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INTRODUCTION 
 

Cardiovascular diseases (CVDs) have been a notable 

cause of disability and death worldwide. Numerous  

 

epidemiological, clinical and experimental studies have 

demonstrated that hyperlipidemia is involved in the 

progression of atherosclerosis which, in turn, causes 

CVD. Hyperlipidemia has a vital function in the onset 
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ABSTRACT 
 

This study investigated the association of the NCAN-TM6SF2-CILP2-PBX4-SUGP1-MAU2 SNPs and gene-gene and 
gene-environment interactions with serum lipid levels in the population of Southwest China. Genotyping of 12 SNPs 
(i.e., rs2238675, rs2228603, rs58542926, rs735273, rs16996148, rs968525, rs17216525, rs12610185, rs10401969, 
rs8102280, rs73001065 and rs150268548) was performed in 1248 hyperlipidemia patients and 1248 normal subjects. 
The allelic and genotypic frequencies of the detected SNPs differed substantially between the normal and 
hyperlipidemia groups (P < 0.05-0.001), and the association of the 12 SNPs and hyperlipidemia was also observed  
(P < 0.004-0.0001). Four haplotypes (i.e., NCAN C-C, CILP2 G-T, PBX4-SUGP1 G-C, and MAU2 C-A-G-T) and 5 gene-
gene interaction haplotypes (i.e., rs2238675C-rs2228603C, rs16996148G-rs17216525T,  rs12610185G-rs10401969C, 

rs73001065G-rs8102280A-rs150268548G-rs968525C and rs73001065C-rs8102280A-rs150268548G-rs96852）showed 
a protective effect, whereas four other haplotypes (i.e., TM6SF2 T-A, TM6SF2 C-A, MAU2 G-G-G-C and MAU2 C-G-A-
T), as well as 4 gene-gene interaction haplotypes (i.e., rs58542926C-rs735273A, rs58542926T-rs735273A, 
rs73001065G-rs8102280G-rs150268548G-rs968525C, and rs73001065C-rs8102280G-rs150268548A-rs968525T), 
exhibited an inverse effect on hyperlipidemia (P < 0.05-0.0001). There were notable three-locus models comprising 
SNP-SNP, SNP-environment, and haplotype-haplotype interactions (P < 0.05-0.0001). The individuals with some 
genotypes and haplotypes reduced the prevalence of hyperlipidemia, whereas the individuals with some other 
genotypes and haplotypes augmented the prevalence of hyperlipidemia. The NCAN-TM6SF2-CILP2-PBX4-SUGP1-
MAU2 SNPs and gene-gene and gene-environment interactions on hyperlipidemia were observed in the population 
of Southwest China. 
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of atherosclerosis; it can lead to oxidative stress and 

chronic inflammation and induce damage to 

macromolecules, endothelial cell apoptosis, proliferation 

and migration of vascular smooth muscle cells, all of 

which involve the formation of atheroma, leading to the 

development of atherosclerosis [1]. Although people 

strive to change their lifestyle and take such medications 

as statins and other lipid-lowering drugs, the incidence of 

CVD is still increasing [2]. It is difficult for many 

individuals to reach standard serum lipid levels even after 

taking medications, or some of them may suffer from 

certain side effects [3]. Thus, it is essential to discover 

variants for new markers that regulate serum lipid 

profiles, which may facilitate efforts to further improve 

hyperlipidemia and thus may reduce the probability  

of CVD. 

 

Recently, genome-wide association studies (GWAS) 

have identified numerous new loci at chromosome 19p13 

that can modify lipid metabolism, such as the neurocan 

gene (NCAN, Gene ID:1463, OMIM: 600826), trans-

membrane 6 superfamily member 2 gene (TM6SF2, Gene 

ID: 53345, OMIM: 606563), cartilage intermediate layer 

protein 2 gene (CILP2, Gene ID:148113, OMIM: 

612419), PBX homeobox 4 gene (PBX4, Gene ID:80714, 

OMIM: 608127), SURP and G-patch domain containing 

1 gene (SUGP1, Gene ID:57794, OMIM: 607992, 

formerly known as F23858, RBP, SF4), and MAU2 sister 

chromatid cohesion factor gene (MAU2, Gene ID:23383, 

OMIM: 614560) [4, 5]. These loci are located in regions 

associated with morbidity due to coronary artery diseases 

(CAD) [6–8]. Kozlitina et al. [9] demonstrated that 

hepatic triglyceride content (HTGC) was associated with 

TM6SF2 (rs58542926 c.449 C > T). Several in vitro 

experiments have found that knockdown of TM6SF2 can 

cause decreased synthesis of apolipoprotein (Apo) B and 

triglyceride (TG)-rich lipoproteins [9, 10]. Moreover, 

TM6SF2 knockdown also causes accumulation of cellular 

TG, which has been reported as a significant increase in 

the number and size of lipid droplets at the subcellular 

level [11]. In contrast, overexpression of TM6SF2 can 

result in a reduction in the number and size of lipid 

droplets [11]. Some previous studies have established 

that the 19p13.11 locus linked together the adjoining 

genes NCAN and PBX4 with dyslipidemia, and these 

relationships may now be attributed to TM6SF2 [12–14]. 

Rašlová et al. [15] established that there was an 

association between CILP polymorphism and 

esterification rate of cholesterol in plasma high-density 

lipoprotein and affect lipid metabolism. Zhou et al. [8] 

identified that the rs16996148 SNP in NCAN-CILP was 

significantly associated with reduced CAD risk in the 

Chinese populations. Luptakova et al. [16] established 

that the minor T allele of CILP2 can fight against the 

elevation of lipid and lipoprotein in serum. Some reports 

have also documented that after transfecting the HepG2 

and Huh7 cell lines with siRNAs for SUGP1, the 

transcript concentrations and protein levels of SUGP1 

were reduced by 45–70% and 72–91%, respectively [17]. 

Moreover, overexpression of SUGP1 was correlated with 

greater elevation in total cholesterol (TC) and TG, both in 

vivo and in vitro [17]. In addition, overexpression of 

SUGP1 led to greater activity of hepatic 3-hydroxy-3-

methylglutaryl coenzyme A (HMG CoA) reductase 

(HMGCR) enzyme, but there was no change in the 

transcript level of hepatic HMGCR [17]. MAU2, which  

is located close to NCAN on chromosome 19, has  

been identified to have an association with TC, low-

density lipoprotein cholesterol (LDL-C) and TG in serum 

[18, 19]. 

