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Abstract: In Mediterranean areas, extreme weather conditions such as high diurnal temperatures
during the growing season could tweak vine physiology and metabolism, affecting grapes’ quality.
Moreover, uncertainty in spatial and temporal distribution precipitation is an issue for the water
resources of the vineyards, forcing the winemakers to continuously face an increasing water demand
in recent decades, which has led them to non-sustainable choices for ambient (i.e., irrigation solutions).
The aspiration of this experiment was to explore the effects of zeolite treatments (clinoptilolite type)
on Vitis vinifera L. (potted vines) ecophysiology and berry metabolism under two water regimes. The
plants were subordinated to two different predawn water potential regimes (0 ≤ ΨPD ≤ −0.4, WWC-
trl and −0.4 ≤ ΨPD ≤ −0.9, WSCtrl), both associated with zeolite treatments (WWt and WSt). Gas
exchanges, predawn and midday stem water potential, chlorophyll fluorescence, temperature, and
relative water content were overseen on leaves at veraison, maturation, and harvest. Technological
analyses were performed on the berries. Moreover, data were analyzed with principal component
analysis and Pearson’s correlations. This experiment supplies new evidence that zeolite applications
could impact both physiological profiles (higher photosynthesis and stomatal conductance) as well
as berry skin metabolism (sugar and size) of vines, giving a better skill to counteract low water
availability during the season and maintaining a better hydraulic conductivity.

Keywords: global warming; leaf temperature; low water availability; clinoptilolite; grape quality;
photosynthesis; water potential

1. Introduction

The concentration of greenhouse gases (GHGs) in the atmosphere (such as carbon
dioxide (CO2), nitrous oxide (N2O), and methane (CH4)) has rapidly increased in the
last century mainly due to the continuous and copious reversal in the atmosphere of
combustion products provided by energy systems that employ, especially, fossil fuels
(methane, coal, and oil) [1]. Agricultural ecosystems are important sinks and sources of
GHGs by producing and consuming them in biological processes (such as nitrification,
denitrification, net photosynthesis, respiration, decomposition, methanogenesis, and CH4
oxidation) [2]. A direct consequence of this phenomenon is the growth of the planet’s
average temperature [3].

The Intergovernmental Panel on Climate Change (IPCC) is currently in its Sixth
Assessment Report (AR6). The results of the research group show that in the coming
decades an increase in climate change is expected in all regions of the world in multiple
ways [4]. The report’s analysis unveils that at 1.5 ◦C of global warming, it is forecasting a
swell in the number of heatwaves, extended hot seasons, and fleeting chilly seasons. While
at 2.0 ◦C global warming, the warm–extreme temperatures would climb to critical tolerance
thresholds for agriculture more often [5]. However, the temperatures are not the only
component at play. Climate change is driving many other alterations in different regions,
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and all will intensify with further warming. These embody modifications in annual rainfall
rates, winds, snow, coastal districts, and oceans level [6].

History showed that wine grape growing regions thrived when the climate was most
conductive in anthropic activity and that the unpredictable shifts occurred owing to climate
vicissitudes, making production and quality more taxing [7–10]. In viticulture, climate
represents a terroir component having a deep effect on the capacity of a region or territory
to trigger excellent berries and consequently wine [11,12]. Sundry studies identify changes
in grapevine growth characteristics and grapes quality as an effect of climate warming and
of the frequency/intensity increase in extreme meteorological events (droughts, hail, high
temperatures, tropical nights, and flooding) [13–18].

Indeed, higher diurnal temperatures sway the plant’s ecophysiology and phenology
by shifting the phenological stages to earlier times, including the ripening phase shifting to
warmer periods that affect the grape composition, by enhancing sugar content, diminishing
total acidity, and unbalancing the aroma compounds [19–21].

Moreover, uncertainty in spatial and temporal precipitation distribution is a notable
issue for the water resources of the vineyards, forcing the winemakers to continuously
face an increasing water demand in recent decades, which has led to an increase in the
gap between supply and demand for water. Strengthening this split inevitably led to a
serious consideration of the basics of water resource planning by adopting appropriate
management strategies such as emergency irrigation [22,23].

It was shown that the water deficit induced lipid peroxidation, chlorophyll bleaching,
and molecular antioxidants loss (i.e., ascorbate, glutathione, α-tocopherol, and carotenoids)
by decreasing the activities of active oxygen-processing enzymes, such as ascorbate perox-
idase (APOX), superoxide dismutase (SOD), catalase (CAT), and nonspecific peroxidase
(POX) [24–28]. In addition to the stomatal limitation of photosynthesis under water stress,
non-stomatal effects occur under severe stress [29–31]; extreme environmental conditions,
above 43 ◦C temperatures, can damage the photosynthetic machinery (photosystem II
(PSII)) reversibly or irreversibly [32,33]. The plant’s responses under water deficit stress
and high temperatures occur from the leaf level to the whole-vine level, including carbon
assimilation and the allocation of photoassimilates (e.g., leaf proline accumulation, for
reducing cell acidity and the release of ammonia toxicity, the presence of several reactive
oxygen species as mediators of signal transduction, a high hydrogen peroxide content, and
3-hexenal and (E)-2-hexenal) [34,35].

Although putting concrete numbers on this affirmation is extremely difficult, many
studies argue that irrigation is not a sustainable and resilient solution, with a view to
expanding the areas planted with vineyards [36,37].

The resilience-broad concept, defined among authors in several different ways, forks
out a sovereign framework for examining critical ecosystem transitions in response to
environmental change [38,39]. Here, we focus on ecological resilience, pioneered by Holling
(1973) [40] and defined as the skill of “a system to experience shocks while retaining
essentially the same structure, function, feedbacks, and therefore identity” [41]. In this
definition, resilience is calculated as the perturbation amount (such as climate variables
metamorphosis) that a system can absorb before reaching a tipping pinnacle or margin
beyond which it transitions into an alternative condition causing an undesirable locked
state (e.g., hysteretic system) [42,43].

