2):e0009106. https://doi.org/10.1371/journal.pntd.0009106 PMID: 33529229

10. Kiang MV, Santillana M, Chen JT, Onnela JP, Krieger N, Engø-Monsen K, et al. Incorporating human

mobility data improves forecasts of Dengue fever in Thailand. Scientific Reports. 2021; 11(1). https://

doi.org/10.1038/s41598-020-79438-0 PMID: 33441598

11. Chenet SM, Schneider KA, Villegas L, Escalante AA. Local population structure of Plasmodium: impact

on malaria control and elimination. Malaria Journal. 2012; 11(1):412. https://doi.org/10.1186/1475-

2875-11-412 PMID: 23232077

12. Rebaudet S, Bogreau H, SilaïR, Lepère JF, Bertaux L, Pradines B, et al. Genetic Structure of Plasmo-

dium falciparum and Elimination of Malaria, Comoros Archipelago. Emerging Infectious Diseases.

2010; 16(11):1686–1694. https://doi.org/10.3201/eid1611.100694 PMID: 21029525

13. Mulenge FM, Aman RA, Magiri E, Culleton R, Kaneko A, Hunja CW. Genetic Diversity and Population

Structure of Plasmodium falciparum in Lake Victoria Islands, A Region of Intense Transmission. The

American Journal of Tropical Medicine and Hygiene. 2016; 95(5):1077–1085. https://doi.org/10.4269/

ajtmh.16-0383 PMID: 27601522

14. Schultz L, Wapling J, Mueller I, Ntsuke PO, Senn N, Nale J, et al. Multilocus haplotypes reveal variable

levels of diversity and population structure of Plasmodium falciparum in Papua New Guinea, a region of

intense perennial transmission. Malaria Journal. 2010; 9(1):336. https://doi.org/10.1186/1475-2875-9-

336 PMID: 21092231

15. Thompson EA. Identity by Descent: Variation in Meiosis, Across Genomes, and in Populations. Genet-

ics. 2013; 194(2):301–326. https://doi.org/10.1534/genetics.112.148825 PMID: 23733848

16. Lo E, Bonizzoni M, Hemming-Schroeder E, Ford A, Janies DA, James AA, et al. Selection and Utility of

Single Nucleotide Polymorphism Markers to Reveal Fine-Scale Population Structure in Human Malaria

Parasite Plasmodium falciparum. Frontiers in Ecology and Evolution. 2018; 6. https://doi.org/10.3389/

fevo.2018.00145

PLOS GENETICS Distinguishing levels of malaria gene flow

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009335 December 20, 2021 18 / 20

https://doi.org/10.1038/sdata.2016.66
http://www.ncbi.nlm.nih.gov/pubmed/27529469
https://doi.org/10.7554/eLife.43481
https://doi.org/10.7554/eLife.43481
http://www.ncbi.nlm.nih.gov/pubmed/30938289
https://doi.org/10.1186/s12916-018-1232-2
https://doi.org/10.1186/s12916-018-1232-2
https://doi.org/10.1534/genetics.119.302120
http://www.ncbi.nlm.nih.gov/pubmed/31209105
https://doi.org/10.1371/journal.pgen.1007065
http://www.ncbi.nlm.nih.gov/pubmed/29077712
https://doi.org/10.1093/oxfordjournals.molbev.a026247
https://doi.org/10.1093/oxfordjournals.molbev.a026247
http://www.ncbi.nlm.nih.gov/pubmed/11018154
https://doi.org/10.1086/424601
http://www.ncbi.nlm.nih.gov/pubmed/15478058
https://doi.org/10.1016/j.epidem.2021.100441
http://www.ncbi.nlm.nih.gov/pubmed/33667878
https://doi.org/10.1371/journal.pntd.0009106
http://www.ncbi.nlm.nih.gov/pubmed/33529229
https://doi.org/10.1038/s41598-020-79438-0
https://doi.org/10.1038/s41598-020-79438-0
http://www.ncbi.nlm.nih.gov/pubmed/33441598
https://doi.org/10.1186/1475-2875-11-412
https://doi.org/10.1186/1475-2875-11-412
http://www.ncbi.nlm.nih.gov/pubmed/23232077
https://doi.org/10.3201/eid1611.100694
http://www.ncbi.nlm.nih.gov/pubmed/21029525
https://doi.org/10.4269/ajtmh.16-0383
https://doi.org/10.4269/ajtmh.16-0383
http://www.ncbi.nlm.nih.gov/pubmed/27601522
https://doi.org/10.1186/1475-2875-9-336
https://doi.org/10.1186/1475-2875-9-336
http://www.ncbi.nlm.nih.gov/pubmed/21092231
https://doi.org/10.1534/genetics.112.148825
http://www.ncbi.nlm.nih.gov/pubmed/23733848
https://doi.org/10.3389/fevo.2018.00145
https://doi.org/10.3389/fevo.2018.00145
https://doi.org/10.1371/journal.pgen.1009335


17. Daniels RF, Volkman SK, Milner DA, Mahesh N, Neafsey DE, Park DJ, et al. A general SNP-based

molecular barcode for Plasmodium falciparum identification and tracking. Malar J. 2008; 7:223. https://

doi.org/10.1186/1475-2875-7-223 PMID: 18959790

18. Jacob CG, Thuy-Nhien N, Mayxay M, Maude RJ, Quang HH, Hongvanthong B, et al. Genetic surveil-

lance in the Greater Mekong subregion and South Asia to support malaria control and elimination. eLife.