 

The causes of these variations have not been fully 

elucidated, but hyperlipidemia is considered to be a 

complex disease characterized by subtle interpatient 

variability, comprising host genetic factors and 

environmental interactions that generate disease 

phenotypes and establish disease advancement. 

Although a series of studies have revealed that 

environmental factors have determined the presence of 

dyslipidemia [20–22], it is also known that genetic 

factors have a vital role and can establish how an 

individual responds to challenges [6, 12]. Our previous 

study established that the BCL3-PVRL2-TOMM40 

SNPs were located on chromosome 19 p11, the 

prevailing model of rs157580 and rs8100239 SNPs, and 

some haplotypes and gene-gene interaction haplotypes 

were involved in protection, although other haplotypes 

and gene-gene interaction haplotypes, including the 

prevailing model of rs6859, rs3810143, rs519113 and 

rs10402271 SNPs, indicated an augmented morbidity 

function [23]. Even though we have conducted 

substantial research and made extensive progress in 

identifying genetic modifiers, the relationship between 

hyperlipidemia and other gene polymorphisms has not 

been fully elucidated. In this study, we focus on the 

association of the NCAN, TM6SF2, CILP2, PBX4, 

SUGP1 and MAU2 single nucleotide variants, gene-

environment interactions and gene-gene interactions 

with serum lipid levels. Configurations of the 

relationships among SNPs throughout the genome 

might be categorized with regard to linkage dis-

equilibrium (LD) and haplotype [24]. 

 

RESULTS 
 

Demographic and biochemical characteristics 
 

Table 1 describes the typical characteristics of 2,496 

participants from both groups. Systolic blood pressure, 

diastolic blood pressure, pulse pressure, TC, TG, high-

density lipoprotein cholesterol (HDL-C) and LDL-C 

levels were substantially higher in hyperlipidemia than 
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Table 1. Comparison of demographic, lifestyle characteristics and serum lipid levels between the normal and 
hyperlipidemia groups. 

HDL-C: high-density lipoprotein cholesterol. LDL-C: low-density lipoprotein cholesterol. Apo: Apolipoprotein. 1Mean ± SD 
determined by t-test. 2Because the data were not normally distributed, the value of triglyceride was presented as median 
(interquartile range), and the difference between the two groups was determined by the Wilcoxon-Mann-Whitney test. 

in normal groups (P < 0.05-P < 0.001 for all), whereas 

body weight, waist circumference, and blood glucose 

levels were significantly lower in hyperlipidemia than in 

normal groups (P < 0.001 for all). However, there was 

no substantial difference in age, sex ratio, height, body 

mass index (BMI), smoking status, alcohol consumption, 

ApoA1, ApoB levels, or the ApoA1/ApoB ratio between 

the two groups (P > 0.05 for all). 

 

Genotypic and allelic frequencies in both groups 
 

Figure 1 shows the locations, as well as the partial 

nucleotide sequences, of the NCAN, TM6SF2, CILP2, 

PBX4, SUGP1 and MAU2 SNPs, which are located on 

chromosome 19. The genotypes of 12 SNPs were 

confirmed by direct sequencing. As mentioned in Table 

2, the genotypic distribution of 12 SNPs substantially 

conformed to Hardy-Weinberg equilibrium (HWE) in 

the hyperlipidemia and normal. The genotypic and 

allelic frequencies of 12 SNPs in the NCAN, TM6SF2, 

CILP2, PBX4, SUGP1 and MAU2 were substantially 

different between the hyperlipidemia and normal 

groups (Tables 2 and 3). The allelic frequencies of 

rs2238675C, rs2228603T, rs58542926T, rs735273G, 

rs16996148T, rs17216525T, rs12610185A, rs1040 

1969T, rs73001065G, rs8102280G, rs150268548A, 

and rs968525T were substantially greater in 

hyperlipidemic individuals than in normal subjects (P 

< 0.05-P < 0.001, for all). 

 

Genotypes and serum lipid profiles 

 

The associations among the genotypes of the NCAN, 

TM6SF2, CILP2, PBX4, SUGP1 and MAU2 SNPs and 

Parameter Normal Hyperlipidemia t (x2) P 

Number 1248 1248   

Male/female 478/770 487/761 0.137 0.742 

Age (years)1 55.98±12.78 56.87±12.12 1.672 0.205 

Height (cm) 154.02±7.74 153.53±8.07 2.495 0.114 

Weight (kg) 53.01±8.92 52.95±10.60 23.359 2E-006 

Body mass index (kg/m2) 22.31±3.22 22.36±3.70 3.630 0.057 

Waist circumference 77.13±7.81 76.34±9.21 24.311 2E-007 

Smoking status [n (%)]     

Non-smoker 936(75.00) 984(78.84)   

≤ 20 cigarettes/day 276(22.11) 233(18.66)   

> 20 cigarettes/day 36(2.89) 30(2.40) 5.378 0.068 

Alcohol consumption [n (%)]     

Non-drinker 1007(80.69) 994(79.65)   

≤ 25 g/day 121(9.66) 136(10.90)   

> 25 g/day 120 (9.65) 118(9.45) 0.997 0.614 

Systolic blood pressure (mmHg) 129.26±19.28 135.89±24.76 69.976 2E-016 

Diastolic blood pressure (mmHg) 81.55±11.46 83.47±12.55 12.250 E-005 

Pulse pressure (mmHg) 47.71±15.29 52.42±18.56 50.587 4E-015 

Glucose (mmol/L) 6.18±1.91 6.15±1.43 21.278 E-006 

Total cholesterol (mmol/L) 4.97±1.05 5.21±1.09 6.203 0.012 

Triglyceride (mmol/L)2 1.49(0.68) 1.63(0.71) 7.036 0.005 

HDL-C (mmol/L) 1.75±0.50 1.81±0.60 12.497 2E-005 

LDL-C (mmol/L) 2.88±0.85 2.99±0.79 6.198 0.017 

ApoA1 (g/L) 1.35±0.26 1.39±0.32 0.361 0.548 

ApoB (g/L) 0.84±0.19 0.88±0.20 1.484 0.223 

ApoA1/ApoB 1.67±0.50 1.66±0.57 0.095 0.758 
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serum lipid concentrations are presented in Figure 2. 

