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ABSTRACT

Population-scale sequencing is increasingly uncov-
ering large numbers of rare single-nucleotide vari-
ants (SNVs) in coding regions of the genome. The rar-
ity of these variants makes it challenging to evaluate
their deleteriousness with conventional phenotype–
genotype associations. Protein structures provide a
way of addressing this challenge. Previous efforts
have focused on globally quantifying the impact of
SNVs on protein stability. However, local perturba-
tions may severely impact protein functionality with-
out strongly disrupting global stability (e.g. in re-
lation to catalysis or allostery). Here, we describe
a workflow in which localized frustration, quantify-
ing unfavorable local interactions, is employed as a
metric to investigate such effects. Using this work-
flow on the Protein Databank, we find that frustra-
tion produces many immediately intuitive results:
for instance, disease-related SNVs create stronger
changes in localized frustration than non-disease re-
lated variants, and rare SNVs tend to disrupt local
interactions to a larger extent than common variants.
Less obviously, we observe that somatic SNVs asso-
ciated with oncogenes and tumor suppressor genes
(TSGs) induce very different changes in frustration.
In particular, those associated with TSGs change the
frustration more in the core than the surface (by intro-
ducing loss-of-function events), whereas those asso-
ciated with oncogenes manifest the opposite pattern,
creating gain-of-function events.

INTRODUCTION

The advent of next-generation sequencing technologies has
led to a remarkable increase in genomic variation data at
both the exome as well as the whole-genome levels (1,2).

These large data sets are playing a pivotal role in advancing
efforts toward personalized medicine (3). Non-synonymous
coding single nucleotide variants (termed SNVs through-
out this study) are of particular interest because of their
implications in the context of human health and disease
(4–6). As such, considerable effort has been invested in cu-
rating disease-related SNVs into various databases, includ-
ing the Human Gene Mutation Database (HGMD) (5),
ClinVar (6) and the Online Database of Mendelian Inheri-
tance in Man (4). Concurrently, initiatives such as The 1000
Genomes Project (7,8), Exome Sequencing Project (9) and
Exome Aggregation Consortium (ExAC) (10) have gener-
ated large catalogues of SNVs within individuals of diverse
phenotypes in general.

As the costs associated with sequencing human genomes
and exomes fall, sequencing will become routine in both
medical and academic settings (11). Indeed, it may take
less than a decade to reach the milestone of a million se-
quenced genomes (12), resulting in massive data sets of rare
SNVs. This exponential growth in the number of newly dis-
covered rare SNVs poses significant challenges in terms of
variant interpretation (13). Compounding this challenge is
the fact that many of these variants will be unique to sin-
gle individuals. The extremely low allele frequencies of such
‘hyper-rare’ SNVs render them too rare to draw variant-
phenotype associations with confidence – unlike more com-
mon variants, the very rarity of these ultra-rare genomic
signatures renders phenotypic inference through associa-
tion studies extremely difficult. Together, these trends un-
derscore a growing and urgent need to evaluate the poten-
tial effects of low-allele-frequency variants in unbiased ways
using high-throughput methodologies.

Though the majority of variants lie in non-coding regions
of the genome, many disease-related variants are present
in protein-coding genes. Furthermore, only a limited frac-
tion of non-synonymous SNVs may be mapped to known
protein structures. However, immense progress has been
made in resolving the three-dimensional structures of many
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proteins over the last several decades (14). In addition, a
large volume of high-resolution data on protein–protein,
protein–ligand and protein–nucleic acid complexes is now
available. This complementary evolution of sequence and
structural databases provides an ideal platform to investi-
gate the functional and structural consequences of benign
and disease-related SNVs on protein structures. The inte-
gration of variant and structure knowledge bases will lead
to a greater understanding of the biophysical mechanisms
behind various diseases. In addition to gaining a better un-
derstanding of how disease-related SNVs impart deleteri-
ous effects, this integration can be utilized to both predict
the impacts of poorly understood SNVs (i.e. SNVs that
are known to be deleterious, but for which a plausible bio-
physical or functional rationale is missing) and to prioritize
SNVs based on predicted deleteriousness (15–18). We also
note that this approach may aid in more intelligent and tar-
geted design of drugs in various therapeutic contexts.