2021; 10. https://doi.org/10.7554/eLife.62997 PMID: 34372970

19. Chang HH, Park DJ, Galinsky KJ, Schaffner SF, Ndiaye D, Ndir O, et al. Genomic Sequencing of Plas-

modium falciparum Malaria Parasites from Senegal Reveals the Demographic History of the Popula-

tion. Molecular Biology and Evolution. 2012; 29(11):3427–3439. https://doi.org/10.1093/molbev/

mss161 PMID: 22734050

20. Daniels RF, Schaffner SF, Wenger EA, Proctor JL, Chang HH, Wong W, et al. Modeling malaria geno-

mics reveals transmission decline and rebound in Senegal. Proc Natl Acad Sci U S A. 2015; 112

(22):7067–7072. https://doi.org/10.1073/pnas.1505691112 PMID: 25941365

21. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis

Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.

2010; 20(9):1297–1303. https://doi.org/10.1101/gr.107524.110 PMID: 20644199

22. The Pf3k Project. Pilot data release 5; 2016.

23. Miles A, Iqbal Z, Vauterin P, Pearson R, Campino S, Theron M, et al. Indels, structural variation, and

recombination drive genomic diversity in Plasmodium falciparum. Genome Res. 2016; 26(9):1288–

1299. https://doi.org/10.1101/gr.203711.115 PMID: 27531718

24. Early AM, Lievens M, MacInnis BL, Ockenhouse CF, Volkman SK, Adjei S, et al. Host-mediated selec-

tion impacts the diversity of Plasmodium falciparum antigens within infections. Nat Commun. 2018; 9

(1):1381. https://doi.org/10.1038/s41467-018-03807-7 PMID: 29643376

25. Noviyanti R, Miotto O, Barry A, Marfurt J, Siegel S, Thuy-Nhien N, et al. Implementing parasite genotyp-

ing into national surveillance frameworks: feedback from control programmes and researchers in the

Asia-Pacific region. Malar J. 2020; 19(1):271. https://doi.org/10.1186/s12936-020-03330-5 PMID:

32718342

26. Imwong M, Suwannasin K, Kunasol C, Sutawong K, Mayxay M, Rekol H, et al. The spread of artemisi-

nin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology

observational study. Lancet Infect Dis. 2017; 17(5):491–497. https://doi.org/10.1016/S1473-3099(17)

30048-8 PMID: 28161569

27. Imwong M, Hien TT, Thuy-Nhien NT, Dondorp AM, White NJ. Spread of a single multidrug resistant

malaria parasite lineage (PfPailin) to Vietnam. Lancet Infect Dis. 2017; 17(10):1022–1023. https://doi.

org/10.1016/S1473-3099(17)30524-8 PMID: 28948924

28. Amato R, Pearson RD, Almagro-Garcia J, Amaratunga C, Lim P, Suon S, et al. Origins of the current

outbreak of multidrug-resistant malaria in southeast Asia: a retrospective genetic study. Lancet Infect

Dis. 2018; 18(3):337–345. https://doi.org/10.1016/S1473-3099(18)30068-9 PMID: 29398391

29. Google. Google Maps Distance Matrix API; 2020.

30. Hudson RR. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformat-

ics. 2002; 18(2):337–338. https://doi.org/10.1093/bioinformatics/18.2.337 PMID: 11847089

31. Kelleher J, Etheridge AM, McVean G. Efficient Coalescent Simulation and Genealogical Analysis for

Large Sample Sizes. PLoS Comput Biol. 2016; 12(5):1–22. https://doi.org/10.1371/journal.pcbi.

1004842 PMID: 27145223

32. Parker DM, Carrara VI, Pukrittayakamee S, McGready R, Nosten FH. Malaria ecology along the Thai-

land–Myanmar border. Malaria Journal. 2015; 14(1). https://doi.org/10.1186/s12936-015-0921-y PMID:

26437860

33. Liu W, Li Y, Learn GH, Rudicell RS, Robertson JD, Keele BF, et al. Origin of the human malaria parasite

Plasmodium falciparum in gorillas. Nature. 2010; 467(7314):420–425. https://doi.org/10.1038/

nature09442 PMID: 20864995

34. Schaffner SF, Taylor AR, Wong W, Wirth DF, Neafsey DE. hmmIBD: software to infer pairwise identity

by descent between haploid genotypes. Malaria Journal. 2018; 17(1). https://doi.org/10.1186/s12936-

018-2349-7 PMID: 29764422

35. Hudson RR, Slatkin M, Maddison WP. Estimation of levels of gene flow from DNA sequence data.

Genetics. 1992; 132(2):583–589. https://doi.org/10.1093/genetics/132.2.583 PMID: 1427045

36. Shetty AC, Jacob CG, Huang F, Li Y, Agrawal S, Saunders DL, et al. Genomic structure and diversity of

Plasmodium falciparum in Southeast Asia reveal recent parasite migration patterns. Nat Commun.

