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Abstract

Background. Aberrations in reward and penalty processing are implicated in depression and
putatively reflect altered dopamine signalling. This study exploits the advantages of a placebo-
controlled design to examine how a novel D2 antagonist with adjunctive antidepressant prop-
erties modifies activity in the brain’s reward network in depression.
Methods. We recruited 43 medication-naïve subjects across the range of depression severity
(Beck’s Depression Inventory-II score range: 0–43), including healthy volunteers, as well as
people meeting full-criteria for major depressive disorder. In a double-blind placebo-con-
trolled cross-over design, all subjects received either placebo or lurasidone (20 mg) across
two visits separated by 1 week. Functional magnetic resonance imaging with the Monetary
Incentive Delay (MID) task assessed reward functions via neural responses during anticipa-
tion and receipt of gains and losses. Arterial spin labelling measured cerebral blood flow
(CBF) at rest.
Results. Lurasidone altered fronto-striatal activity during anticipation and outcome phases of
the MID task. A significant three-way Medication-by-Depression severity-by-Outcome inter-
action emerged in the anterior cingulate cortex (ACC) after correction for multiple compar-
isons. Follow-up analyses revealed significantly higher ACC activation to losses in high- v. low
depression participants in the placebo condition, with a normalisation by lurasidone. This
effect could not be accounted for by shifts in resting CBF.
Conclusions. Lurasidone acutely normalises reward processing signals in individuals with
depressive symptoms. Lurasidone’s antidepressant effects may arise from reducing responses
to penalty outcomes in individuals with depressive symptoms.

Introduction

Multiple studies implicate reward and dopaminergic system dysfunction in the pathogenesis of
major depressive disorder (MDD). Yet, only few studies use experimentally controlled designs
to probe the role of these systems in MDD. Here, we examine the acute effects of lurasidone, a
novel D2 antagonist with adjunctive antidepressant properties, on neural responding to reward
in depression using two functional imaging modalities.

Depressed patients display alterations across several key phases of reward processing.
Blunting of neural responses when anticipating or obtaining rewards (Knutson et al., 2008;
Pizzagalli et al., 2009; Keren et al., 2018) is associated with anhedonia, while increased reactiv-
ity to losses may underlie the behavioural avoidance that is characteristic of depression
(Stringaris et al., 2015; Luking et al., 2016; Engelmann et al., 2017; Hevey et al., 2017).
Recently, a direct link has been found between reduced mid-brain dopamine transporter dens-
ity and neural activity during reward processing within the mesolimbic pathway in healthy and
depressed human participants (Dubol et al., 2018).

These findings make reward processing an attractive treatment target. Dopaminergic com-
pounds provide a promising way to manipulate fronto-striatal reward pathways (Pessiglione

https://www.cambridge.org/psm
https://doi.org/10.1017/S0033291718003306
https://doi.org/10.1017/S0033291718003306
mailto:selina.wolke@kcl.ac.uk


et al., 2006; Jocham et al., 2011, 2014; Chowdhury et al., 2013;
Dean et al., 2016; Harmer et al., 2017). Surprisingly, however,
very few studies have used dopaminergic drugs to probe the asso-
ciation between neural reward signalling and depression. Recently,
Admon et al. (2017) showed that a single-dose of the dopamine
receptor antagonist amisulpride normalised reward processing
by increasing reward-related striatal activation and corticostriatal
connectivity in depressed individuals. This effect is thought to
result from transient increases in dopamine signalling at low ami-
sulpride doses (Schoemaker et al., 1997; Admon et al., 2017).
Strengthening of striatal functioning through dopamine antago-
nists has been shown before in healthy volunteers (Mehta et al.,
2003; Handley et al., 2013) and is presumed to occur through pre-
synaptic D2/D3 autoreceptor blockade (Fernandez-Seara et al.,
2011, Goozee et al., 2014).

It may seem counterintuitive that some antipsychotics are anti-
depressant in augmentation treatment for bipolar and MDD,
given that D2 antagonism (a central feature of all antipsychotics)
is known to suppress reward-related striatal activation, for
example, with haloperidol (Pessiglione et al., 2006; Pleger et al.,
2009; Oei et al., 2012). However, olanzapine, quetiapine and lur-
asidone, which are efficacious adjunctive antidepressants [olanza-
pine (Tohen et al., 2003, 2014), quetiapine (Suppes et al., 2014;
Suttajit et al., 2014), lurasidone (Loebel et al., 2014a, 2014b;
Nelson et al., 2015; Suppes et al., 2016a, 2016b)] differ from halo-
peridol in their broader profile, including greater serotonergic
action. Indeed, blockade of serotonergic 5-HT receptors (5-HT1A,
5-HT2A, 5-HT7) stimulates striatal dopamine release and in add-
ition to this, serotonergic neurons directly impact upon reward
(and predominantly aversive) processing (Boureau and Dayan,
2011; Huang et al., 2012; Inaba et al., 2013; Liu et al., 2014;
Cohen et al., 2015; Hayashi et al., 2015; Li et al., 2016).
However, there are few studies that have assessed modulation of
loss anticipation and feedback with antidepressant drugs. The evi-
dence thus far points to a pattern of blunting of aversive events
with acute administration of selective serotonin reuptake inhibi-
tors (SSRIs) (McCabe et al., 2010; Macoveanu et al., 2013, 2014;
Macoveanu, 2014), but crucially also with D2 antagonists that
have anti-depressant properties [amisulpride (Admon et al.,
2017) and aripiprazole (Bolstad et al., 2015)]. These findings
raise the intriguing possibility that dopamine antagonists with
adjunctive antidepressant properties may exert their effects via
reward and/or penalty signal normalisation.