Over the last several decades, many studies have eval-
uated the impacts of SNVs by examining or predicting
changes in thermodynamic stability (19–21). These ap-
proaches rely on the fact that SNVs may induce substan-
tial changes in the folding landscape and conformational
ensemble. Such changes in global stability are often quan-
tified by calculating the folding free energy change (��G)
after mutating residues (21,22). Importantly, however, many
disease-related SNVs introduce local structural changes
without appreciably affecting folding free energy or global
stability (23,24). Such local perturbations may include dis-
ruptions in residue packing or hydrogen bond networks
(25,26) and salt bridges (27,28). Examples of the associated
effects include disruptions to catalytic centers, changes to
‘hotspot residues’ that are responsible for interaction affini-
ties and specificity, as well as perturbations to key allosteric
sites (29–31). Changes to such residues may impart only
minimal effects to the protein’s overall topology, but may
nevertheless drastically influence protein behavior and func-
tionality.

We examine the role of localized perturbations by calcu-
lating changes in the localized frustration indices (32,33)
of residues impacted by SNVs. Qualitatively, the frustra-
tion of a given residue quantifies the degree to which the
residue is involved in favorable or unfavorable interactions
with neighboring residues in space. The residue change that
is introduced by an SNV may result in more (less) unfavor-
able interactions with neighboring residues, thereby increas-
ing (decreasing) the frustration at that site. SNVs thereby
act as agents that may relieve unfavorable interactions or
alternatively impair local stability, depending on the nature
of the amino acid substitution and the surrounding envi-
ronment within the protein. Throughout this study, such
changes in frustration are designated by �F.

The concept of frustration was originally introduced by
Wolynes et al. to describe the protein folding landscape (32).
The protein folding process is believed to follow a smooth-
funneled energy landscape, in which strong energetic con-
flicts are avoided (34–38). However, despite minimizing con-
figurations that exhibit frustration, local frustration is es-
sential to protein biology and function (39–41). Highly-
frustrated local interactions result in micro-states of high
potential energy. Such micro-states provide proteins with

the avenues needed to carry out essential functions that en-
tail a release of energy and the concomitant shifts in oc-
cupied energetic wells. Examples of processes that require
these ‘energetic bursts’ include catalysis, allosteric commu-
nication, conformational switches and proteinquakes (42),
as well as protein–protein interactions (32,43,44).

Ferriero et al. proposed a framework to compute the frus-
tration profile of a given protein (32). The localized frus-
tration index quantifies the contribution of each residue or
residue pair to the total energy of the native structure com-
pared to their contribution in a random non-native con-
figuration (see Materials and Methods). A native residue
(residue pair) is considered to be minimally frustrated if
it contains sufficient extra stabilization energy in its native
state. In contrast, a sufficiently destabilizing residue (residue
pair) in the protein structure is considered to be maximally
frustrated (45). In addition, a residue (residue pair) is con-
sidered to be neutral when its stability profile lies between
these extremes.

We take a data-driven approach to analyze �F pro-
files from SNVs in a large data set of proteins. SNVs in
healthy human populations (The 1000 Genomes and ExAC
projects) are highly enriched in benign SNVs. Therefore,
SNVs in these data sets are termed ‘benign’ (though we
qualify this term by noting that a small subset of these
SNVs may actually impart as yet undetected deleterious
effects). However, within these data sets, there are various
degrees along the continuum of phenotypic effects. While
deleterious variants are more enriched among rare SNVs,
neutral variants have greater representation among com-
mon variants. In addition, we also quantified and compared
�F profiles introduced by disease-related SNVs (taken from
the HGMD database), as well as cancer somatic variants,
thereby enabling in-depth analyses of the differential effects
between SNVs in driver and passenger genes.

Though the majority of our analyses are consistent with
prior studies investigating how SNVs impact protein struc-
tures, we provide a distinct rationale through the lens of
localized frustration. We observe that large disruptions in
local interactions of minimally frustrated core residues dis-
tinguishes disease-related SNVs from benign SNVs, as well
as SNVs impacting driver and passenger genes in can-
cer. In contrast, benign SNVs in passenger genes gener-
ate larger perturbations in local interactions of minimally
frustrated surface residues compared to core residues. Fur-
thermore, comparisons between rare and common SNVs
within healthy human populations indicate that rare vari-
ants induce larger disruptions in favorable local interactions
compared to common variants. Moreover, we also inves-
tigated the effects of SNVs impacting conserved and vari-
able regions of proteins, where conservation was measured
across different species. For disease-related SNVs, we de-
tected a significant disparity between local perturbations
observed due to SNVs impacting conserved regions com-
pared to variable regions of proteins. However, no such dis-
parity was observed for benign SNVs.