The logical solution is a detailed mechanistic and physiologic understanding of the
problem in order to better design and target vineyard management approaches [44] for the
development of new solutions against drought with the aim of corroborating the vineyard
ecosystem and increasing its resilience over time.

This increasing demand for vineyard protection against environmental adversity re-
quires an increase in the production of materials to be used in natural-based viticulture such
as zeolites [45]. As non-toxic, ecologically worthwhile, and bearable materials, the natural
zeolites, owing to their characteristics (structural, sorption, and ion exchange properties)
are well suited for agricultural employees, both animal and plant production [46].
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Zeolites (from the Greek words, ζέω, “boil” and λίθoς, “stone” [47]) are alumino-
silicate minerals that have a molecular sieve action owing to their framework (open channel
network) [48]; these minerals are constituted by TO4 tetrahedra linked with oxygen atoms
sharing the negative charge created by the presence of AlO2- and SiO2- balanced by cations
(i.e., Na+, K+, Rb+, Cs+, Mg2+, and Ca2+) that neutralize the charge deficiency [49]. Due
to their high adsorption capacities in the dehydrated state and the high ion-exchange
capacity, zeolites can help in the absorption and retention of plant nutrients, herbicides,
supplemented micronutrients, fungicides, fertilizer, pesticides, and water [50,51]. Owing to
porous and capillary suction properties, zeolite forwards soil water retention and infiltration
and operates as a natural wetting element [52,53].

For these reasons, the proposals of this project were to test if zeolite treatments were
able to positively sway grapevine ecophysiology by promoting a higher tolerance to
drought in controlled conditions, and to investigate the effect on technological berry
parameters, analyzing grape development.

In order to achieve these goals, the comparison between grapevines treated with zeolite
(clinoptilolite type) and non-treated ones was set up on Pinot noir cv. potted grapevines
(Vitis vinifera L.), both subordinated to two different irrigation regimes.

2. Results
2.1. Meteorological Parameters

The total average means, maximum, and minimum air temperatures, recorded from bud
break to leaf fall (April–October), were 19.58 ◦C, 25.75 ◦C, and 13.41 ◦C, respectively (Figure 1).
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Figure 1. Meteorological parameters of the experiment location. Monthly averages of mean, maximum,
and minimum air temperature (◦C) and precipitation (mm) were measured from April to October.

The two hottest months of this period were July and August (maximum temperatures
were always above 35 ◦C in the last seven days of July and in the middle eleven days
of August). The hottest days were the 7th of July (Tmax = 35.6 ◦C), the 9th of August
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(Tmax = 35.8 ◦C), the 10th of August (Tmax = 36.0 ◦C), the 11th of August (Tmax = 36.8 ◦C),
and the 12th of August (Tmax = 39.3 ◦C) when maximum and minimum air temperatures
were higher than the corresponding monthly averages.

2.2. Leaf Gas Exchange, Chlorophyll Fluorescence, Water Potential (Leaf, Stem, and Pre-Dawn),
Relative Water Content, Plant Hydraulic Conductance, Intercepted Photosynthetically Active
Radiation, and Leaf Temperature

At the level of photosynthetically active radiation (PAR) during all measurements, no
significant difference was found (Figure 2).
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Figure 2. Photosynthetically active radiation (PAR; µmol m−2s−1) in Vitis vinifera (Pinot Noir cv.)
treated with Zeolite (t) and untreated plants (Ctrl), under two irrigation regimes (WW, well-watered;
WS, water-stressed); (A). 28 July 2021, (B). 5 August 2021, and (C). 13 August 2021. The box bounds
show the 25 and 75 percentiles, and the error bars the 90 and 10 percentiles. The black continuous
and red discontinuous lines inside the boxes represent medians and means, respectively. Outliers are
represented as color dots. Average values with the same letter in each figure indicate no significant
differences between plots (p < 0.05).

Leaf gas exchange, chlorophyll fluorescence, water potential (leaf, stem, and pre-
dawn), relative water content, and plant hydraulic conductance are presented below
(Figures 3–5; Tables 1 and 2).
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Zeolite (t) and untreated plants (Ctrl), under two irrigation regimes (WW, well-watered; WS, water-
stressed); (A). 28 July 2021, (B). 5 August 2021, and (C). 13 August 2021. The box bounds show
the 25 and 75 percentiles, and the error bars the 90 and 10 percentiles. The black continuous and
red discontinuous lines inside the boxes represent medians and means, respectively. Outliers are
represented as color dots. Average values with the same letter in each figure indicate no significant
differences between plots (p < 0.05).

Lower Pn and gs values were observed in WSCtrl compared to the other treatments.
In general, no difference was found between WWt, WWCtrl, and WSt for these parameters.

On August 5 and August 13, WSCtrl plants exhibited significantly higher leaf temper-
ature values than irrigated and/or treated plants, while WUE was largely unaffected by
zeolite treatments. At the same sampling time, the water-stressed vines maintained lower
E levels than the other treatments.

ΨPD and Ψstem were largely influenced by zeolite treatments and irrigation. Under
water stress conditions, WSt vines showed higher ΨPD and Ψstem values than WSCtrl.
Furthermore, the RWC was significantly higher in WWt, WWCtrl, and WSt than in the
WSCtrl plants.