The minor allele carriers had higher serum levels of TC 

(NCAN rs2238675, NCAN rs2228603, TM6SF2 

rs5854292, TM6SF2 rs735273, CILP2 rs16996148, and 

MAU2 rs968525), TG (TM6SF2 rs5854292, TM6SF2 

rs735273, CILP2 rs16996148, CILP2 rs17216525, 

PBX4 rs12610185, SUGP1 rs10401969, and MAU2 

rs8102280), and LDL-C (CILP2 rs16996148, MAU2 

rs73001065, and MAU2 rs150268548) than the minor 

allele noncarriers in both hyperlipidemia and normal 

groups (P < 0.004 for all). 

 

Haplotype-based association with hyperlipidemia 
 

As presented in Table 4, the most common haplotypes 

were the NCAN C-T, TM6SF2 T-A, PBX4-SUGP1 G-T 

and MAU2 C-G-A-T (≥ 30%, in all samples). The 

incidences of the NCAN C-C (G2), TM6SF2 T-A (G3), 

TM6SF2 C-A (G5), CILP2 G-T (G6), PBX4-SUGP1 G-

C (G8), MAU2 G-G-G-C (G9), MAU2 G-A-G-C (G10), 

MAU2 C-G-A-T (G12), and MAU2 C-A-G-T (G13) 

haplotypes were significantly different between the 

hyperlipidemia and normal groups (P < 0.05 for all). In 

addition, the haplotypes of G2, G6, G8, and G13 

showed a protective effect, whereas all of the G3, G5, 

G9 and G12 haplotypes showed an inverse effect (P < 

0.05-0.001, respectively). The detected sites that were 

elucidated by multiple locus LD were not fully 

statistically independent in the participants. As 

presented in Figure 3, both the LD and the haplotypes 

block the combination of two groups. Figure 4 shows 

that carriers with the detected gene-gene interaction 

haplotypes had higher serum TC (rs58542926C-

rs735273A and rs73001065C-rs8102280G-rs150268 

548A-rs968525T), LDL (rs73001065G-rs8102280G-

rs150268548G-rs968525C, and rs73001065C-rs81022 

80G-rs150268548A-rs968525T), and TG (rs58542926T 

-rs735273A) levels than the haplotype non-carriers. 

 

 

 

Figure 1. Locations and partial nucleotide sequences of the NCAN, TM6SF2, CILP2, PBX4, SUGP1 and MAU2 SNPs. NCAN, the 
neurocan gene; TM6SF2, the transmembrane 6 superfamily member 2 gene; CILP2, the cartilage intermediate layer protein 2 gene; PBX4, the 
PBX homeobox 4 gene; SUGP1, the SURP and G-patch domain containing 1 gene; MAU2, the MAU2 sister chromatid cohesion factor gene.
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Table 2. Comparison of the genotype frequencies between the normal and hyperlipidemia groups [n (%)]. 

SNP Genotype Normal (n=1248) Hyperlipidemia(n=1248) χ2 P 

CC 135(10.8) 164(13.1) 

CT 551(44.2) 578(46.3) 

TT 562(45.0) 506(40.5) 

 PHWE 0.891 0.245   

CC 454(36.4) 375(30.1) 

CT 597(47.8) 618(49.5) 

TT 197(15.8) 255(20.4) 

 PHWE 0.748 0.071   

CC 713(57.1) 663(53.1) 

CT 461(36.9) 484(38. 8) 

TT 74(5.9) 101(8.1) 

 PHWE 0.941 0.065   

AA 989 (79.3) 923(74.0) 

AG 244 (19.6) 301(24.1) 

GG 15(1.2) 24(1.9) 

 PHWE 0.887 0.238   

GG 984 (78.9) 667 (53.5) 

GT 243 (19.5) 491(39.3) 

TT 21 (1.7) 90(7.2) 

 PHWE 0.891 0.245   

CC 64(5.1) 36(2.9) 

CT 437(35.0) 348(27.9) 

TT 747(59.9) 864(69.2) 

 PHWE 0.778 0.651   

GG 241(19.3) 176(14.1) 

GA 614(49.2) 584(46.8) 

AA 393(31.5) 488(39.1) 

 PHWE 0.886 0.628   

TT 437(35.0) 476(38.1) 

TC 608(48.7) 613(49.1) 

CC 203(16.3) 159(12.7) 

 PHWE 0.781 0.104   

GG 63(5.05) 81(6.5) 

GC 435(34.9) 511(41.0) 

CC 750(60.1) 656(52.6) 

 PHWE 0.884 0.111   

GG 582(46.4) 640(51.3) 

GA 540(43.3) 507(40.6) 

AA 126(10.3) 101(8.1) 

 PHWE 0.872 0.566   

GG 227 (18.20) 171(13.7) 

GA 611(49.0) 582(46.6) 

AA 410 (32.9) 495(39.7) 
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 PHWE 0.664 0.064   

CC 228 (18.3) 185(14.8) 

CT 576(46.2) 581(46.6) 

TT 444(35.6) 482(38.6) 

 PHWE 0.521 0.073   

NCAN: the neurocan gene. TM6SF2: the transmembrane 6 superfamily member 2 gene. CILP2: the cartilage intermediate 
layer protein 2 gene. PBX4: the PBX homeobox 4 gene. SUGP1: the SURP and G-patch domain containing 1 gene. MAU2: the 

MAU2 sister chromatid cohesion factor gene. HWE: Hardy-Weinberg equilibrium. 