In this paper, we test whether an acute dose of 20 mg lurasi-
done, a D2 receptor antagonist (Loebel and Citrome, 2015) with
demonstrated antidepressant properties in monotherapy and in
combination treatment (Loebel et al., 2014a, 2014b; Suppes
et al., 2016a; Goldberg et al., 2017), influences reward and penalty
signal in depression. Lurasidone was selected because it is the
most recently licensed dopamine antagonist with antidepressant
properties and there is no information with regards to its effects
on brain reward and penalty signalling (Loebel et al., 2014a,
2014b; Nelson et al., 2015; Nierenberg et al., 2015; Suppes
et al., 2016a, 2016b; Goldberg et al., 2017). We employ a rando-
mised, placebo-controlled cross-over design with functional mag-
netic resonance imaging (fMRI) and arterial spin labelling (ASL)
imaging acquired on two separate occasions per individual. This
design overcomes the limitations of correlational studies through
randomisation and experimental manipulation. Since symptoms
of MDD fall on a continuous dimension (Angst et al., 2000;
Ayuso-Mateos et al., 2010), we recruited medication-naïve sub-
jects across the range of depression severity, including healthy

volunteers, as well as people meeting full-criteria for MDD.
This research approach is in line with the Research Domain
Criteria framework (Morris and Cuthbert, 2012) [e.g. as in
Stringaris et al. (2015) where symptom levels are related to the
brain measurements]. It also does justice to findings concerning
the genetic underpinnings of common mental illness (Plomin
et al., 2009) as well as current approaches to understanding neural
system perturbation in a dimensional way (Matthews and
Hampshire, 2016).

Depression is characterised by hyporeactivity to reward
(Knutson et al., 2008; Forbes et al., 2009; Pizzagalli et al., 2009;
Gotlib et al., 2010; Admon et al., 2015; Luking et al., 2016;
Keren et al., 2018) and hyperactivity to aversive stimuli (Gotlib
et al., 2010; Admon et al., 2015; Luking et al., 2016; Engelmann
et al., 2017), and thus an antidepressant effect could be brought
about by increasing reward, decreasing salience to negative events,
or, both simultaneously. Given the relative paucity of literature on
processing of losses (Keren et al., 2018), our study is designed to
interrogate both anticipation and feedback of rewards and penal-
ties. We hypothesise a normalisation of fronto-striatal reward
and/or penalty function following acute-dose administration in
depression. More specifically, we anticipate that subjects scoring
high on depression will show a baseline difference in fronto-
striatal activity which will be reverted by acute-dose lurasidone.
We first explore the expectation that the dopamine antagonist
lurasidone will show striatal blunting during the anticipation
phase, in line with numerous findings with D2 antagonist drugs
(Pessiglione et al., 2006; Pleger et al., 2009). Although, we note
that a structurally similar drug, amisulpride has shown opposite
effects (Admon et al., 2017). An intriguing question is whether
any blunting in reward processing that occurs with these drugs
could have beneficial effects when dealing with loss. This is
important given findings from serotonergic drugs that show on
the one hand blunting of reward processing and on the other,
amelioration of negative feedback (McCabe et al., 2010;
Macoveanu et al., 2013, 2014; Macoveanu, 2014), which could
underlie its antidepressant effects. In addition, we seek to address
a key concern in pharmacoimaging studies, namely that shifts in
global or regional cerebral blood flow (CBF) could underlie
changes observed in a blood oxygenated level dependent
(BOLD) fMRI signal. We therefore also use ASL, an imaging
modality that allows the quantification of CBF at rest, to disentan-
gle global and regional CBF changes from a BOLD fMRI signal.

Materials and methods

Participants

Forty-three participants (28 female, 15 male) were recruited using
the research volunteer recruitment webpage at King’s College
London, social media and posters at university counselling ser-
vices across London.

We recruited young people across a range of depression and
anhedonia scores in the community as symptoms of MDD are
known to fall on a continuum (Angst et al., 2000; Ayuso-
Mateos et al., 2010), allowing us to assess the role of symptom
level in reward processing on and off lurasidone (see text and
online Figs S2–S4 in the Supplementary Methods). Inclusion cri-
teria restricted recruitment to right-handed individuals 18–25
years of age with no contraindications to MRI, no serious medical
conditions and no lifetime substance dependence. Please refer to
the online Supplementary Methods for full details of inclusion
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and exclusion criteria. Table 1 provides demographic and clinical
information for the entire sample (n = 43). Online Table S1 in the
Supplementary Methods provides demographic and clinical
characteristics of recruited participants according to depression
severity cut-off scores from the Beck’s Depression Inventory-II
(BDI-II). Participants received £230 in compensation for attend-
ing the assessment appointment and both scanning visits, in
addition to their winnings from the fMRI task. All participants
provided written informed consent, as approved by the Ethics
Subcommittee of Psychiatry, Nursing & Midwifery Research
(RESC reference number: PNM/13/14-122).