Fv/Fm showed significant changes due to treatment only on 5 August 2021 (the WSCtrl
treatment showed significantly lower values than the other treatments).
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Table 1. Two-way ANOVA (p < 0.05) for eco-physiology parameters in Vitis vinifera (Pinot Noir cv.)
treated with Zeolite (t) and untreated plants (Ctrl), under two irrigation regimes (WW, well-watered;
WS, water-stressed). Values are the mean of the data of each parameter, considering treatments
(zeolite and Ctrl) and irrigation regime (Irrig. Regime) as factors. In the last 3 rows is indicated the
significance. Other abbreviations: stomatal conductance (gs), transpiration (E), water use efficiency
(WUE), fluorescence of chlorophyll (Fluo), and vapor pressure deficit (VPD). The same letter pictured
on different treatments indicates no significant difference among them (mean ± SE, n = 10).

Parameter gs E WUEe Fluo VPD

Unit mmol m−2 s−1 mmol m−2 s−1 µmol mmol−1 Fv/Fm kPa

28 July 2021

Treatments:
WWt 174.70 ± 55.39 a 4.62 ± 1.07 a 3.21 ± 1.16 a 0.77 ± 0.04 a 3.17 ± 0.23 b
WSt 145.40 ± 39.00 a 4.57 ± 1.17 a 3.00 ± 1.10 a 0.76 ± 0.05 a 3.50 ± 0.49 ab

Irrigation regime:
WWCtrl 189.60 ± 57.25 a 5.34 ± 1.49 a 2.67 ± 0.95 ab 0.78 ± 0.03 a 3.11 ± 0.45 b
WSCtrl 82.60 ± 14.29 b 2.82 ± 0.29 b 1.64 ± 0.35 b 0.75 ± 0.03 a 3.76 ± 0.17 a

Significance:
Treatments 0.097 0.112 0.003 1.000 0.391

Irrigation regime 0.000 0.000 0.044 0.131 0.000
Treat. × Irr. regime 0.009 0.000 0.178 0.445 0.174

5 August 2021

Treatments:
WWt 89.20 ± 22.42 a 2.28 ± 0.44 a 3.86 ± 0.53 b 0.77 ± 0.03 a 2.66 ± 0.21 c
WSt 69.90 ± 56.28 ab 1.85 ± 1.37 ab 4.75 ± 0.68 a 0.76 ± 0.05 a 2.81 ± 1.22 bc

Irrigation regime:
WWCtrl 61.00 ± 18.10 b 1.61 ± 0.32 b 4.80 ± 0.87 a 0.76 ± 0.06 a 2.92 ± 0.35 b
WSCtrl 54.70 ± 52.66 b 1.81 ± 1.56 ab 3.63 ± 1.80 b 0.69 ± 0.04 b 3.30 ± 1.02 a

Significance:
Treatments 0.000 0.007 0.639 0.010 0.000

Irrigation regime 0.038 0.376 0.422 0.007 0.000
Treat. × Irr. regime 0.281 0.015 0.000 0.090 0.098

13 August 2021

Treatments:
WWt 115.00 ± 74.64 a 3.14 ± 1.35 a 2.91 ± 1.31 a 0.77 ± 0.01 ab 4.80 ± 1.00 a
WSt 109.42 ± 23.12 a 2.27 ± 0.99 a 3.71 ± 0.48 a 0.76 ± 0.10 ab 3.54 ± 0.35 b

Irrigation regime:
WWCtrl 112.30 ± 54.33 a 2.32 ± 0.84 a 3.72 ± 1.83 a 0.79 ± 0.09 a 5.04 ± 0.88 a
WSCtrl 47.30 ± 21.36 a 1.99 ± 0.95 a 2.26 ± 0.73 a 0.69 ± 0.10 b 3.98 ± 0.31 b

Significance:
Treatments 0.078 0.187 0.498 0.347 0.209

Irrigation regime 0.056 0.150 0.484 0.024 0.000
Treat. × Irr. regime 0.105 0.522 0.020 0.035 0.711
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Table 2. Two-way ANOVA (p < 0.05) for eco-physiology parameters in Vitis vinifera (Pinot Noir cv.)
treated with Zeolite (t) and untreated plants (Ctrl), under two irrigation regimes (WW, well-watered;
WS, water-stressed). Values are the mean of the data of each parameter, considering treatments
(Zeolite and Ctrl) and irrigation regime (Irrig. Regime) as factors. In the last 3 rows is indicated the
significance. Other abbreviations: pre-dawn water potential (ΨPD), leaf water potential (Ψleaf), stem
water potential (Ψstem), and relative water content (RWC). The same letter pictured on different
treatments indicates no significant difference among them (mean ± SE, n = 10).

Parameter ΨPD Ψleaf Ψstem RWC

Unit MPa MPa MPa %

28 July 2021

Treatments:
WWt −0.27 ± 0.12 a −1.28 ± 0.10 a −1.00 ± 0.11 a 90.99 ± 1.76 a
WSt −1.42 ± 0.22 b −1.66 ± 0.14 b −1.42 ± 0.16 a 88.49 ± 3.23 ab

Irrigation regime:
WWCtrl −0.28 ± 0.34 a −1.28 ± 0.30 a −1.00 ± 0.33 a 90.32 ± 3.16 ab
WSCtrl −0.91 ± 0.13 b −1.90 ± 0.11 c −1.69 ± 0.12 b 87.32 ± 12.36 b

Significance:
Treatments 0.344 0.070 0.070 0.319

Irrigation regime 0.000 0.000 0.000 0.004
Treat. × Irr. regime 0.437 0.070 0.070 0.789

5 August 2021

Treatments:
WWt −0.51 ± 0.12 a −1.69 ± 0.15 a −1.45 ± 0.17 b 87.59 ± 4.70 a
WSt −0.64 ± 0.22 a −1.49 ± 0.17 a −1.23 ± 0.19 a 82.25 ± 19.86 ab