Gene-gene (G × G) interaction-based association 

with hyperlipidemia 

 

As shown in Table 5, the most common G × G 

interaction was C-C-C-A-G-C-A-T-C-G-A-T (H1, > 

15%, in all samples). The frequencies of the C-C-C-A-

G-C-A-T-C-G-A-T (H1), T-C-C-A-G-C-A-T-C-G-A-T 

(H2), T-T-C-A-G-C-A-T-C-G-A-T (H3), C-C-C-A-G-

C-A-T-C-A-G-C (H5), C-C-C-A-G-C-G-C-G-A-G-C 

(H6), T-T-T-A-G-C-G-C-C-G-A-T (H7), T-T-T-A-G-

C-G-C-C-A-G-C (H8), and T-T-T-A-G-C-A-T-C-A-G-

C (H9) G × G interactions were significantly different 

between the normal and hyperlipidemia groups  

(P < 0.05 for all). Meanwhile, the G × G interactions of 

H1, H2, H6, H8 and H9 contributed to a protective 

effect, while the G × G interaction of H3, H5 and H7 

showed an inverse effect. The H2, H6, H8 and H9 

carriers had low TC levels, but the H5 and H7 carriers 

had high TC levels; the H1 carriers had low TG levels, 

but the H3 carriers had high TG levels; the H7 carriers 

had high LDL-C levels, and the H9 carriers had low 

LDL-C levels; and the H5 carriers had high ApoA1 

levels in both the normal and hyperlipidemia groups 

(Figure 5; P < 0.006 for all). 

 

G × G and gene-environment (G × E) interactions on 

hyperlipidemia 
 

Entropy-based interaction dendrogram (Figure 6) and 

proportional hazard model results (Figure 7) show the 

strongest synergy of SNP-SNP interaction between 

rs735273 and rs16996148 and haplotype-haplotype 

interaction between G10 and G6. However, these results 

showed a redundancy effect in SNP-environment 

interaction (rs16996148 and diabetes), haplotype-

environment interaction (G6 and diabetes), gene-gene 

interaction (H3 and H6) and gene-environment 

interaction (H6 and diabetes). We also established that 

the rs735273 AA and rs16996148 GT/GG genotypes 

increased the risk of hyperlipidemia, whereas the 

rs735273 AG/GG, rs16996148 TT, rs735273 AG/GG 

and rs16996148 GT/TT genotypes decreased the risk of 

hyperlipidemia. SNP-environment interaction and 

rs16996148 and diabetes indicated that the rs16996148 

SNP decreased the risk of hyperlipidemia, whereas 

rs16996148 GT/TT and diabetes, rs16996148 TT and 

diabetes increased the risk of hyperlipidemia. The 

haplotype-haplotype interaction showed that G10 

(MAU2 G-A-G-C) and G6 (CILP2 G-T) carriers could 

reduce the risk of hyperlipidemia compared with G10 or 

G6 carriers. With regard to the gene-gene interaction 

between H3 (T-T-C-A-G-C-A-T-C-G-A-T) and H6 (C-

C-C-A-G-C-G-C-G-A-G-C) carriers, we found that the 

latter showed an inferior risk of hyperlipidemia, while 

the former indicated an augmented probability of 

hyperlipidemia. As a genotype-environment interaction 

was considered, G6 (CILP2 G-T) carriers and diabetes 

increased the risk of hyperlipidemia. A similar  

result was shown in the gene-environment interaction 

between H6 (C-C-C-A-G-C-G-C-G-A-G-C) carriers 

and diabetes. 

 

DISCUSSION 
 

The major new findings in this study were as follows: 

(1) The study showed the single nucleotide mutation 

frequencies, haplotype frequencies and interaction of 

G × G interlocus frequencies among 12 NCAN, 

TM6SF2, CILP2, PBX4, SUGP1 and MAU2 SNPs in 

the people from Southwest China for the first time; (2) 

It also presented new evidence that single nucleotide 

mutation, haplotype, G × G and G × E interactions 

among the NCAN, TM6SF2, CILP2, PBX4, SUGP1 

and MAU2 SNPs are probably closely associated with 

serum lipid levels; (3) We established some new 

diversity effects from the interactions of SNP-SNP, 

SNP-environment, haplotype-haplotype, haplotype-

environment, G × G and G × E; and (4) We also found 

different interactions that augmented the risk of 

hyperlipidemia. 

 

Hyperlipidemia is the main risk factor that can result in 

CVD, which accounts for approximately 4 million 

deaths each year worldwide [25, 26]. High levels of TC 

can contribute to the risk for CAD [27], ischemic 

cerebrovascular accident [28], aortic dissection and 

peripheral arterial disease [29]. It has been 

demonstrated that TG levels have an intense association 

with non-alcoholic fatty liver disease (NAFLD) and 

metabolic syndrome [30]. NAFLD and metabolic 
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Table 3. Comparison of the allele frequencies between the normal and hyperlipidemia groups [n (%)]. 

SNP  Allele Normal (n=1248) Hyperlipidmia (n=1248) χ2 P 

NCAN rs2238675 C/T 821(33.0)/1675(67.1) 906(36.3)/1590(63.7) 6.396 0.011 

NCAN rs2228603 C/T 1505(60.3)/991(39.7) 1368(54.8)/1128(45.2) 15.390 E-005 

TM6SF2 rs58542926 C/T 1887(75.6)/609(24.4) 1810(72.5)/686(27.5) 6.182 0.013 

TM6SF2 rs735273 A/G 2222(89.0)/274(11.0) 2147(86.0)/349(14.0) 10.316 0.001 

CILP2 rs16996148  G/T 2211 (88.6)/285(11.4) 1825(73.1)/671(26.9) 192.770 4E-012 

CILP2 rs17216525 C/T 565(22.6)/1931(77.4) 420(16.8)/2076(83.2) 26.592 3E-007 

PBX4 rs12610185 G/A 1096(43.9)/1400(56.1) 936(37.5)/1560(62.5) 21.247 2E-007 

SUGP1 rs10401969 T/C 1482(59.4)/1014(40.6) 1565(62.7)/931(37.3) 5.803 0.016 

MAU2 rs73001065 G/C 561(22.5)/1935(77.5) 673(27.0)/1823(73.0) 13.503 9E-004 

MAU2 rs8102280 G/A 1704(68.3)/792(31.7) 1787(71.6)/709(28.4) 6.563 0.010 

MAU2 rs150268548 G/A 1065(42.7)/1431(57.3) 924(37.0)/1572(63.0) 16.616 6E-005 

MAU2 rs968525 C/T 1031(41.3)/1465(58.7) 951(38.1)/1545(61.9) 5.355 0.021 

NCAN: the neurocan gene. TM6SF2: the transmembrane 6 superfamily member 2 gene. CILP2: the cartilage intermediate 
layer protein 2 gene. PBX4: the PBX homeobox 4 gene. SUGP1: the SURP and G-patch domain containing 1 gene. MAU2: the 

MAU2 sister chromatid cohesion factor gene. 

syndrome have also been reported to be independent of 

the risk factors for subclinical atherosclerosis [31, 32]. 