Design and procedure

Depression and anhedonia scores were assessed using the BDI-II
(Beck et al., 1996) and the Snaith–Hamilton Pleasure Scale
(SHAPS) (Snaith et al., 1995). On the basis of BDI-II scores, par-
ticipants who were eligible following this screening procedure
were invited to the assessment appointment.

Figure 1 illustrates the procedure and timeline of the study. At
the assessment appointment, participants first completed a pre-
MRI safety screening. Participants then completed questionnaires
to assess handedness (Edinburgh Handedness Inventory) and IQ
(National Adult Reading Test) (Nelson and Willison, 1991).
This was followed by the Mini International Neuropsychiatric
Interview version 6.0.0 (M.I.N.I.) (Sheehan et al., 1998) which
assessed past and present mental health disorders. Participants’
height, weight, heart rate, blood pressure and electrocardiogram
(ECG) were measured by the experimenter and blood samples
(for Full Blood Count and Liver Function Tests) were taken by
a study physician. Participants provided a urine sample for
drug testing and for pregnancy testing in female participants.
Participants were guided through the scanning procedure in a
mock scanner and completed training for the Monetary
Incentive Delay (MID) task.

If participants fulfilled the inclusion criteria after the assess-
ment appointment, they were invited to take part in two scan
days. There was a 97% retention rate in the study and this is
illustrated in online Fig. S1 in the Supplementary Methods.
Participants were randomised into one of two drug administration
orders: placebo-lurasidone (placebo at visit one and lurasidone at
visit two), or lurasidone-placebo. Both scan days followed the
same schedule. On arrival at the imaging centre, participants
had their heart rate and blood pressure measured and filled in
two brief questionnaires to measure sedation [Visual Analogue
Scale (VAS) (Herbert et al., 1976) and state-anxiety (State Trait
Anxiety Inventory; STAI) (Spielberger et al., 1970)]. Next, the
experimenter administered a capsule of either lurasidone
(20 mg) or placebo. This dose was selected to minimise post-
synaptic D2 blockade (la Fougere et al., 2005), as in similar studies
of related medications (Admon et al., 2017). Given the pharmaco-
kinetic profile of lurasidone, the pill was consumed, followed by a
350 calorie meal (Greenberg and Citrome, 2017). Peak plasma
levels of lurasidone are reached at approximately 3 h after tablet
ingestion and the plasma half-life is 18 h (Greenberg and
Citrome, 2017). In order to align the study assessments with
peak plasma levels the MRI scan took place 3 h after tablet con-
sumption (Fig. 1). Prior to the MRI scan, 2 h 45 min after drug
administration, the experimenter measured participants’ heart
rate and blood pressure again, and participants completed the
VAS and STAI questionnaires. The scan lasted approximately
1.5 h and included structural scans, ASL and a functional scan

acquisition while completing the MID task. After the scan, and
approximately 4.5 h after drug administration, the experimenter
assessed the participants’ heart rate and blood pressure, the
VAS/STAI questionnaires were completed and ECG was collected.
Participants were paid in cash for their winnings from the MID
task and were discharged.

fMRI task

The MID task used in the current study was an adaptation of the
task from, for example Knutson and colleagues (Knutson et al.,
2001). The task involves anticipation and receipt of monetary
rewards and penalties. The task elicits robust fronto-striatal
responses in healthy individuals and has high scan-rescan reliabil-
ity (Plichta et al., 2012; Wu et al., 2014). During the anticipation
and receipt of monetary reward and penalties, several studies
using this task have demonstrated altered fronto-striatal activation
in depressed individuals compared with healthy controls
(Knutson et al., 2008; Pizzagalli et al., 2009; Carl et al., 2016).
This makes the MID task well-suited for the current study and
further details are provided in the online Supplementary
Methods.

MRI acquisition parameters

The MRI acquisition parameters are described in the online
Supplementary Methods.

fMRI data analysis

ASL pre-processing
Spatial normalisation of the CBF maps was achieved using
Automated Software for ASL Processing (ASAP; Mato Abad
et al., 2016). This pipeline employs the Statistical Parametric
Mapping suite (SPM, Functional Imaging Laboratory, University
College London, London, UK, version 12 – https://www.fil.ion.ucl.
ac.uk/spm). Full details are provided in the online Supplementary
Methods.

Table 1. Demographic and clinical characteristics of participants in a study
investigating the effect of lurasidone on reward and penalty processing

Characteristic

Participants (N = 43)

Mean S.D. (range)

Age (years) 21.83 2.05 (18–25)

Beck Depression Inventory-II 13.89 12.83 (0–43)

Snaith–Hamilton Pleasure Scale 12.18 8.49 (0–29)

N %

Female 28 65.12

Caucasian 36 83.72

Current subthreshold depression 7 16.28

Current MDD 11 25.58

Lifetime MDD 15 34.88

Lifetime MDD and current subthreshold
depression

5 16.28

Lifetime MDD and current MDD 10 23.26

Current comorbid anxiety disorders 10 23.26
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fMRI pre-processing
fMRI data were preprocessed and quality assured using SPM12 in
Matlab version (R2016b). This consisted of reorientation to the
AC-PC line, slice timing correction, motion correction (Friston
et al., 1996), multi-channel segmentation and co-registration to
each participant’s structural image. The normalise estimate &
write function within SPM12 was used, with the Montreal
Neurological Institute template (MNI152). Smoothing was
completed using a Gaussian kernel of 4 mm full-width half-
maximum.