Irrigation regime:
WWCtrl −0.54 ± 0.21 a −1.57 ± 0.21 a −1.32 ± 0.24 a 82.97 ± 5.97 ab
WSCtrl −0.94 ± 0.15 b −1.85 ± 0.15 b −1.63 ± 0.16 c 66.70 ± 10.08 c

Significance:
Treatments 0.000 0.05 0.005 0.000

Irrigation regime 0.000 0.329 0.329 0.000
Treat. × Irr. regime 0.001 0.000 0.000 0.057

13 August 2021

Treatments:
WWt −0.36 ± 0.17 a −1.32 ± 0.16 a −1.05 ± 0.17 a 34.55 ± 8.22 a
WSt −0.69 ± 0.13 b −1.59 ± 0.11 b −1.35 ± 0.12 b 28.74 ± 5.71 a

Irrigation regime:
WWCtrl −0.49 ± 0.21 a −1.38 ± 0.31 a −1.12 ± 0.34 a 29.96 ± 6.59 a
WSCtrl −0.99 ± 0.18 c −2.14 ± 0.18 c −1.94 ± 0.20 c 26.09 ± 5.81 a

Significance:
Treatments 0.000 0.000 0.000 0.144

Irrigation regime 0.000 0.000 0.000 0.069
Treat. × Irr. regime 0.135 0.000 0.000 0.662

2.3. Grape Composition

The irrigation regime and zeolite treatment induced significant differences (p ≤ 0.05)
in berry weight, sugar content, and titratable acidity (Figure 6 and Table 3).

At harvest, the berry weight was −19.62%, −15.68%, and −15.68% lower in WSCtrl
than in WWt, WWCtrl, and WSt vines, respectively.

At harvest, the sugar content was +4.09%, +10.26%, and +0.55% higher in WSCtrl than
in WWt, WWCtrl, and WSt vines, respectively.

Zeolite treatments did not induce significant effects on the pH parameter in both
water regimes.
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Unit °Brix g L−1 tartaric ac. pH 

28 July 2021 
Treatments:    

WWt 15.93 ± 0.80 b 13.56 ± 1.35 a 3.12 ± 0.04 a 
WSt 16.73 ± 0.77 a 13.13 ± 1.30 a 3.08 ± 0.10 a 

Irrigation regime:    
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Figure 6. Berry weight (bw; gr) in Vitis vinifera (Pinot Noir cv.) treated with Zeolite (t) and untreated
plants (Ctrl), under two irrigation regimes (WW, well-watered; WS, water-stressed); (A). 28 July 2021,
(B). 5 August 2021, and (C). 13 August 2021. The box bounds show the 25 and 75 percentiles, and
the error bars the 90 and 10 percentiles. The black continuous and red discontinuous lines inside the
boxes represent medians and means, respectively. Outliers are represented as color dots. Average
values with the same letter in each figure indicate no significant differences between plots (p < 0.05).

Table 3. Two-way ANOVA (p < 0.05) for technological parameters in Vitis vinifera (Pinot Noir cv.)
treated with Zeolite (t) and untreated plants (Ctrl), under two irrigation regimes (WW, well-watered;
WS, water-stressed). Values are the mean of the data of each parameter, considering treatments
(zeolite and ctrl) and irrigation regime (Irrig. Regime) as factors. In the last 3 rows is indicated
the significance. The same letter pictured on different treatments indicates no significant difference
among them (mean ± SE, n = 10).

Parameter Sugar Content Acidity pH

Unit ◦Brix g L−1 tartaric ac. pH

28 July 2021

Treatments:
WWt 15.93 ± 0.80 b 13.56 ± 1.35 a 3.12 ± 0.04 a
WSt 16.73 ± 0.77 a 13.13 ± 1.30 a 3.08 ± 0.10 a

Irrigation regime:
WWCtrl 15.73 ± 0.30 b 13.56 ± 1.34 a 3.13 ± 0.04 a
WSCtrl 16.00 ± 0.52 ab 13.43 ± 1.09 a 3.10 ± 0.08 a

Significance:
Treatments 0.024 0.736 0.466

Irrigation regime 0.010 0.526 0.053
Treat. × Irr. regime 0.187 0.736 0.916

5 August 2021

Treatments:
WWt 16.86 ± 0.67 c 12.43 ± 1.84 b 3.21 ± 0.32 a
WSt 17.20 ± 1.11 b 14.26 ± 3.57 a 3.13 ± 0.59 a

Irrigation regime:
WWCtrl 16.06 ± 0.52 c 10.36 ± 0.88 c 3.17 ± 0.09 a
WSCtrl 17.90 ± 1.71 a 13.73 ± 0.23 a 3.00 ± 0.07 a

Significance:
Treatments 0.665 0.000 0.386

Irrigation regime 0.000 0.000 0.215
Treat. × Irr. regime 0.000 0.002 0.669
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Table 3. Cont.

Parameter Sugar Content Acidity pH

Unit ◦Brix g L−1 tartaric ac. pH

13 August 2021

Treatments:
WWt 19.30 ± 0.86 a 5.36 ± 0.25 b 3.47 ± 0.05 a
WSt 19.98 ± 1.54 a 5.93 ± 0.48 a 3.47 ± 0.07 a

Irrigation regime:
WWCtrl 18.22 ± 1.32 b 5.76 ± 0.35 ab 3.52 ± 0.08 a
WSCtrl 20.09 ± 1.42 a 5.56 ± 0.46 b 3.50 ± 0.06 a

Significance:
Treatments 0.268 0.854 0.092

Irrigation regime 0.005 0.049 0.709
Treat. × Irr. regime 0.178 0.000 0.602

2.4. Pearson’s Correlation

Figures 7–10 represent Pearson’s correlations for each treatment (WWt, WWCtrl, WSt,
and WSCtrl).
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Figure 7. Pearson’s Correlation. WWt Treatment (Well-watered + Zeolite). Ecophysiological and
technological correlations between the pairs of traits were analyzed. Correlations were calculated
from the mean values of each of the four treatments characterized. Positive correlations are displayed
in red and negative correlations in violet. The color intensity and the size of the circle are proportional
to the correlation coefficients. The grey background boxes illustrate the significant values at the level
of p < 0.05 (two-tailed).