Previous studies have demonstrated that serum lipid 

levels could be affected by multiple environmental 

factors, such as unhealthy diet [33], lifestyle (e.g., 

smoking, excessive alcohol consumption, insufficient 

exercise) [34–36], genetic factors [37], and their 

interactions [38]. 

 

This study identified that the variants of NCAN, 
TM6SF2, CILP2, PBX4, SUGP1 and MAU2 were 

related to serum lipid concentrations. Moreover, there 

were substantial differences in the genotypic and allelic 

frequencies of 12 SNPs between the normal and 

hyperlipidemia groups. These outcomes suggest that 

genetic factors are associated with the prevalence of 

hyperlipidemia. When we analyzed the relationship 

between SNPs and hyperlipidemia, the rs735273 and 

rs16996148 SNPs were found to decrease the risk of 

hyperlipidemia. However, the interaction of the SNP-

environment showed that subjects with the rs16996148 

SNP and diabetes had an increased risk of 

hyperlipidemia. We also found similar results in the 

interactions of haplotype-environment, G × G and G × 

E. A plausible interpretation for these findings is that 

metabolic disorder might occur due to the combined 

influence of people’s behavior, environmental and 

genetic factors [39, 40]. More than 50% of the diet of 

southern Chinese populations includes cereals [41], 

which significantly lack some important micronutrients, 

such as vitamins and dietary fiber. These populations 

prefer rice, refreshing sour, spicy and sweet food. 

Furthermore, these populations all prefer food 

containing many saturated fatty acids, such as pork, 

beef and animal organ offal [42]. Long-chain dietary 

saturated fatty acids have shown detrimental 

consequences on lipid metabolism in blood, especially 

resulting in higher levels of plasma TC and TG [43, 44]. 

 

Unhealthy lifestyles (e.g., unhealthy diet, smoking, 

excessive alcohol intake and lack of exercise) have been 

closely connected with abnormal serum lipid levels [45]. 

Compared with the normal groups, there was a higher 

percentage of smoking and alcohol intake in the 

hyperlipidemia group. A large number of Southwest 

Chinese adults enjoy drinking. Most people who live in 

rural areas usually make wine themselves by using 

corns, cereals and cassava. It has been documented that 

alcohol could elevate serum levels of HDL-C and benefit 

CAD [46, 47]. However, it has also been reported that 

the elevation of HDL-C levels was set off by increased 

smoking levels. Smoking could increase the serum 

concentrations of TC, TG and LDL-C, but it could 

decrease serum levels of HDL-C [48, 49]. This 

phenomenon may be a suitable explanation for the 

current results of serum lipid levels between the two 

groups. There might be an effect of modifiable or non-

modifiable risk factors on genetic variants identified in 

GWAS of disease. Recently, a number of variants have 

been identified to be connected with lifestyle behaviors 

and health outcomes in GWAS. From the example of 

tobacco and alcohol research that we discussed above, 

behavioral phenotypes can be predicted by a genetic 

variant, which has been shown in GWAS of disorders 

that informally interact with these activities. It is 

important to explain GWAS findings [50]. 

 

Dyslipidemia is the result of a combination of genetic 

and environmental factors that have been universally 

recognized worldwide [51, 52]. China is a multiethnic 

country with 56 ethnic groups [53]. Han nationality is the 

largest ethnic group, and the rest of 55 ethnic groups are 
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distributed in different areas of the country. The 

genotypic and allelic frequencies of many SNPs in some 

genes were inconsistent in diverse racial/ethnic groups 

[54–56]. There may also be an ethnic difference in 

lifestyle and environmental factors, as well as in genetic 

background. To the best of our knowledge, the TM6SF2 

rs58542926 SNP increased the risk of NAFLD in the 

eastern Chinese Han population [57]. The SNP of 

rs16996148 in NCAN-CILP2 or NCAN/CILP2/PBX4 was 

significantly associated with dyslipidemia in the 

midlands and east of the Chinese Han population [8, 58]. 

The studies mentioned above suggested that genetic 

variants of those genes in chromosome 19p13 confer 

susceptibility to dyslipidemia in the Chinese populations. 

However, the relationship between dyslipidemia and 

SUGP1 and MAU2 is not clear in the Chinese 

populations, and the association between SNPs,  

gene-gene, and gene-environment interactions and 

dyslipidemia is still limited. With the rapid development 

of biomedicine technology, we are entering a precision 

medicine era, and precision medicine seeks to identify 

and classify individual patients such that optimal 

treatment decisions can be made. It is essential to explore 

the NCAN-TM6SF2-CILP2-PBX4-SUGP1-MAU2 SNPs, 

gene-gene and gene-environment interactions on serum 

lipid levels in Southeast China and other areas of Chinese 

populations. These results may help us to take precise 

treatment for dyslipidemia and decrease the risk of CVD. 

 

The current study has several limitations. First, the 

sample size is comparatively small. Thus, additional 

studies with large sample sizes are necessary. Second, 

lower numbers of individuals are obtainable for minor 

allele frequency (MAF) of certain variants, and it is 

relatively weak in calculating a strong power. Third, 

numerous unmeasured environmental and genetic 

factors must be determined, such as dietary patterns, 

physical exercises, and energy intake. Finally, we 

should define the relevance of this finding with a high 

criterion in further studies, including incorporating the 

genetic information of the NCAN, TM6SF2, CILP2, 

PBX4, SUGP1 and MAU2 single nucleotide mutations, 

haplotypes, interactions of G × G and G × E from in 

vivo to in vitro, and testing the effect of genetic variants 

with different molecular biological levels, such as 

genetic transcription and expression. 