We also demonstrate how frustration may provide in-
sights in the context of oncogenes and tumor suppressor
genes (TSGs). We find that somatic SNVs in oncogenes
disrupt local interactions of surface residues and poten-
tially facilitate cancer progression through the introduction
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of non-specific regulatory interactions. However, SNVs in
TSGs drive cancer progression through larger local pertur-
bations in core residues. These observations suggest that
SNVs in TSGs and oncogenes may impart loss-of-function
(TSG) and gain-of-function (GOF) effects, respectively.

MATERIALS AND METHODS

SNV data sets

We utilized a comprehensive catalogue of non-synonymous
SNVs from various resources. Our SNV data set is divided
into two broad categories (benign and disease-related; Fig-
ure 1A). The benign set comprises SNVs reported in The
1000 Genomes (1KG) Project (phase 3) (7) and subsets
of SNVs curated from The Exome Aggregation Consor-
tium. The disease-related data set includes SNVs from The
Human Gene Mutation Database (HGMD) (5) and pan-
cancer data set (46) comprising publicly available somatic
SNVs from The Cancer Genome Atlas (TCGA) (47), The
Catalogue of Somatic Mutations in Cancer (48) and the
SNV data set available from Alexandrov et. al (49). In or-
der to avoid redundancy and false positive call sets, we only
consider HGMD SNVs annotated as pathological variants
(labeled as ‘DM’) in the HGMD data set. Furthermore, we
removed HGMD variants in the 1KG and ExAC data sets.
Similarly, we also removed known TCGA variants in the
original ExAC SNV data sets.

SNVs from the pan-cancer data set were further sub-
classified based on whether they fall in driver or passenger
genes. Driver genes were curated from Vogelstein et. al. (50),
in which driver and passenger genes are distinguished on
the basis of mutational patterns. They define a driver gene
as an oncogene if the SNV is recurrent at the same gene
loci, whereas TSGs are mutated throughout their length.
Similarly, we sub-classified passenger genes into cancer-
associated genes (CAGs) and non-cancer associated genes
(non-CAGs). CAGs include genes from the cancer gene cen-
sus (CGC) (51) and a curated list of 4050 genes from a pre-
vious study (52). Furthermore, we removed any driver genes
present in the CAG data set. The remaining set of genes im-
pacted by pan-cancer SNVs constitutes our non-CAG data
set.

Semi-balanced SNV data sets

The limited and uneven structural coverage of the human
proteome primarily introduces two sources of potential bias
when combined with SNV data sets: (i) some proteins may
be over-represented when evaluating the effects of SNVs,
and (ii) the sets of proteins that correspond to benign SNVs
may differ considerably from those that correspond to dele-
terious SNVs, thereby complicating direct comparisons be-
tween benign and deleterious SNVs.

In order to address the first issue, we selected a non-
redundant set of proteins within each data set. The non-
redundant set is constructed by ensuring that no protein
within the set shares more than 90% sequence identity with
any other protein in the set. Using this approach, we find
that there are 618, 907, and 303 distinct proteins within the
set of high-resolution structures impacted by 1KG, ExAC
and HGMD SNVs, respectively. Distributions delineating

the number of SNVs within these non-redundant protein
sets are given in Supplementary Figures S1–S3.

In order to address the second issue, we analyzed only
those structures that fall within the intersection of the dif-
ferent non-redundant data sets. Thus, for each SNV in a
structure within this intersection set of non-redundant pro-
teins (which we term the ‘semi-balanced set’), at least one
residue overlaps with an ExAC/1KG and HGMD SNV. We
utilized this semi-balanced set to demonstrate the utility of
localized frustration (for evaluating deleteriousness) in the
context of other methods (PolyPhen-2 (53) and SIFT (15)),
as described in Results. We also compare �F distributions
for 1KG, ExAC and HGMD SNVs on the semi-balanced
set (Supplementary Figure S4).