Plants 2022, 11, 1735 10 of 21

Plants 2022, 11, 1735 10 of 22 
 

 

 
Figure 7. Pearson’s Correlation. WWt Treatment (Well-watered + Zeolite). Ecophysiological and 
technological correlations between the pairs of traits were analyzed. Correlations were calculated 
from the mean values of each of the four treatments characterized. Positive correlations are dis-
played in red and negative correlations in violet. The color intensity and the size of the circle are 
proportional to the correlation coefficients. The grey background boxes illustrate the significant val-
ues at the level of p < 0.05 (two-tailed). 

 
Figure 8. Pearson’s Correlation. WWCtrl Treatment (Well-watered). Ecophysiological and techno-
logical correlations between the pairs of traits were analyzed. Correlations were calculated from the 
mean values of each of the four treatments characterized. Positive correlations are displayed in red 

Figure 8. Pearson’s Correlation. WWCtrl Treatment (Well-watered). Ecophysiological and techno-
logical correlations between the pairs of traits were analyzed. Correlations were calculated from the
mean values of each of the four treatments characterized. Positive correlations are displayed in red
and negative correlations in violet. The color intensity and the size of the circle are proportional to
the correlation coefficients. The grey background boxes illustrate the significant values at the level of
p < 0.05 (two-tailed).

Plants 2022, 11, 1735 11 of 22 
 

 

and negative correlations in violet. The color intensity and the size of the circle are proportional to 
the correlation coefficients. The grey background boxes illustrate the significant values at the level 
of p < 0.05 (two-tailed). 

 
Figure 9. Pearson’s Correlation. WSt Treatment (Water stress + Zeolite). Ecophysiological and tech-
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Figure 9. Pearson’s Correlation. WSt Treatment (Water stress + Zeolite). Ecophysiological and
technological correlations between the pairs of traits were analyzed. Correlations were calculated
from the mean values of each of the four treatments characterized. Positive correlations are displayed
in red and negative correlations in violet. The color intensity and the size of the circle are proportional
to the correlation coefficients. The grey background boxes illustrate the significant values at the level
of p < 0.05 (two-tailed).
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the correlation coefficients. The grey background boxes illustrate the significant values at the level 
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In general, in all treatments, significant positive correlations were identified between 
the following character pairs: Kplant–Traspir, PD water pot–Stem water pot, PD water 
pot–Leaf water pot, and Traspir–gs. Moreover, a (very close) negative correlation was 
identified between Sugar–Acidity and Net photosy–Leaf temp. 

2.5. Principal Component Analysis (PCA) 
Principal component (PC) 1 (Dim1) of the 28 July 2021 explained 38.9% of the data 

variability and allowed for visualizing different treatment behaviors (delimited by differ-
ent colored ellipses) in comparison, carried out based on the response variables. The 
WSCtrl treatment was to the right of the spatial distribution and positively related to a 
production variable (i.e., sugar content (°Brix)), VPD, and Tleaf, and negatively related to 
ecophysiological variables such as PN, E, PAR, and stomatal conductance (gs). Instead, 
principal component 2 (Dim2) explained 12.0% of the data variability (Figure 11).  

Figure 10. Pearson’s Correlation. WSCtrl Treatment (Water stress). Ecophysiological and technolog-
ical correlations between the pairs of traits were analyzed. Correlations were calculated from the
mean values of each of the four treatments characterized. Positive correlations are displayed in red
and negative correlations in violet. The color intensity and the size of the circle are proportional to
the correlation coefficients. The grey background boxes illustrate the significant values at the level of
p < 0.05 (two-tailed).

In general, in all treatments, significant positive correlations were identified between
the following character pairs: Kplant–Traspir, PD water pot–Stem water pot, PD water
pot–Leaf water pot, and Traspir–gs. Moreover, a (very close) negative correlation was
identified between Sugar–Acidity and Net photosy–Leaf temp.

2.5. Principal Component Analysis (PCA)

Principal component (PC) 1 (Dim1) of the 28 July 2021 explained 38.9% of the data
variability and allowed for visualizing different treatment behaviors (delimited by different
colored ellipses) in comparison, carried out based on the response variables. The WSCtrl
treatment was to the right of the spatial distribution and positively related to a production
variable (i.e., sugar content (◦Brix)), VPD, and Tleaf, and negatively related to ecophysi-
ological variables such as PN, E, PAR, and stomatal conductance (gs). Instead, principal
component 2 (Dim2) explained 12.0% of the data variability (Figure 11).

Principal component 1 (Dim1) of the 5 August 2021 explained 37.1% of the data
variability and allowed for visualizing different treatment behaviors (delimited by different
colored ellipses) in comparison, carried out based on the response variables. The WWt and
WSt treatments were similarly distributed to the right of the spatial distribution. These
treatments were negatively related to production variables such as sugar content (◦Brix)
and acidity (Ac), and positively related to water potential parameters such as MPaPD,
MPaLeaf, and MPaStem. Instead, principal component 2 (Dim2) explained 19.3% of the
data variability (Figure 12).
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Plants 2022, 11, 1735 14 of 22 
 

 

 
Figure 12. Relationship between principal component 1 (Dim1) and principal component 2 (Dim2) 
for response variables analyzed in field experiments with Pinot Noir cultivar subjected to different 
treatments (WWt, WW, WSt, and WS) during the 2021 season (5 August 2021). 