 

 
 

Figure 2. Association of the NCAN, TM6SF2, CILP2, PBX4, SUGP1 and MAU2 genotypes and serum lipid parameters in the 
normal and hyperlipidemia groups. TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein 
cholesterol; ApoA1, apolipoprotein A1; ApoB, apolipoprotein B; TG, triglyceride. aP < 0.004, bP < 0.001, and cP < 0.0001. 
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Table 4. Comparison of the haplotype frequencies between the normal and hyperlipidemia groups [n (frequency)]. 

NoO. Haplotype Hyperlipidemia Normal χ2 P OR (95% CI) 

G1 NCAN C-T 815.80(0.3) 818.97(0.3) 0.091 0.762 1.0 (0.9-1.2) 

G2 NCAN C-C 0.08(0.0) 0.20(0.0) 20.637 6E-006 0.7 (0.7-0.8) 

G3 TM6SF2 T-A 626.97(0.3) 611.80(0.3) 16.728 4E-005 1.4 (1.2-1.6) 

G4 TM6SF2 C-G 20.95(0.0) 0.00(0.0) 0.446 0.504 1.1 (0.9-1.2) 

G5 TM6SF2 C-A 84.00(0.0) 211.15(0.1) 10.752 0.001 1.3 (1.1-1.5) 

G6 CILP2 G-T 0.00(0.0) 12.00(0.0) 14.534 E-004 0.7 (0.6-0.8) 

G7 PBX4-SUGP1 G-T 1524.00(0.6) 1523.83(0.6) 0.049 0.826 1.0 (0.9-1.1) 

G8 PBX4-SUGP1 G-C 35.96(0.0) 36.16(0.0) 12.128 5E-004 0.8 (0.7-0.9) 

G9 MAU2 G-G-G-C 480.04(0.2) 371.85(0.2) 15.976 6E-005 1.4 (1.2-1.6) 

G10 MAU2 G-A-G-C 61.44(0.3) 86.22(0.0) 3.662 0.036 0.7 (0.5-1.0) 

G11 MAU2 C-A-A-T 203.71(0.0) 252.01(0.1) 4.376 0.557 0.8 (0.7-0.9) 

G12 MAU2 C-G-A-T 1461.50(0.6) 1341.77(0.5) 20.71 5E-006 1.3 (1.2-1.5) 

G13 MAU2 C-A-G-T 645.79(0.3) 753.77(0.3) 8.189 0.004 0.8 (0.7-0.9) 

NCAN: the neurocan gene. TM6SF2: the transmembrane 6 superfamily member 2 gene. CILP2: the cartilage intermediate 
layer protein 2 gene. PBX4: the PBX homeobox 4 gene. SUGP1: the SURP and G-patch domain containing 1 gene. MAU2: the 
MAU2 sister chromatid cohesion factor gene. The haplotype is combined with NCAN rs2238675-rs2228603, TM6SF2 
rs58542926-rs735273, CILP2 rs16996148-rs17216525, PBX4-SUGP1 rs12610185-rs10401969, and MAU2 rs73001065-
rs8102280-rs150268548-rs968525. 

In conclusion, this study shows potential interactions 

among the NCAN, TM6SF2, CILP2, PBX4, SUGP1 and 

MAU2, environment and serum lipid levels in 

hyperlipidemia subjects. Our findings also showed that 

the interactions increased the risk of hyperlipidemia 

over single-locus tests. In addition, these factors exhibit 

distinctive collaboration or redundancy effects on 

morbidity. 

 

 
 

Figure 3. Results of linkage disequilibrium (LD) analyses of the NCAN, TM6SF2, CILP2, PBX4, SUGP1 and MAU2 SNPs. 
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MATERIALS AND METHODS 
 

SNP selection 

 

Twelve SNPs in the NCAN, TM6SF2, CILP2, PBX4, 
SUGP1 and MAU2 were selected as follows: (1) NCAN, 

which was associated with serum lipid levels, was 

selected from a previous GWAS. The gene clusters of 

TM6SF2-CILP2-PBX4-SUGP1-MAU2 were closely 

associated with lipid metabolism and NCAN. (2) 

Information regarding Tagging SNPs, functional SNPs, 

and predicted SNPs can be found in our previous article 

[23]. (3) SNP information was obtained from NCBI 

dbSNP Build 132 (http://www.ncbi.nlm.nih.gov/SNP/), 

which can be found in Supplementary Table 1. The 

MAF was restricted to greater than 1% in SNPs. (4) 

There might be some association between those SNPs 

and serum lipid levels or cardio cerebral vascular 

diseases in previous studies. (5) NCAN rs2238675-

rs2228603, TM6SF2 rs58542926-rs735273, CILP2 

rs16996148-rs17216525, PBX4-SUGP1 rs12610185-

rs10401969, and MAU2 rs73001065-rs8102280-

rs150268548-rs968525 were chosen by the block-based 

method. This strategy is facilitated by the associations 

among tagging SNPs and is demonstrated as LD  

(D′ > 0.7). 

 

Subjects 

 

The sample sizes were calculated by Quanto software 

(Version 1.2, https://quanto.software.informer.com/1.2/) 

at the beginning of this study, and they were sufficient 

to satisfy the statistical power. A total of 1248 unrelated 

patients with hyperlipidemia were enrolled from the 

First Affiliated Hospital, Guangxi Medical University 

from Sep. 1, 2016 to Dec. 31, 2018. Participants were 

18 to 80 years old (mean 55.98 ± 12.78 years), and 

patients with a family history of hyperlipidemia were 

excluded. Meanwhile, a total of 1248 randomly selected 

adults served as the control group. They underwent 

periodical medical check-ups, and their age, gender and 

ethnic group were matched to the patients. They were 

18 to 80 years old (mean 56.87 ± 12.12 years). There 

was no history of major diseases in any participants. 

 

 
 

Figure 4. Association of the NCAN, TM6SF2, CILP2, PBX4, SUGP1 and MAU2 haplotypes and serum lipid parameters in the 
normal and hyperlipidemia groups. TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein 
cholesterol; ApoA1, apolipoprotein A1; ApoB, apolipoprotein B; TG, triglyceride. aP < 0.006, bP < 0.001. and cP < 0.0001. 

http://www.ncbi.nlm.nih.gov/SNP/
https://quanto.software.informer.com/1.2/
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Table 5. Comparison of G × G interaction frequencies between the normal and hyperlipidemia groups [n 
(frequency)]. 