Workflow for calculating �F

As mentioned, we investigated the impacts of different cat-
egories of SNVs on the local stability of protein structures.
Quantifying the �F value associated with a given SNV at
position i within a structure involves three steps (see also de-
tailed formalism below): (i) determining Fnat: this represents
a normalized energetic difference between having the wild-
type residue at position i (the wild-type residue is generi-
cally termed ‘nat’ here) and the mean energy of having all
20 amino acids at position i, where all 20 of these energies
are calculated using the wild-type structure; (ii) determin-
ing F′

mut: this represents a normalized energetic difference
between introducing the mutated residue at position i (the
residue resulting from the SNV is generically termed ‘mut’
here) and the mean energy of having all 20 amino acids at
position i, where all 20 of these energies are calculated us-
ing a model of the mutated structure, which is built using the
SNV; and (iii) determining the �F value associated with this
SNV – this is simply the difference between the values cal-
culated in steps (i) and (ii) above: �F = F′

mut - Fnat. Qual-
itatively, �F thus describes the extent to which an amino
acid change perturbs the local energetic landscape. We note
that, in producing the model of the mutated structure in part
(ii), this workflow performs a second-order calculation. As
such, it provides values that may more accurately reflect the
influence of introducing an SNV.

To map SNVs onto protein structures, the Variant An-
notation Tool (VAT) (54) was applied to annotate our cu-
rated catalogue of SNVs. This annotation includes the gene
and transcript names, residue position in the protein se-
quence, as well as the original and mutated residue iden-
tities. We then integrated the VAT annotation with the
Biomart-derived (55) human gene and transcript IDs to
map the SNV to specific structures in the protein data-
bank (PDB). We restricted this SNV mapping scheme to
high-quality structures with resolution values that were bet-
ter than 2.8 Angstroms. Following SNV mapping to PDB
structures, we generated models of the resultant mutated
structures by applying homology modeling using the mu-
tated protein sequence and the wild-type protein structure
as input to Modeller (56,57).

Finally, we quantify the frustration index of the mapped
residue in the wild-type structure as well as in the mutated
model of the protein. Briefly, the residue-level localized frus-
tration index (45) quantifies the degree to which that amino
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Figure 1. Overview of SNV categories and their relative proportions within the analyzed data pool. (A) Flowchart representing the different categories and
origins of the variants analyzed in this study. A given non-synonymous SNV can be classified as benign or disease-related on the basis of its provenance
(i.e. whether it is taken from 1000 Genomes, ExAC, HGMD or Pan-cancer variant data sets). Relative proportions of SNVs from various data sets (B)
prior to and (C) after mapping SNVs to high-resolution protein databank (PDB) structures.

acid favorably contributes to the energy of the system rela-
tive to all 20 possible amino acids at that position:

Fi = 〈ET, U
i 〉 − ET, N

i√
1/N

∑n
k = 1(ET, U

i − 〈ET, U
i 〉)

, where ET, N
i is the total

energy of the wild-type protein. This energy is calculated
using a function that includes an explicit water interaction

term, ET, N
i =

n∑

k�=i
(Ei ;k

contact + Ei ;k
water) + Ei

burial. This water-

mediated potential (44), describes the energies associated
with direct interactions between residues i and k (Ei ;k

contact),
as well as those with water-mediated interactions between
residues i and k (Ei ;k

water) and an energy term associated with
the burial of the residue (Ei

burial). The average energy of
the decoy conformations (〈ET, U

i 〉) is generated by mutating
the original residue i to each of the alternative possible 19
residues. The AMW potential includes different parameter
values for different residues, so the decoy energies calculated
vary based on the identity of the mutated residue.

This workflow is computationally tractable when evalu-
ating �F values for large numbers of variants. Our bench-
mark calculations on 10,000 non-synonymous SNVs indi-
cate that we can map, build mutated models and calculate
�F values in ∼29 h on a single-core processor; specifically,
we used an E5-2660 v3 (2.60GHz) processor. This approach
is substantially more computationally tractable relative to
traditional molecular dynamics simulations. Thus, it can
readily be used to evaluate the effects of large numbers of
SNVs. We also provide source code for the workflow on our
GitHub page (https://github.com/gersteinlab/frustration).

In Figure 2, we demonstrate an example case in which a
tryptophan residue at locus 31 within plastocyanin (PDB
ID 3CVD) is mutated to tyrosine. For the wild-type struc-
ture of this protein, 19 decoy energies are calculated by

changing the parameter values that are specific to each
amino acid within the potential function (note that, at
this stage, the structure is not altered or minimized in any
way). In this case, the energy computed using the wild-type
residue (ETRP) is substantially lower than the mean value
〈E〉 (rendering a positive value for �ETRP). Because �ETRP
is greater than 0, the wild-type residue is said to be ‘mini-
mally frustrated’.