Principal component 1 (Dim1) of the 13 August 2021 explained 31.6% of the data var-
iability and allowed for visualizing different treatment behaviors (delimited by different 
colored ellipses) in comparison, carried out based on the response variables. The WWt 
and WWCtrl treatments were similarly distributed to the left of the spatial distribution; 
they were negatively related to ecophysiological variables such as PN, gs, E, and KPlant, 
and positively related to technological parameters such as °Brix, pH, and Ac. While the 
WSCtrl treatment was positioned to the right of the spatial distribution. Instead, principal 
component 2 (Dim2) explained 14.1% of the data variability (Figure 13). 

Figure 12. Relationship between principal component 1 (Dim1) and principal component 2 (Dim2)
for response variables analyzed in field experiments with Pinot Noir cultivar subjected to different
treatments (WWt, WW, WSt, and WS) during the 2021 season (5 August 2021).
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Principal component 1 (Dim1) of the 13 August 2021 explained 31.6% of the data
variability and allowed for visualizing different treatment behaviors (delimited by different
colored ellipses) in comparison, carried out based on the response variables. The WWt
and WWCtrl treatments were similarly distributed to the left of the spatial distribution;
they were negatively related to ecophysiological variables such as PN, gs, E, and KPlant,
and positively related to technological parameters such as ◦Brix, pH, and Ac. While the
WSCtrl treatment was positioned to the right of the spatial distribution. Instead, principal
component 2 (Dim2) explained 14.1% of the data variability (Figure 13).
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the differences were found on 5 August. Probably, the stressed-treated vines (WSt) im-
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3. Discussion

Important alterations in ecophysiological reactions are regularly noted in grapevines
under different statuses of water stress, such as with a severe limitation in vine water
uptake, a drop-in the leaf stomatal conductance (e.g., on 13 August 2021 WSCtrl recorded
54.70 mmol m−2s−1), and in the photosynthetic rate (e.g., on 13 August 2021 WSCtrl
recorded 6.43 µmol m−2s−1) [54–56], which often influence berry sugar accumulation
and yield [57]. Given the absence of works with applications of zeolites to the soil in
the vineyard, the possible changes in ecophysiological responses have not been found in
grapevines under soil zeolite treatments yet.

In our study, as expected, net photosynthesis (PN), stomatal conductance (gs), predawn
water potential (ΨPD), stem water potential (Ψstem), and relative water content (RWC)
were significantly weakened by drought in WSCtrl grapevines with respect to WWCtrl,
WWt, and WSt ones. Regarding the net photosynthesis on a single leaf, the zeolite treatment
influenced all the sampling dates in the water potential (pre-dawn and stem) differences due
to the treatment observed on 5 and 13 August, while in the RWC, the differences were found
on 5 August. Probably, the stressed-treated vines (WSt) improved their performance due to
zeolite properties by enhancing the nutrient use efficiency, heightening the phosphorus (P)
availability from phosphate rocks, and the utilization of ammonium nitrogen (NH4

+–N)
and nitrate nitrogen (NO3

—N), reducing losses by the leaching of exchangeable cations, in
particular K+, and functioning also as a slow-release fertilizer [49,58] (e.g., positive effects
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on lettuce [59] and tomato [60]). In our study, maybe by increasing the soil water holding
capacity [61], zeolite application increased the water use efficiency (WUE) (i.e., on 28 July
2021 WWt = 3.21 µmol mmol−1, WSt = 3.00 µmol mmol−1, WWCtrl = 2.67 µmol mmol−1,
and WSCtrl = 1.64 µmol mmol−1).

Owing to the zeolitic skill to retain water [62,63], vines treated with clinoptilolite
(WWt and WSt) evidenced significantly inferior leaf temperatures (TLeaf) than WSCtrl
plants. The following diminutions were registered during the season: −2.91% WWt and
−2.21% WSt on July 28th; −6.81% WWt and−5.78% WSt on August 5th; and−7.33% WWt
and−7.47% WSt on August 13th. Here we hypothesize that the application in the pot made
the roots more insulated and humid in order to isolate the leaves from photo-oxidative
damage [64] (see also the improved Fv/Fm ratio of irrigated and treated plants compared to
stressed ones). It is hypothesized that the balancing of this parameter allowed the reduction
of stress, in turn improving the stomatal conductance parameter (as emerges from gs/Tleaf
Pearson’s Correlation: 0.73 WWt, 0.68 WWCtrl, 0.77 WSt, and 0.63 WSt). In addition, it is
well known that transpiration serves as a heat dissipation mechanism in plants. Therefore,
the significant increase in Tleaf in the WSCtrl treatment compared with the other treatments
may be related to the significant reduction in leaf transpiration observed in the WSCtrl
treatment (as emerges from gs/E Pearson’s Correlation: 0.88 WWt, 0.77 WWCtrl, 0.38 WSt,
and 0.94 WSt).

In our study, the water (WWCtrl), the synergy of water/zeolite (WWt), and only zeolite
application (WSt) positively influenced water stress. In fact, by improving the physical
and chemical properties of the soil, (infiltration rate, saturated hydraulic conductivity, and
water holding capacity [65]), many studies on other species showed that water deficit
stress can be mitigated by soil applications of zeolite such as in Phaseolus vulgaris L. [66],
Salvia officinalis L. [67], Dracocephalum moldavica L. [68], Brassica napus L. [69], and Helianthus
annuus L. [70]. The effectiveness of zeolite treatment on vine ecophysiology could be also
discerned at the first stage (28 July 2021) under water stress conditions, since treated vines
maintained higher water potentials (ΨPD, Ψstem) than in WSCtrl vines and at the third
stage (13 August 2021) where the high air temperature (38.5 ◦C) induced a strong decrease
in RWC; however, this dwindle was more evident in nontreated grapevines (confirming
the hypothesis of a positive effect of zeolite in preventing excessive leaf dehydration [71]).
However, the effect of zeolite under water deficit conditions maintaining higher water
potentials than in the WSCtrl treatment was more evident in the second and third stages
(5 and 13 August).