ASL statistical analysis
To test for statistical significant changes in resting CBF we carried
out a paired-sample t test, which compared the CBF maps col-
lected after administration of lurasidone against those acquired
after placebo. Quantitative measures of global CBF and striatal
CBF were extracted for each participant after placebo and lurasi-
done. The striatal region-of-interest (ROI) was formed by com-
bining anatomically defined binary masks of the caudate,
putamen and nucleus accumbens (NAcc) (see online Fig. S7 in
the Supplement) (O’Doherty et al., 2004). A repeated-measures
analysis of covariance (ANCOVA) was performed for global
and striatal CBF with the following factors: Medication (placebo,
lurasidone) as the within-subject variable, Medication Order (pla-
cebo-lurasidone, lurasidone-placebo) as the between-subject fac-
tor and Depression Severity (total BDI-II score) as the covariate
of interest. To test if changes in baseline CBF were related to
the BOLD findings, the change in CBF between the two sessions
was entered as covariates in all subsequent analyses. Specifically,
the change in CBF values for a given region was used as covariates
for the same region in the fMRI analyses.

fMRI first-level model
The BOLD signal was modelled with a canonical haemodynamic
response function that was convolved with the onset times of task

regressors to compute parameter estimates using the general lin-
ear model (GLM) at the single-subject level. The GLM included
nine task-related regressors: passive condition, three cues (neutral,
win, loss) and five outcomes [with (win outcome following win
cue), missed win (no-change outcome following a win cue), loss
(penalty outcome following a loss cue), avoided loss (no-change
outcome following a loss cue) and neutral outcome (no-change
outcome following a neutral/no-incentive cue)]. High-pass tem-
poral filtering (128 s cut-off) was used to remove low-frequency
artefacts. Estimated movement parameters were added to the
design matrix. These included six rigid-body movement para-
meters, a regressor accounting for frame-wise displacement (i.e.
the 3D movement from volume 1–2, 2–3 etc.), and additional bin-
ary regressors to indicate image volumes with spikes greater than
1 mm, and images either side of the spike (i.e. motion scrubbing
and padding). Movement analyses are described in the online
Supplementary Methods.

fMRI statistical analysis

Anticipation and outcome
Following previous findings that depression is associated with dif-
ferential fronto-striatal abnormalities in response to anticipation
v. receipt of monetary outcomes (Pizzagalli et al., 2009) statistical
analyses were separately conducted for the cue and outcome
phases of the task.

To test a priori hypotheses regarding fronto-striatal responses
to the anticipation and outcome of reward and penalty, we con-
ducted a ROI analysis. Mean activations were extracted from
seven bilateral anatomical masks of the caudate, putamen,
NAcc, orbitofrontal cortex (OFC), anterior cingulate cortex
(ACC), insula and amygdala for each participant for the following
contrasts of interest: (i) anticipation neutral > baseline, (ii) antici-
pation win > baseline, (iii) anticipation loss > baseline, (iv) Reward
Outcome: feedback win > missed win and (v) Penalty Outcome:

Fig. 1. Procedure and timeline for a study investigating the effect of lurasidone on reward and penalty processing.
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feedback loss > avoided loss. This analytic approach has been used
previously (Admon et al., 2017) and mitigates possible spillover
effects of cue type on the neural responses to outcomes. Masks
were collapsed across hemispheres because hemispheric effects
on task activation were non-significant and because of the high
correlation between hemispheric ROIs. To avoid circular analysis
(Kriegeskorte et al., 2009), whole regions from atlas toolboxes in
SPM12 were used (see online Fig. S7 in the supplementary data).
These ROIs were chosen in accordance with meta-analytical find-
ings of the neural correlates of reward and penalty processing
(Diekhof et al., 2012; Bartra et al., 2013; Zhang et al., 2013).

For the anticipation phase of the task, a repeated-measures
ANCOVA was performed for each ROI with the following factors:
Medication (placebo, lurasidone) and Anticipation Cue (neutral,
win, loss) as within-subject variables, Medication Order as the
between-subject factor, and Depression Severity (total BDI-II
score) as the covariate of interest.

To test our hypothesis regarding normalisation of reward and/
or penalty responses, we conducted a repeated measures
ANCOVA for each ROI. This included the factors: Medication
(placebo, lurasidone) and Outcome Type (reward, penalty) as
within-subject variables, Medication Order as the between-subject
factor, and Depression Severity (total BDI-II score) as the covariate
of interest. We predicted that normalisation responses in
depressed individuals on lurasidone would be captured by a
Medication-by-Depression Severity-by-Outcome Type interaction.
We expected to find no effect of Medication Order.