This same protein is known to contain a disease-related
SNV at locus 31 (W31Y). To quantify the associated change
in frustration, we first introduce tyrosine at locus 31 in sil-
ico, and then use Modeler to generate a model of the mu-
tated structure. Thus, we now not only change the residue
at locus 31, but also the configuration of the entire protein;
the new structure is the model of the mutated protein. In
this new energy landscape, the energy associated with the
residue at the mutated locus 31 is higher than the mean en-
ergy among all 20 amino acids within the modeled structure
(�E′

TYR < 0), suggesting that the mutated residue is ‘max-
imally frustrated’. We are primarily interested in the differ-
ence between these two states (�F). �F is proportional to
the difference between �E′

TYR and �ETRP. ��E is defined
to be the difference between the two energetic disparity mea-
sures (��E = �E′

TYR − �ETRP). Here, ��E is less than 0,
suggesting that the frustration value is higher in the mutated
structure than that of the wild type.

Downstream analyses

In order to investigate the differential effects of SNVs in
various data sets, we ‘bin’ each SNV into distinct categories
based on their frustration indices and relative accessible sur-
face areas (RSASA) in the wild-type structure. SNVs are
classified into three groups (all in wild-type structures): (i)

https://github.com/gersteinlab/frustration
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Figure 2. The effect of introducing a typical deleterious SNV (�F < 0). Each of the two vertical lines represents an energy-level diagram. Each level on this
energy scale corresponds to the total energetic value of the protein if the residue position (here, residue ID 31) were to be occupied by distinct amino acids
(thus, for instance, in the left vertical line, having isoleucine occupy position 31 results in conferring the highest possible energy to the protein, whereas
having valine occupy position 31 results in the lowest possible energy for the protein). The �F associated with an SNV is negative if the SNV introduces
a destabilizing effect. Shown here is the result of changing residue ID 31 in plastocyanin (pdb ID 3CVD) from the wild-type residue (TRP) to a mutated
residue (TYR). The protein in its wild-type form (in green), in which the tryptophan residue at position 31 is substantially more energetically favorable
relative to the mean energy 〈E〉 that would result from having any of the possible 20 amino acids at that position. This disparity is designated by (〈E〉 -
ETRP)/�E = FTRP > 0. The gray vertical arrow designates the relative energy (ETYR) associated with having a non-WT residue (TYR) at position 31 –
this may conceivably be used to calculate FTRP in a similar manner. Relating FTRP to FTYR by using the wild-type structure alone as a basis for estimating
the perturbation induced by the W31Y SNV (FTYR – FTRP = �F̃) would provide a naı̈ve estimate of the perturbation. A more accurate evaluation of
the perturbation requires a better estimate for FTYR. This entails a secondary calculation, wherein the entire protein structure (right) is first changed (see
Materials and Methods) by generating a model of the mutated structure after the SNV W31Y is introduced. This changed structure redistributes the
relative energies for the different amino acids. The new mean and standard deviation associated with the energies of the modeled structure are designated
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′, respectively. In this case, the SNV W31Y results in an energy that is higher than the mean energy (〈E〉′) of all possible 20 amino acids at
that position. This disparity is designated by (〈E〉′ – E′

TYR)/�E
′ = F′

TYR < 0. Taken together, the negative value associated with the disparity between
the F′

TYR and FTRP values (F′
TYR – FTRP = �F < 0) indicates that this SNV is locally unfavorable, and greater accuracy is likely obtained using the

secondary calculation.

minimally frustrated (MinFNS); (ii) maximally frustrated
(MaxFNS) and (iii) neutral (NeutFNS). MinFNS residues
have frustration indices ≥ 0.78, whereas MaxFNS residues
have frustration indices less than or equal to −1.0. SNVs
falling between these two extremes fall in the NeutFNS cat-
egory. Moreover, we sub-classify each of these three cate-
gories into core and surface residues based on their RSASA
value. We calculated the RSASA value for each residue us-
ing NACCESS (58). Residues were defined to be in the core
if their RSASA value ≤ 25%; surface residues had RSASA
values > 25%.

Furthermore, we investigated the differential influence
of common and rare variants. SNVs with minor allele fre-
quencies (MAF) ≤ 0.5% were considered to be rare. SNVs
were otherwise classified as common. Similarly, we also
compared the effects of SNVs influencing the conserved

and variable regions of the genome. The distinction be-
tween conserved and variable regions was defined using
genome evolutionary rate profiling (GERP) scores (59).
GERP scores are used to identify functionally constrained
genomic elements based on multiple sequence alignments of
genomic sequences from diverse species. In our analysis, we
defined a genomic position as conserved if its GERP score
was greater than 2.0. GERP scores ≤ 2.0 were considered to
designate variable genomic loci. For each variant dataset,
Table 1 provides a survey of the SNV counts across these
different categories, along with the frequencies with which
these variants lie in core or surface regions.