No G × G inteaction Hyperlipidemia Normal x2 P OR (95%CI) 

 A B C D E F G H I J K L      

H1 C C C A G C A T C G A T 440.78(0.177) 422.58(0.169) 1.961 0.021 0.9 (0.8-1.1) 

H2 T C C A G C A T C G A T 219.96(0.088) 251.06(0.101) 9.170 0.002 0.6 (0.6-0.9) 

H3 T T C A G C A T C G A T 162.55(0.065) 99.41(0.040) 9.610 0.002 1.5 (1.2-2.0) 

H4 T T T A G C A T C G A T 119.10(0.048) 91.43(0.037) 1.178 0.278 1.2 (0.9-1.6) 

H5 C C C A G C A T C A G C 109.61(0.044) 46.95(0.019) 19.385 E-005 2.2 (0.9-1.6) 

H6 C C C A G C G C G A G C 55.83(0.022) 87.32(0.035) 11.910 6E-004 0.6 (1.5-3.0) 

H7 T T T A G C G C C G A T 95.07(0.038) 33.78(0.014) 23.537 E-006 2.6 (1.8-3.9) 

H8 T T T A G C G C C A G C 42.20(0.017) 76.13(0.031) 14.956 E-004 0.5 (0.3-0.7) 

H9 T T T A G C A T C A G C 16.45(0.007) 100.45(0.040) 74.461 7E-018 0.1 (0.1-0.2) 

A: NCAN rs2238675 C>T. B: NCAN rs2228603 C>T. C: TM6SF2 rs58542926 C>T. D: TM6SF2 rs735273 A>G. E: CILP2 rs16996148 
G>T. F: CILP2 rs17216525 C>T. G: PBX4 rs12610185 G>A. H: SUGP1 rs10401969 T>C. I: MAU2 rs73001065 G>C. J: MAU2 
rs8102280 G>A. K: MAU2 rs150268548 G>A. L: MAU2 rs968525 C>T. NCAN: the neurocan gene. TM6SF2: the transmembrane 
6 superfamily member 2 gene. CILP2: the cartilage intermediate layer protein 2 gene. PBX4: the PBX homeobox 4 gene. 
SUGP1: the SURP and G-patch domain containing 1 gene. MAU2: the MAU2 sister chromatid cohesion factor gene. 

None of the participants took any medications that 

might have any impact on lipid metabolism. This study 

design was approved by the Ethics Committee of the 

First Affiliated Hospital, Guangxi Medical University 

(No. Lunshen 2014-KY-Guoji-001; Mar. 7, 2014). 

Informed consent was obtained from all participants. 

 

Clinical data 
 

The clinical data were obtained by means of a universally 

standardized technique [38]. Standardized questionnaires 

were administered to acquire details of demographics, 

socioeconomic standing and lifestyle dynamics. The status 

of cigarette smoking was categorized into ≤ 20 cigarettes 

per day and > 20 cigarettes per day [59]. Alcohol intake 

was classified based on the grams of alcohol per day: ≤ 25 

and > 25 [23]. Details regarding other factors, such as 

height, weight, waist circumference, blood pressure, and 

BMI (kg/m2), were also acquired. 

 

Biochemical measurements 
 

Venous blood samples were acquired following 12 h of 

fasting. TC, HDL-C, LDL-C and TG concentrations in 

serum were detected by means of Tcho-1, TG-LH 

(RANDOX Laboratories, UK), Cholestest N HDL, and 

Cholestest LDL (Daiichi Pure Chemicals Co., Ltd., Japan) 

kits, respectively. ApoA1 and ApoB concentrations in 

serum were determined by immunoassay (RANDOX 

Laboratories). Detection of all samples was completed 

with an autoanalyzer (Hitachi Ltd., Japan) [60]. 

 

Diagnostic criteria 

 

The standard values of serum lipid levels in our clinical 

biochemistry laboratory were as follows: TC (3.10–5.17 

mmol/L), TG (0.56–1.70 mmol/L), HDL-C (1.16–1.42 

mmol/L), LDL-C (2.70–3.10 mmol/L), ApoA1 (1.20–1.60 

g/L), ApoB (0.80–1.05 g/L) and the ApoA1/ApoB ratio 

(1.00–2.50). Hyperlipidemia was diagnosed with serum 

levels of TC > 5.17 mmol/L and/or TG > 1.70 mmol/L 

[61, 62]. The diagnosis of hypertension was made as per 

the Seventh Report of Joint National Committee (JNC-7) 

[63]. BMI was classified as normal (< 24 kg/m2), 

overweight (24–28 kg/m2) or obese (> 28 kg/m2). 

 

Genotyping 
 

Extraction of genomic DNA was accomplished by 

utilizing the conventional phenol-chloroform method in 

venous blood leucocytes. Genotyping of the 12 variants 

was performed on the Snapshot of next generation 

sequencing technology platform HiSeq XTen (Illumina, 

USA) in Sangon Biotech Co., Ltd. (Shanghai, China). 

The details regarding sense and antisense primers are 

provided in Supplementary Table 2. 
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Figure 5. G × G haplotype-based association with serum lipid levels in normal and hyperlipidemic individuals. TC, total 
cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; ApoA1, apolipoprotein A1; ApoB, 
apolipoprotein B; TG, triglyceride. aP < 0.006, bP < 0.001, and cP < 0.0001. 
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Figure 6. Various sorts of gene-gene and gene-environment interaction dendrograms. Elements with strong interactions appear 
close together, and elements with weak interactions appear distant from each other. 

 

 
 

Figure 7. SNP-SNP, SNP-environment, haplotype-haplotype, haplotype-environment, gene-gene and gene-environment interactions on 
the risk of hyperlipidemia. 
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Statistical analyses 
 

SPSS 22.0 (IBM SPSS Inc., USA) was employed to 

analyze the data. Quantitative variables of normally 

distributed data are represented as the mean ± SD, while 

serum TG levels of non-normally distributed data are 

represented as medians and interquartile ranges. Typical 

features between the normal and hyperlipidemia groups 

were compared by means of analysis of covariance. 