In order to examine further the drug effects on the neural
signal, we examined how the difference in neural activity
(Δneural activity) between placebo and lurasidone in each ROI varied
across depression scores. For this, Pearson correlation coefficients
were estimated.

To complement our primary dimensional analyses (using a
continuous measure of depression), we also examined our
hypothesis regarding normalisation of responses using categorical
groups in a repeated measures ANOVA model (Fig. 4). We used
severity cut-off scores for the BDI-II (Beck et al., 1996, Krefetz
et al., 2002, Kumar et al., 2002) to compare individuals with
low depressive symptoms [total BDI-II score: 0–16 (normal-mild
mood disturbance), n = 24] to individuals with high depressive
symptoms [total BDI-II score: 17–43 (borderline-severe depres-
sion), n = 18] on placebo and lurasidone (Strober et al., 1981;
Barrera and Garrisonjones, 1988; Whitaker et al., 1990;
Ambrosini et al., 1991; Marton et al., 1991; Canals et al., 2001).

For all of the above ROI analyses, the threshold for statistical
significance was set at ( p < 0.007) following Bonferroni adjust-
ment for seven multiple ROI comparisons. We also tested the
association between dimensional anxiety scores and brain activa-
tion in an ANCOVA, with Anxiety Severity (total score on the
anxiety subscale of the Hospital Anxiety and Depression Scale)
as the covariate of interest.

In order to model the effects of lurasidone and depression sta-
tus beyond the fronto-striatal network targeted in the ROI ana-
lyses, exploratory whole brain analyses were also conducted (see
the online Supplementary Methods and Results).

Results

Behavioural results

A repeated measures ANCOVA with Medication (placebo or
lurasidone) and Cue Type (reward, penalty, neutral) as the within-

subject variables, Medication Order (placebo-lurasidone, lurasi-
done-placebo) as the between-subject variable and Depression
Severity (total BDI-II score) as the covariate of interest was com-
pleted for (i) Total Winnings, (ii) Mean Reaction Time (RT) and
(iii) Accuracy. Performance data are presented in online Table S2
in the Supplementary Results. In all analyses, there were no effects
of Medication Order or interactions with Medication Order (all p
values > 0.050). In all analyses there were no significant three-way
interactions between either (i) Total Winnings, (ii) Mean RT or
(iii) Accuracy and Medication and Depression Severity.
Significant two way interactions between Cue Type and Mean
RT, and Cue Type and Accuracy are presented in the online
Supplementary Results. We also examined the effect of
Medication, Medication Order and Depression Severity on the
change in Sedation ratings (total VAS scores) and State-anxiety
ratings (total STAI score) from pre-drug administration
(Measure 1) to peak-of-drug (Measure 2). There were no signifi-
cant main effects or interactions (all p values > 0.050) (please refer
to the online Supplementary Results).

Reward processing (blood-oxygen-level dependent signal)
results

Response to outcomes

Primary analyses
These primary analyses are conducted with depression measured
as a continuous variable. In order to test the hypothesis that lur-
asidone would increase activation to reward outcomes and
decrease responses to penalties in depressed individuals, we con-
ducted a repeated-measures ANCOVA. Medication (placebo, lur-
asidone) and Outcome Type (Reward Outcome v. Penalty
Outcome) were the within-subject variables, Medication Order
was the between-subject factor and Depression Severity (total
BDI-II score) was the covariate of interest (n = 40). Three partici-
pants were excluded from the analyses (please refer to the online
Supplementary Results). The repeated measures ANCOVA
revealed a significant Medication-by-Depression Severity-by-
Outcome Type interaction in the ACC (F = 8.10, df = 1, 37, p =
0.007), after passing Bonferroni adjustment for seven multiple
ROI comparisons. The interaction fell short of Bonferroni-
adjusted significance in the OFC (F = 4.47, df = 1, 37, p = 0.041)
and insula (F = 4.90, df = 1, 37, p = 0.033). There were no signifi-
cant interactions with Medication Order (all p values >0.050).

To understand the significant three-way interaction, we con-
ducted two repeated-measures ANCOVAs for Reward Outcome
(n = 41) and Penalty Outcome separately (n = 41 after excluding
outliers, please refer to online Supplementary Results).

This revealed a significant Medication-by-Depression Severity-
by-Penalty Outcome interaction in the ACC (F = 11.98, df = 1, 38,
p = 0.001). Figure 2 demonstrates that under placebo, individuals
with higher depressive symptoms had greater ACC activity during
penalty outcomes. However, this trend was not found under lur-
asidone. Put simply, brain activity to penalties in the ACC in indi-
viduals with elevated depression scores under lurasidone, but not
placebo, resembles brain activity of individuals with low depres-
sive symptoms. In keeping with this result, we found that
ΔACC (the difference between neural activity under lurasidone
and placebo) was negatively correlated with depression severity.
Figure 3 illustrates the finding that the absolute difference in
neural activity between lurasidone and placebo increased as a
function of depression scores.
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A similar pattern of results, namely a signal normalisation, was
found in the OFC (F = 4.94, df = 1, 37, p = 0.032), but the inter-
action fell short of significance after Bonferroni adjustment (see
the online Supplementary Results).