The deleteriousness of an SNV is a continuous variable,
and indeed, this is reflected in the continuous nature of �F
values. However, there is considerable value in applying a bi-
nary classification scheme to newly discovered SNVs, which
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Table 1. Summary statistics on the number of SNVs used in comparative analyses

Shown are SNV counts for non-disease (top), HGMD (bottom-left) and pan-cancer SNVs (bottom-right). Variants were further classified as being rare
(minor allele frequencies (MAF) ≤ 0.5%) or common (MAF > 0.5%), as well whether or not SNVs lie within conserved (GERP > 2.0) or variable (GERP
≤ 2.0) genomic regions.

may be predicted to be benign or deleterious. In order to
perform such a binary classification, we applied a simplified
decision boundary scheme, wherein we analyzed �F distri-
butions for HGMD (disease-related) and ExAC (seemingly
benign) variants. The threshold was set with the objectives
of (i) minimizing the fraction of HGMD SNVs with �F
values above the threshold, and (ii) minimizing the fraction
of ExAC SNVs with �F values below the threshold. Using
this approach, we observed that variants with �F scores ≤
−1.221 can be considered deleterious. Details of this scheme
are provided as part of the Supplementary Material.

RESULTS

Differential effects of benign and disease-related SNVs on
�F profiles

We performed a comparative analysis to investigate the
impacts of benign (1KG and ExAC) and disease-related
(HGMD) SNVs on the �F profiles of mutated residues in
a large number of proteins. As detailed in Materials and
Methods, each SNV data set was divided into three dis-
tinct categories based on the frustration index of the wild-
type residue. Maximally frustrated residues in the wild-type
structure exhibit conflicting interactions and unfavorable
geometry in their local environment, thereby inducing local
destabilization. Conversely, minimally frustrated residues
are involved in biophysically favorable local interactions,
and thus favorably contribute to the protein’s stability.

For each SNV, �F was calculated as follows (Figure 2; see
also Materials and Methods for more details). For a given
SNV, two protein structures are used in our analysis: the
wild-type structure (as it exists in the PDB), and a model
of the structure as it may exist when the affected residue is
mutated (this is modeled by optimizing the structure after
introducing the SNV). If a given SNV maps to residue lo-
cation j within the structure, then within each of these two
structures, the frustration index is calculated at residue j (the

corresponding values are denoted as Fnat and Fmut for the
wild-type and mutated model structures, respectively). Sub-
sequently, we determine the difference between the frustra-
tion index of the native residue in the wild-type structure
and the mutated residue in the modeled structure (�F =
Fmut – Fnat).

After calculating the �F values in all three categories,
the resultant distributions are plotted (further details are
given in Materials and Methods). We observed that most
SNVs (across all data sets) affecting maximally frustrated
residues in the wild-type structure induce small but pos-
itive �F values. This suggests that changes to maximally
frustrated residues alleviate conflicting interactions, thereby
resulting in a positive frustration difference (�F > 0). In
contrast (and as expected), residues that are originally min-
imally frustrated tend to become more frustrated upon
base-substitution, thereby, leading to a negative frustration
changes (�F < 0) in a majority of cases across each data
set. However, we emphasize that losses or gains in favorable
interactions are dependent on the type of SNV (benign or
disease-related) as well as whether the SNV affects a surface
or core residue.

We observed that benign SNVs lead to greater disrup-
tions within minimally frustrated surface residues com-
pared to core residues in the wild-type structure, and this
trend is observed when using both ExAC and 1KG data sets
(P-value < 2e-16 from two-sample Wilcoxon test; Figure 3A
and B). In addition, disease-related SNVs (from HGMD)
result in similar frustration changes between core and sur-
face residues. However, SNVs from HGMD that impact
minimally frustrated core residues induce stronger pertur-
bations than benign SNVs influencing minimally frustrated
core residues (P-value < 2e-16 from two-sample Wilcoxon
test; Figure 3C).
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Differential effects of rare and common SNVs on localized
frustration