2019; 10(1):2665. https://doi.org/10.1038/s41467-019-10121-3 PMID: 31209259

37. Palamara PF, Pe’er I. Inference of historical migration rates via haplotype sharing. Bioinformatics.

2013; 29(13):i180–i188. https://doi.org/10.1093/bioinformatics/btt239 PMID: 23812983

PLOS GENETICS Distinguishing levels of malaria gene flow

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009335 December 20, 2021 19 / 20

https://doi.org/10.1186/1475-2875-7-223
https://doi.org/10.1186/1475-2875-7-223
http://www.ncbi.nlm.nih.gov/pubmed/18959790
https://doi.org/10.7554/eLife.62997
http://www.ncbi.nlm.nih.gov/pubmed/34372970
https://doi.org/10.1093/molbev/mss161
https://doi.org/10.1093/molbev/mss161
http://www.ncbi.nlm.nih.gov/pubmed/22734050
https://doi.org/10.1073/pnas.1505691112
http://www.ncbi.nlm.nih.gov/pubmed/25941365
https://doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
https://doi.org/10.1101/gr.203711.115
http://www.ncbi.nlm.nih.gov/pubmed/27531718
https://doi.org/10.1038/s41467-018-03807-7
http://www.ncbi.nlm.nih.gov/pubmed/29643376
https://doi.org/10.1186/s12936-020-03330-5
http://www.ncbi.nlm.nih.gov/pubmed/32718342
https://doi.org/10.1016/S1473-3099(17)30048-8
https://doi.org/10.1016/S1473-3099(17)30048-8
http://www.ncbi.nlm.nih.gov/pubmed/28161569
https://doi.org/10.1016/S1473-3099(17)30524-8
https://doi.org/10.1016/S1473-3099(17)30524-8
http://www.ncbi.nlm.nih.gov/pubmed/28948924
https://doi.org/10.1016/S1473-3099(18)30068-9
http://www.ncbi.nlm.nih.gov/pubmed/29398391
https://doi.org/10.1093/bioinformatics/18.2.337
http://www.ncbi.nlm.nih.gov/pubmed/11847089
https://doi.org/10.1371/journal.pcbi.1004842
https://doi.org/10.1371/journal.pcbi.1004842
http://www.ncbi.nlm.nih.gov/pubmed/27145223
https://doi.org/10.1186/s12936-015-0921-y
http://www.ncbi.nlm.nih.gov/pubmed/26437860
https://doi.org/10.1038/nature09442
https://doi.org/10.1038/nature09442
http://www.ncbi.nlm.nih.gov/pubmed/20864995
https://doi.org/10.1186/s12936-018-2349-7
https://doi.org/10.1186/s12936-018-2349-7
http://www.ncbi.nlm.nih.gov/pubmed/29764422
https://doi.org/10.1093/genetics/132.2.583
http://www.ncbi.nlm.nih.gov/pubmed/1427045
https://doi.org/10.1038/s41467-019-10121-3
http://www.ncbi.nlm.nih.gov/pubmed/31209259
https://doi.org/10.1093/bioinformatics/btt239
http://www.ncbi.nlm.nih.gov/pubmed/23812983
https://doi.org/10.1371/journal.pgen.1009335


38. Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, et al. An open data-

set of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open

Research. 2021; 6:42. https://doi.org/10.12688/wellcomeopenres.16168.2 PMID: 33824913

39. Willing EM, Dreyer C, van Oosterhout C. Estimates of genetic differentiation measured by F(ST) do not

necessarily require large sample sizes when using many SNP markers. PLoS One. 2012; 7(8):e42649.

https://doi.org/10.1371/journal.pone.0042649 PMID: 22905157

40. Brockmann D, Helbing D. The Hidden Geometry of Complex, Network-Driven Contagion Phenomena.

Science. 2013; 342(6164):1337–1342. https://doi.org/10.1126/science.1245200 PMID: 24337289

PLOS GENETICS Distinguishing levels of malaria gene flow

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009335 December 20, 2021 20 / 20

https://doi.org/10.12688/wellcomeopenres.16168.2
http://www.ncbi.nlm.nih.gov/pubmed/33824913
https://doi.org/10.1371/journal.pone.0042649
http://www.ncbi.nlm.nih.gov/pubmed/22905157
https://doi.org/10.1126/science.1245200
http://www.ncbi.nlm.nih.gov/pubmed/24337289
https://doi.org/10.1371/journal.pgen.1009335