We then examined the Medication-by-Depression Severity-by-
Reward Outcome interaction across the seven ROIs. This also dis-
played a pattern of signal normalisation, although in an opposite
direction to Penalty Outcome, as lurasidone had its strongest
effect of increasing responses to reward outcomes in individuals
with high depression severity. This trend fell short of significance

in the NAcc (F = 4.87, df = 1, 38, p = 0.033) and ACC (F = 5.92,
df = 1, 37, p = 0.020) following Bonferroni correction.

Secondary analyses
Complementing the primary (continuous variable) analyses, we
sought to replicate our results using categorical analyses. A
repeated-measures ANOVA with Medication (placebo, lurasi-
done) and Outcome Type (Reward Outcome v. Penalty
Outcome) as the within-subject variables and Depression Group
(low v. high depressive symptoms) and Medication Order as

Fig. 2. Facet plot illustrating ACC response during Penalty Outcome across continuous depression scores under lurasidone and placebo. Dashed vertical line
denotes depression severity cut-off score on the BDI-II.

Fig. 3. Intra-individual change in penalty related ACC
activity (the difference between neural activity under lur-
asidone and placebo) as a function of continuous depres-
sion scores.
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the between-subject factors (n = 40), revealed a significant
Medication-by-Depression Group-by-Outcome Type interaction
in the ACC (F = 8.68, df = 1, 38, p = 0.005).

Figure 4 illustrates these findings using BDI-II cut-off scores,
with individuals with low depressive symptoms (total BDI-II
score: 0–16, n = 24) v. high depressive symptoms (total BDI-II
score: 17–43, n = 18). Post-hoc t tests showed that participants
with high depressive symptoms receiving placebo had signifi-
cantly greater ACC activation to Penalty Outcomes than partici-
pants with high depressive symptoms receiving lurasidone (T =
2.17, df = 19, p = 0.043), and participants with low depressive
symptoms receiving placebo (T = 2.32, df = 37, p = 0.026). There
was no significant difference between individuals with high
BDI-II scores on lurasidone and individuals with low BDI-II
scores on placebo (T = 0.48, df = 37, p = 0.634). Together, these
findings indicate that brain activity to penalties in the ACC in
individuals with elevated depression scores under lurasidone,
but not placebo, resembles brain activity of healthy volunteers.

To summarise, across reward and penalty outcomes, lurasi-
done had its strongest effect of increasing responses to reward
outcomes and decreasing responses to penalty outcomes in indi-
viduals with high depression severity (Figs 2–4). The pattern and
significance of the results remained when the outliers were
included in the analysis (see the online Supplementary Results).

Response to cues
In contrast to the outcome results, there were no significant inter-
actions with depression in the anticipation phase of the task.
Instead, the repeated measures ANCOVA revealed a significant
Medication-by-Anticipation Cue interaction in the ACC (F =
8.16, df = 2, 72, p = 0.001) and caudate (F = 7.78, df = 2, 72, p =
0.001). Post-hoc tests show that lurasidone reduced responses to
win and loss cues v. placebo, and increased responses for neutral
cues in the ACC and caudate. This fell short of significance in the
OFC (F = 3.94, df = 2, 72, p = 0.024) and amygdala (F = 3.85, df =
2, 72, p = 0.026).

Anxiety severity analyses and exploratory whole-brain findings
for the anticipatory and outcome phases of the task are presented
in the online Results Section of the Supplementary data.

Cerebral blood flow (CBF)
In order to ensure that the BOLD results in the ACC were inde-
pendent of changes in underlying CBF, we tested the effects of
acute lurasidone administration on global and regional blood
flow. As shown in Fig. 5, a paired-samples t test across the whole-
brain showed that lurasidone increased CBF in bilateral putamen
relative to placebo during rest in the whole sample (n = 43).
Significant increases in blood flow were not observed in the
ACC. The repeated measures ANCOVA revealed that the
extracted global and striatal CBF values were not related to
Depression Severity (F = 0.02, df = 1, 40, p = 0.903), Medication
Order (F = 0.44, df = 1, 40, p = 0.903), or any three-way interac-
tions with these respective factors (F = 0.01, df = 1, 40, p =
0.952); (F = 1.10, df = 1, 40, p = 0.300). The change in CBF values
for each of the seven ROIs were extracted and used as covariates
for the same region in the fMRI BOLD analyses. This did not lead
to any changes in the results: non-significant results remained
non-significant and significant results remained significant. In
particular, the Medication-by-Depression Severity-by-Outcome
Type interaction in the ACC (F = 8.13, df = 1, 36, p = 0.007).

Discussion

In this study, we compared the effects of lurasidone and placebo
on neural responding to reward and penalties in medication-naïve
young-adult subjects across the range of depression severity.
During the anticipation phase of the task, we found that lurasi-
done reduced responses to win and loss cues v. placebo, and
increased responses for neutral cues in the ACC and caudate
across the entire sample (i.e. regardless of depression severity).
We found that brain activity in the ACC to Penalty Outcomes
in individuals with high symptoms of depression under lurasi-
done, but not placebo, resembled brain activity of individuals
with low symptoms of depression. Specifically, lurasidone reduced
ACC signalling to negative feedback in young people with ele-
vated depressive symptoms. Increased regional and global blood
flow under lurasidone did not drive the BOLD findings. These
results provide evidence for abnormalities in neural reward-
penalty systems in depression and highlight the potential of

Fig. 4. Box plot illustrating ACC Response to Penalty
Outcomes (loss > avoided loss). Depression severity cut-
off scores from the BDI-II, with individuals with low
depressive symptoms (total BDI-II score: 0–16, n = 24) v.
high depressive symptoms (total BDI-II score: 17–43, n =
18).
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targeted pharmacological treatments (dopaminergic agents) to
normalise penalty related processing in depression.