Distribution of the genotypes and interactions of alleles, 

haplotypes, G × G between normal and hyperlipidemia 

groups were examined by chi-square test; the HWE, 

pairwise LD, haplotype frequencies and G × G 

interaction containing the variants were computed by 

means of Haploview (version 4.2; Broad Institute of 

MIT and Harvard). The pattern of pairwise LD among 

12 SNPs was tested by D′ using Haploview software. 

We employed Univariant to test associations between 

genotypes, haplotypes, G × G interactions and lipid 

phenotypic variations. P < 0.004 represented statistical 

significance in the association between any variants and 

lipid phenotypic variations (equivalent to P < 0.05 after 

adjusting for 12 independent tests by the Bonferroni 

correction). The association between genotypes, alleles, 

haplotypes, G × G interactions and lipid phenotypic 

variants was performed using unconditional logistic 

regression evaluation. Other parameters were adjusted 

for the data analysis. The greatest interaction pattern 

among genes, SNPs and environmental exposures was 

screened by means of generalized multifactor 

dimensionality reduction [64]. The cross-validation 

consistency score was performed to identify the best 

model of selected interaction among all probabilities. 

The testing balanced accuracy was a measure of the 

degree to which the interaction precisely calculates 

case-control status with scores between 0.50 

(representing that the model projects no better than 

chance) and 1.00 (representing impeccable prediction). 

Finally, to evaluate whether an identified model is 

significant, we used a sign test or a permutation test for 

accuracy of prediction. 

 

Availability of data and materials 
 

The datasets generated during the present study are not 

publicly available, because detailed genetic information 

of each participant was included in these materials. 
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Supplementary Table 1. Characteristics of the 19p13.11 gene mutations. 

SNV ID 
(rs#) 

HGVS Name Chr: Position Contig Contig Pos 
SNP 

to 
Chr 

Allele MAF/Minor 
Map 

Methods 

NCAN         

rs2238675 
NM_004386.2: 

c.1072+529 C>T 
19:19225799 NT_011295.12 19165799 Fwd T 

T=0.0960/481 
(1000 

Genomes) 
mapup 

rs2228603 
NM_004386.2: c.274 

C>T 
19:19159115 NT_011295.12 19159115 Fwd C 

T=0.0439/220 
(1000 

Genomes) 
mapup 

TM6SF2         

rs58542926 
NM_001001524.2: 

c.499 C>T 
19: 19208740 NT_011295.12 19208740 Fwd T 

T=0.0667/334 
(1000 

Genomes) 
mapup 

rs735273 
NN_001001524.2: c.-

1387 A>G 
19:19214602 NT_011295.12 19214602 Fwd G 

C=0.4655/2331 
(1000 

Genomes) 
mapup 

CILP2         

rs16996148 
NC_000019.9: 

g.19658472 G>T 
19: 19487663 NT_011295.12 19487663 Fwd G 

T=0.1156/579 
(1000 

Genomes) 
mapup 

rs17216525 
NC_000019.9: 

g.19662220 C>T 
19: 19491411 NT_011295.12 19491411 Fwd C 

T=0.0815/408 
(1000 

Genomes) 
mapup 

PBX4         

rs12610185 
NM_025245.2: 

c.119+7598 C>T 
19: 19550913 NT_011295.12 19550913 Fwd C 

T=0.1132/567 
(1000 

Genomes) 
mapup 

SUGP1         

rs10401969 
NM_172231.3: 
c.1243+80 A>G 

19: 19236909 NT_011295.12 19236909 Fwd A 
G=0.1176/589 

(1000 
Genomes) 

mapup 

MAU2         

rs73001065 
NM_015329.3: 

c.1548+296 G>C 
19: 19289732 NT_011295.12 19289732 Fwd G 

C=0.0319/160 
(1000 

Genomes) 
mapup 

rs8102280 
NM_015329.3: 
c.1155+15 G>A 

19: 19284941 NT_011295.12 19284941 Fwd G 
A=0.0333/167 

(1000 
Genomes) 

mapup 

rs150268548 
NC_000019.9: 

g.19494483 G>A 
19: 19323674 NT_011295.12 19323674 Fwd G 

A=0.0260/130 
(1000 

Genomes) 
mapup 

rs968525 
NM_015329.3: c.1309-

483 C>T 
19: 19288406 NT_011295.12 19288406 Rev C 

T=0.3033/1519 
(1000 

Genomes) 
mapup 
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Supplementary Table 2. The sequences of forward and backward primers of the 19p13.11 gene mutations. 

Gene Primer sequence 

NCAN  

rs2238675 TGGAAGAGATAATGCCTCAATTGGC 

 GGTAGTGTCCAACTCTCATGAACTTG 

rs2228603 TCCAACCCAGGCACACAGGATAT 

 GCCACCCTCACGACATTGTC 

TM6SF2  

rs58542926 CCCTCCCTTCTTTCTTGTGACA 

 CCTGCACCATGGAAGGCAAATA 

rs735273 CTGCAGCTGGCACAAATTCTAAC 

 CCCGCTTACAAGAAGGCTCATTTTA 

CILP2  

rs16996148 CCGATCTCATCATTCACCCATC 

 GTCCACCCTAGGGCAAAGGAAG 

rs17216525 CAGCCAGGAGGGATAGAAGATACT 

 CTTCTTTGAGCTGCACCATTCTG 

PBX4  

rs12610185 TGTCAAACAACAAAAACCAACACAATT 

 GGGAATTTATGATGTGGAATTTCCCAGA 

SUGP1  

rs10401969 ATTGCAATAGGCCCAGCAATTCC 

 TTGGAAGGGTCTGACTTCTTTCAC 

MAU2  

rs73001065 GCATGGCACTGTTCATCCTATG 

 CCCTCAGGTGTCAACACATAGC 

rs8102280 CAGTTTGGTCAGACAGGACATG 

 GAATGTTCTGGATCTGGTTAGGTACTTAC 

rs150268548 GGCAAAATGGGCTGCTTTTCT 

 GCCTCAGCCCTAGGACAATG 

rs968525 AACCTGTCTCAAAGGAAAAAGAAAGCC 

 GGCGTGATCTGACTGATAATTTAGCT 

 