In population-level studies, SNVs with lower MAF are gen-
erally interpreted as being more likely to be deleterious than
SNVs with higher MAF values. Thus, within the set of be-
nign SNVs (1KG and ExAC variants), MAF may be used as
a proxy for varying degrees of selective constraint. Thus, we
compared the �F distributions between rare and common
SNVs. Consistent with our earlier observations regarding
benign SNVs, we found larger disruptions to favorable lo-
cal interactions in surface residues relative to core residues
(Figure 4A). However, this disparity was slightly more pro-
nounced for rare SNVs compared to common SNVs. This
observation was consistent for the 1KG (Figure 4A) and
ExAC data sets (Figure 4B; P-value < 2e-16 from two-
sample Wilcoxon test). Furthermore, using both of these
data sets, we observed that greater �F values associated
with the introduction of SNVs (in either the positive or neg-
ative direction) tend to be associated with lower MAF val-
ues (Figure 4C, top and bottom panels). This trend is ob-
served for SNVs that occur both on the surface and within
the core.

Differential effects of benign and disease-related SNVs in dif-
ferent evolutionary contexts

We also examined the local perturbations induced by
disease-related and benign SNVs in conserved and variable
regions of the genome. We plotted distributions for the �F
values for the surface and core residues (Figure 5), and ob-
served that benign SNVs originating in both conserved and
variable regions had similar effects on minimally frustrated
core residues (Figure 5A and B). This observation was true
for the surface residues as well. In contrast, disease-related
SNVs intersecting conserved and variable genomic regions
lead to variable �F values for surface residues (P-value =
4.715e-03 from two-sample Wilcoxon test). This disparity is
even more pronounced in core residues (Figure 5C; P-value
= 6.723e-09 from two-sample Wilcoxon test).

Differential effects of SNVs on driver and passenger genes

One of the most important challenge confronting the can-
cer genomics community involves discriminating between
highly deleterious driver SNVs and the large number of neu-
tral passenger SNVs that naturally arise over the course of
tumor progression (60). As part of these efforts, a large num-
ber of cancer actionable genes have been curated in recent
years. We applied our framework to evaluate the effects that
somatic cancer SNVs have on driver genes (50), CAGs (52)
and non-CAGs in the context of frustration. We mapped
the somatic pan-cancer SNVs in these three distinct gene
categories to protein structures, and then evaluated the �F
distributions in all three.

As with benign SNVs, we observed that somatic SNVs
in CAGs and non-CAGs generally lead to greater disrup-
tions in minimally frustrated surface residues relative to
core residues (Figure 6; P-value < 2.2e-16 from two-sample
Wilcoxon test). This disparity was more pronounced among
non-CAGs than CAGs (Figure 6). In contrast, SNVs in
driver genes lead to larger disruptions in favorable local-
ized interactions for surface and core residues (Figure 6; P-
value < 2.2e-16 from two-sample Wilcoxon test) compared
to CAG core and surface residues.

Differential effects of SNVs on oncogenes and TSGs

Cancer driver genes are classified as oncogenes and TSGs
based on their mutational pattern and their mode of in-
ducing tumorigenesis (50). Oncogenes are marked by re-
current SNVs within the same gene loci across different
cancer types, and are believed to drive cancer progression
through GOF mechanisms. In contrast, a TSG generally
contains protein-truncating mutations or SNVs that are
scattered throughout the gene, and they are believed to fa-
cilitate cancer progression through loss-of-function (LOF)
mechanisms. This line of thinking is guided by the idea that
LOF variants often act by destabilizing the protein (Figure
7C, left panel), whereas GOF variants may impact protein–
protein interaction interfaces (by reducing specificity for
binding partners) or negatively affect auto-regulatory sites
on the protein, many of which are on the surface (Figure
7C, right panel).
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To evaluate the extent to which such effects manifest in
our set of TSGs and oncogenes, we applied frustration to

evaluate changes in local perturbation when SNVs impact
these distinct categories of driver genes (Figure 7A and B).
We observed that SNVs in TSGs induce stronger perturba-
tions in minimally frustrated core residues relative to sur-
face residues (Figure 7A; P-value = 4.765e-03 from two-
sample KS test). In contrast, SNVs in oncogenes induce
greater �F values within minimally frustrated residues in
the surface relative to core residues (Figure 7B; P-value =
1.91e-13 from two-sample KS test). Moreover, SNVs im-
pacting oncogenes lead to larger disruptions in favorable lo-
cal interactions compared to TSGs for minimally frustrated
surface residues (P-value = 2.3e-3 from two-sample KS
test). However, SNVs impacting TSGs lead to greater dis-
ruptions in favorable local interactions compared to onco-
genes affecting driver SNVs in core residues (P-value =
6.753e-13 from two-sample KS test).