Our findings are consistent with the notion that acute dose of
drugs with antidepressant properties, either as used in monother-
apy or combination treatment, can have an effect on brain pro-
cesses implicated in depression (Harmer et al., 2017). For
example, SSRIs reduce negative bias and amygdala response to
negative emotional stimuli (Harmer et al., 2009; Murphy et al.,
2009). In our study, the effects of normalisation where localised
to the ACC, a region that integrates diverse striatal and prefrontal
functions (Haber and Knutson, 2010). For example, the ACC and
ventral striatum (VS) show functional connectivity at rest (Pan
et al., 2017) and input from the ACC to the VS allows for flexible
deployment and adaptation of behaviour to changing circum-
stances (Holroyd and Coles, 2002; Walton et al., 2007;
Alexander and Brown, 2011; Holroyd and Yeung, 2012; Walsh
and Anderson, 2012; Holroyd and Umemoto, 2016; Umemoto
and Holroyd, 2016; Shahnazian and Holroyd, 2017).
Electrophysiological (electroencephalogram) studies have shown
that the feedback negativity (FRN), an event-related potential
which indicates the early appraisal of feedback and appears larger
following the presentation of negative feedback, has its origins in
the ACC (Gehring and Willoughby, 2002; Holroyd and Coles,
2002; Holroyd et al., 2004; Hajcak et al., 2005; Yeung et al.,
2005). Specifically, an FRN signal may be generated as ACC neu-
rons shift from encoding expected to actual outcomes (i.e. a pre-
diction error signal) (Hyman et al., 2017). In our study,
participants with higher depression severity on placebo showed
greater ACC response to negative feedback. This is congruent
with evidence of heightened sensitivity to negative outcomes in
depression and its association with elevated loss-related signals
in the ACC, and connected regions such as the anterior insula
and striatum.

It has been postulated that increased ACC activity in depressed
individuals to loss outcomes reflects biased stimuli representa-
tions that mediate choice behaviour, including preferential atten-
tion, planning and self-referential processing towards losses
(Sylvester et al., 2003; Grimm et al., 2009; Gotlib et al., 2010).
A normalisation of ACC response in depressed individuals on lur-
asidone therefore suggests that lurasidone may act to decrease
salience and processing of loss events.

Inter-individual differences between low and high depression
severity subjects could account for the findings that lurasidone

attenuated response to penalty outcomes in individuals with
high depression severity only. Indeed, depression is associated
with baseline differences in availability and function of 5-HT
and/or D2 receptors and reductions in binding relative to healthy
volunteers (Suhara et al., 1992; Yatham et al., 1999; Sheline et al.,
2004; Yatham et al., 2005). Thus, in accordance with previous
findings that more divergent patterns of reward/penalty process-
ing at baseline are associated with greater post-intervention
change (Vrieze et al., 2013; Rice et al., 2015; Burkhouse et al.,
2016; Walsh et al., 2016), it could be that subjects with more
severe depressive symptoms have more ‘room for improvement’
following acute lurasidone administration.

In addition to attenuating penalty outcome responses, lurasi-
done reduced neural responses in the ACC and caudate during
the anticipation of loss and reward cues across the entire sample
(i.e. regardless of depression severity). This is in line with studies
showing attenuated reward-related striatal activation during
reward anticipation and decision making with D2 antagonist halo-
peridol (Pessiglione et al., 2006; Pleger et al., 2009). However, no
effect has been reported for prediction of losses (Pessiglione et al.,
2006). There are various mechanisms which could account for the
finding in this study, all of which are speculative at the moment.
First, lurasidone may modulate tonic and phasic dopamine firing
either directly by D2 antagonism or indirectly via antagonism at
serotonergic 5-HT receptors (5-HT2A, 5-HT7). Antagonism at
D2 receptors could act to block and reduce dopamine release,
thereby also attenuating the BOLD signal. Alternatively, lurasi-
done may, at low doses, like amisulpride increase striatal dopa-
mine release by preferentially blocking presynaptic dopamine
auto-receptors. Increased dopamine availability may act to
increase tonic levels of dopamine, in turn decreasing the phasic
firing of dopamine neurons and the sensitivity of the dopamine
reward system (Grace, 1991), thereby potentially reducing
BOLD signal to anticipation cues. Although it must be noted
that ascribing the changes seen to one or more receptor systems
is highly speculative as the precise mechanism by which BOLD
signal is modulated cannot be determined with fMRI alone.