The treatment’s effect on potted grapevine water status continued and was amplifi-
cated with water stress evolution. Indeed, on 13 August 2021, WSt vines revealed a better
Kplant than WSCtrl plants. The allowance of a satisfactory Kplant could have counte-
nanced WSt leaf to avoid stomatal closure and an excessive constraint in carbon gain [72].
Moreover, since the Kplant fall-off is correlated not only to transpiration (i.e., Kplant/E
Pearson’s Correlation: 0.95 WWt, 0.99 WWCtrl, 0.94 WSt, 0.98 WSt) but also to a hydraulic
dysfunction, our conclusions lead us to believe that WSt leaves are less susceptible to
conduit embolism and hence collapse [73] (important in anisohydric Pinot noir cv., more
unguarded to hydraulic breakdown [74]).

Stressed and untreated vines (WSCtrl) showed significantly more negative water po-
tentials (Ψ) than WWt and WSt plants. In predawn water potential during the season, the
following decreases were recorded for WS treatment, respectively: −70.32% and −14.28% on
July 28th; −45.74% and −31.91% on August 5th; and −63.63% and −30.30% on August 13th.

Finally, treatments significantly affected sugar accumulation and berry weight.
This result is not in agreement with the results observed by Salvi et al. (2020) [75] on

Pinot noir cv. in pot conditions, where the authors did not find differences in sugar maybe
for restricted carbohydrates reserves stored in grapevine roots. In particular, it can be
seen that in the last survey at harvest (13 August 2021) the WSt treatment retains the same
sugar level as WSCtrl but has a significantly higher weight of the berry (WSCtrl = 0.86 gr
vs. WSt = 1.03 gr). As regards the concentration of sugar at harvest, there is a greater
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Brix degree in the WWt treatment (19.30 ◦Brix) compared to the corresponding WWCtrl
(18.22 ◦Brix) not due to the concentration effect (same weight of the berry). Whereas, pH
parameter was not affected by treatments. It is assumed that the increase in the berry weight
in plants treated with zeolites is attributable to the zeolitic properties of corroborating the
water performance of the plant (more hydrated berries) [62]. As regards the tendency of the
increase in sugar in WWt plants compared to WWCtrl, an interaction of the zeolite in the
metabolic pathways of sugar accumulation is supposed. It is therefore believed that further
investigations should be made above all an investigation activity of sugars accumulated in
the vacuoles, studying the activity of sucrose-metabolizing enzymes, sucrose transporters,
and monosaccharide transporters.

However, there are a few precautions (experiment done in pots) to be taken for
extrapolating the results to vines under field conditions such as for example, an in-depth
study of the orography of the territory, multi-year pluviometric analysis, and complete soil
analyses, in order to better evaluate the feasibility of applying the mineral.

4. Materials and Methods
4.1. Location, Meteorological Parameters, and Experiment Design

This experiment was carried out during the 2021 growing season on Pinot noir (Entav
115 clone) 12-year-old homogeneous potted grapevines (shoot length average after topping
95.0 cm, leaves per vine average number 105.0; ten buds per vine; average canopy leaf area/vine
1.17 m2) (Vitis vinifera L.). Vines were grafted onto 1103 Paulsen V. berlandieri × V. rupestris
rootstock, trained on a vertical shoot positioned trellis, with spur cordon pruning, and grown
outdoor in Arezzo, Italy (Lat. 43◦27′47′′ N 11◦52′41′′ E; 296 m a.s.l.).

Daily values of mean/minimum/maximum air temperatures (◦C) and mean/minimum/
maximum humidity (%) values were recorded from April to October using a nearby
meteorological station (Bresser WeatherCenter 7002500, Rhede, Germany).

Pots had a holding capacity of 80 L; they were filled with clay-loam soil (clay 39%; silt
34%; and sand 27%), with a volumetric soil water content (SWC) of∼35.0% at field capacity.
During February/March, every year, each pot was fertilized with 50 g of Nitrophoska
controlled-release fertilizer (15N–9P–15K) (Eurochem Agro, MB, Italy). To escape an
overmuch soil over warming that can negatively impact roots, and preserve a reliable
temperature, all pots were sheltered by a white painting.

From the beginning of July until harvest, 20 plants were maintained at 90% of max-
imum water availability (WWCtrl, well-watered grapevines), 10 of which were treated
with zeolite (0 ≤ ΨPD ≤ −0.4), while the other 20 vines were subjected to a water deficit
at 40% of maximum water availability (WSCtrl, water-stressed), 10 of which were treated
with zeolite (−0.4 ≤ ΨPD ≤ −0.9) [75,76]. During water restriction, the plant container’s
surface was curtained with aluminum foils to impede rainfall intervention and to downsize
evaporation. The contributed water per pot was calculated by monitoring every day the
soil moisture (volumetric content) by time-domain reflectometry (Soil Moisture Equipment
Corporation, CA, USA) with 30 cm long electrodes located in the pots. Water was supplied
at 2-day intervals with drip irrigation emitters.

The zeolite application (clinoptilolite 80%, granulometry 0.2–2.5 mm; Zeocel, DND
Biotech srl, PI, Italy) took place on February 8, 2021, at a dose of 1.0 kg per pot [77,78].