It is notable, that in line with previous studies utilising dopa-
mine antagonists (Lahti et al., 2003; Lahti et al., 2005; Handley
et al., 2013; Goozee et al., 2014), we show here that lurasidone
increased striatal CBF at rest. Increases in blood flow following
antipsychotic lurasidone administration may be related to
increased neuronal metabolism in striatal areas due to the large
density of D2 receptors (Goozee et al., 2014), with blockade of
D2 receptors in the striatum potentially resulting in disinhibition
of D2 receptor-containing medium spiny neurons (Fernandez-
Seara et al., 2011). Our results showed that the penalty and
reward-related findings were unchanged after controlling for base-
line shifts in global and striatal CBF, and highlight the utility of
multi-modal fMRI in identifying if the effects of the drug admi-
nistered are indeed neuronal.

Our study also showed a pattern in which lurasidone poten-
tiated striatal (NAcc) activity to reward outcomes in young adults
with elevated depressive symptoms. These findings did not sur-
vive stringent correction for multiple comparisons and should
therefore be interpreted with appropriate caution. We note, that
these results are in keeping with recent findings by Admon
et al. (2017) who showed that a single-dose of the dopamine
receptor antagonist amisulpride normalises reward processing
by increasing reward-related striatal activation and connectivity
between the striatum and mid-cingulate cortex in depressed
individuals.

Fig. 5. Increased CBF in bilateral putamen for lurasidone relative to placebo during
rest in the whole sample (n = 43). Significant at the peak level whole-brain analyses,
family-wise error-corrected (left putamen x =−26, y =−4, z = 2, t = 6.15: p = 0.002, right
putamen x = 28, y =−2, z = 2, t = 5.50: p = 0.015). Bar represents T-value.
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This study has several strengths. First, we tested the association
between reward processing and depression using randomisation
and experimental manipulation, thereby overcoming several of
the limitations of correlational studies in drawing causal infer-
ences. Second, the cross-over, within-subject design affords higher
statistical power than a parallel design by minimising subject vari-
ance as each individual acts as their own control, and increasing
the drug variance. Third, we recruited medication-naïve subjects
across the range of depression severity, thus avoiding the con-
found of medication (Pessiglione et al., 2006; Abler et al., 2007).

This study also has limitations. Caution should be exercised
with the interpretation of our results as ‘normalising’. In the
absence of any behavioural effect there is no evidence for better
performance of the task on lurasidone, there is no clear main
effect of depressive symptoms on the task (i.e. no deficit to
improve) and no other triangulating measure of response to nega-
tive outcomes which can be linked to function. Nevertheless, it
could be argued that lurasidone changes an activity in the ACC
that might be beneficial. Further studies need to address both
the behavioural deficit and the neural changes in parallel. This
has proven challenging as it requires alignment between different
levels of explanation including task, neural, clinical and behav-
ioural (Keren et al., 2018).

Our study was not designed to capture changes in depressive
symptoms following lurasidone and therefore it is unclear how
these would correlate with brain responses. However, our strategy
of searching for the signal of an intervention in the first place is
consistent with current recommendations to boost drug discovery
(Krystal and State, 2014). The next piece of information which
would be needed to infer causality, is whether lurasidone-induced
neural changes (reduced penalty related ACC signalling and
increased reward-related NAcc signalling) predict a decline in
depressive and anhedonic symptoms (Shiroma et al., 2014;
Godlewska et al., 2016). This would require longer-term
lurasidone treatment in longitudinal studies with assessment of
pre-post changes in behavioural and neural responses.
Antidepressants seem to exacerbate reward deficits early in treat-
ment (Kumar et al., 2008; McCabe et al., 2010; Marutani et al.,
2011) prior to normalisation following longer-term (2–6 week)
treatment (Stoy et al., 2012; Scholl et al., 2017; Walsh et al.,
2017). Thus, in line with longer-term dosing studies, repeated
dosing with lurasidone could lead to increasing anticipation of
rewards with more chronic exposure to the drug. Although specu-
lative, one could predict a behavioural activation model of the
antidepressant mechanism of action of lurasidone, with normal-
isation of responses to outcomes (consummation), prior to a nor-
malisation of neural anticipatory signals with longer-term
treatment (Dimidjian et al., 2011).

We note that we used two contrasts for the outcome type:
reward and penalty outcome. Whilst this is standard in the litera-
ture in similarly designed studies (Admon et al., 2017), an alter-
native modelling could be four levels: reward, missed reward,
penalty and avoided penalty outcomes relative to no incentive
outcomes. In addition, the recruitment was designed for analysis
of depressive symptoms as a continuum, and as such any analysis
of those with higher scores contrasted with lower scores may be
underpowered. Interestingly we were able to replicate the results
of Admon et al. (2017), as lurasidone potentiated striatal
(NAcc) activity to reward outcomes using such categories but
this did not survive correction for multiple comparisons.

In conclusion, our study shows that an acute dose of dopamin-
ergic agent, lurasidone, transiently decreased penalty related ACC

activity in individuals with high symptoms of depression. These
findings suggest that modulation of dopamine transmission may
help to normalise processing of negative outcomes in depressed
individuals through the alteration of ACC signalling. Thus,
ACC signalling may provide a new target for engagement in
future drug development studies. Using an experimental medicine
design such as the one used in this study, could help identify rele-
vant compounds which could then be tested further in using
longer-term follow-up.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291718003306.
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