At three different stages, on 10 vines per treatment, eco-physiological measurements
and berries samplings were conducted: Time1 (full-veraison, Eichorn and Lorenz (E-L)
stage 35; 28 July 2021), Time2 (maturation; E-L stage 37; 5 August 2021), and Time3 (harvest;
E-L stage 38; 13 August 2021) [79].

4.2. Leaf Gas Exchange, Chlorophyll Fluorescence, Water Potential (Leaf, Stem, and Pre-Dawn),
Relative Water Content, Plant Hydraulic Conductance, Intercepted Photosynthetically Active
Radiation, and Leaf Temperature

At Time1 (full-veraison; 28 July 2021), Time2 (maturation; 5 August 2021), and Time3
(harvest; 13 August 2021), net photosynthesis (Pn), leaf temperature (LTemp), transpiration
rate (E), stomatal conductance (gs), vapor pressure deficit (VPD), and photosynthetically ac-
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tive radiation (PAR) were measured on 10 fully developed and healthy leaves per treatment
(one each grapevine/10 replicates) adopting Ciras 3 (ambient light and 400ppm CO2 [80]),
a portable infrared gas analyzer (PP Systems, MA, USA). Extrinsic water use efficiency
(WUEe) was calculated as follows: Pn and E ratio [81].

On the same leaves chosen for gas exchanges at Time1, Time2, and Time3, Chloro-
phyll Fluorescence (Fv/Fm; [82]) as the maximum quantum yield of photosystem II (PSII)
photochemistry was registered with Handy-PEA®, a portable fluorometer (Hansatech
Instruments, UK).

Moreover, at the same three different stages (full-veraison, maturation, and harvest),
leaf predawn (ΨPD; between 03.30–04.30 a.m. on 10 fully expanded leaves per treatment)
and stem midday (Ψstem; at noon o’clock on the same leaves used for leaf gas exchange
measurements; leaves over 60-min dark-adapted) water potentials were estimated [83]
with a model 600 pressure chamber (PMS Instrument Co., Albany, OR, USA). While in
accordance to Williams and Araujo (2002) [84], leaf midday (Ψleaf) water potential was
calculated as follows (r2 = 0.92):

Ψleaf = −0.37 + 0.91 × Ψstem (1)

Likewise, the whole-plant hydraulic conductance (Kplant) was obtained by the equation:

Kplant = E/(ΨPD − Ψleaf) (2)

As the association between the plant water depletion by transpiration (E) and the
water potential dwindle from roots to leaves [85–87].

Finally, according to Bertamini et al., (2006) [88], 10 different leaves per treatment were
used to reckon their relative water content (RWC), as follows:

RWC = ((FM − DM)/(TM − DM)) × 100 (3)

where FM denotes fresh mass (leaf immediately weighed), TM denotes turgid mass (leaf
reweighed placed overnight in the dark in a 25cm3 beaker filled with water), and DM denotes
dry masses (leaf reweighed after 24 h drying at 80 ◦C in drying oven). The instruments used
for such measurements were a dryer (Argolab TCN 30 model, MI, Italy) and a precision digital
scale (FR-320 model, Gram Group Weighing Systems, Barcelona, Spain).

4.3. Technological Parameters of Berries

At Time1 (full-veraison; 28 July 2021), Time2 (maturation; 5 August 2021), and Time3
(harvest; 13 August 2021), 40 berries/vine sample (for repetition) was gathered from the
clusters of 10 vines (10 repetitions/treatment), weighed (FR-320 model digital scale, Gram
Group Weighing Systems, Barcelona, Spain), and juiced.

With a refractometer (RF40-ND model, FLIR Extech, Munich, Germany), total sugars
(◦Brix) were determined. Titratable acidity (TA; gL−1 tartaric acid) was measured on a
10 mL sample by manual glass burette, titrating with 0.1 M NaOH to a pH 7.0 endpoint
using a portable pH meter (Hanna instrument, RI, USA) [78].

4.4. Statistical Analysis

To compare zeolite treatment effects in disparate irrigation programs and factors
interactions, all data were exposed to a two-way analysis of variance (p ≤ 0.05) and Tukey
HSD test using R version 4.1.2. (Development for R, MA, USA). The two irrigation regimes
well-watered and water stress (WWCtrl-WSCtrl) were combined with zeolite treatments
and supposed as fixed factors. The data are presented as the mean± standard deviation
(sd). After running preliminary Shapiro–Wilk’s (p ≤ 0.05) [89] and Levene’s (p ≤ 0.05) [90]
tests to verify the normal distribution and the homogeneity of variance of each dataset,
Pearson’s linear correlation index r (p < 0.05) was verified to determine the strength and
direction of a linear relationship between two continuous variables [91,92].
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Besides, a technique for monitoring and diagnosing processes with a large and mul-
tivariate dataset, consisting of many variables with strong correlations, was elaborated
(Principal component analysis, PCA) [93–95].

Graphic representations were executed by integrated development environment (IDE)
RStudio software version 4.1.2. (Development for R, MA, USA) [96].

5. Conclusions

Maximizing fertilizer and water use efficiency in order to decrease the environmental
impact of agriculture, zeolite utilization is the key to upscaling plant water holding capacity
that encourages the minimizing of vine irrigation, because water is well retained within the
zeolite’s structure. This experiment supplies new evidence that zeolite applications could
impact both the physiological profiles and berry skin metabolism (sugar and size) of vines,
giving a better skill to counteract low water availability during the season. However, it is
therefore believed that further investigations should be made, above all an investigation
into the activity of sugars accumulated in the vacuole (activity of sucrose-metabolizing
enzymes, sucrose transporters, and monosaccharide transporters).
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