Localized frustration as a means of complementing global
metrics

As discussed, existing structure-based methods for predict-
ing SNV deleteriousness rely on global metrics of protein
stability. These approaches may incorrectly predict known
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disease-related SNVs to be benign (thereby producing false
negatives). We address the extent to which �F rescues such
false negatives by correctly predicting their deleterious ef-
fects. We first identified 626 HGMD SNVs within the semi-
balanced set (see Materials and Methods), and predicted
the impacts of these SNVs using SIFT, PolyPhen-2 and �F
values. We use a �F threshold of −1.221 to discriminate be-
tween SNVs that are predicted to be benign or deleterious
(details regarding how this threshold value was established
are provided in the supplement).

SIFT produces false negatives for 13.7% of these HGMD
SNVs. We find that employing �F rescues 46% of these
SIFT false negatives (i.e. by correctly predicting deleterious
impacts). Similarly, PolyPhen-2 produces false negatives for
10% of the HGMD SNVs. Applying �F enables us to res-
cue 38% of these PolyPhen-2 false negatives. Glucokinase is
used as an example to demonstrate specific cases of rescued
variants (Supplementary Figure S6). A list of all false neg-
atives rescued by �F analysis is provided in Supplementary
Material data file. Finally, we also provide the full library
of all HGMD SNVs mapped to protein structures (along
with their corresponding PolyPhen-2, SIFT and �F scores),
which may then be used as a resource in related studies.

DISCUSSION

Over the course of the last decade, tremendous improve-
ments in sequencing and structural biology techniques have
led to immense growth in genomic variation and three-
dimensional structural data sets. This provides us with an
ideal platform to investigate the impacts of genomic vari-
ants on protein structures. The objective of these studies is
to gain mechanistic insights into the origin of various dis-

eases, as well as to design effective drug targets. Prior studies
in this direction were limited by a lack of genomic variation
and structural data. Moreover, these studies primarily fo-
cused on investigating the impacts of SNVs on the global
stability of protein structure. However, many experimen-
tal studies have indicated a causal role for SNVs inducing
local perturbation in various diseases. Here, we repurpose
the concept of localized frustration (originally introduced
in protein folding studies) to quantify SNV-induced local
perturbations. The frustration index of a residue quantifies
the presence of favorable/dis-favorable local interactions in
the protein structure compared to a random molten globule
structure.

Historically, the relative scarcity of genomic variation
and structural data have presented challenges to variant
interpretation, in that only a small pool of SNVs may
be mapped to resolved structures. However, despite ad-
dressing sources of bias, limited mapping coverage per-
sists as a major challenge. Nevertheless, a number of re-
cent trends may partially help to mitigate this issue. Signif-
icant improvements in crystallographic protocols have en-
abled near-exponential growth in X-ray structures in the
PDB (11). Furthermore, cryo-EM is opening entirely new
avenues for revealing the architectures of many proteins that
were previously elusive to crystallography, which is expected
to expand the structurally-resolved proteome (61). Finally,
inferring how a given SNV affects a particular structure is
not limited to predictions regarding that protein alone –
the protein’s tight associations with other molecules may
greatly broaden the scope of how that SNV influences other
proteins (e.g. the consequences of an SNV within a multi-
protein complex may adversely affect all members of the
complex, despite the fact that the SNV maps to only one
protein).

We employed an extensive catalogue of benign (∼5.7 mil-
lion) and disease-related (∼0.76 million) SNVs. The benign
SNV data set comprised SNVs from the 1KG Project (phase
3) and the ExAC Consortium. In contrast, HGMD SNVs
and pan-cancer somatic SNVs constituted our disease-
related SNV data set. We mapped ∼0.2 million benign and
disease-related SNVs onto ∼10K high-resolution protein
structures. Subsequently, we compared the impact of be-
nign and disease-related SNVs on the frustration profiles of
minimally frustrated residues in various protein structures.
The �F distributions indicate that both benign and disease
SNVs disrupt minimally frustrated surface residues to sim-
ilar extents. However, the mechanistic differences between
benign and disease SNVs can be attributed to their impacts
on the local environment of core residues. Within the core,
disease-related SNVs result in more severe perturbations
to local interactions relative to those introduced by benign
SNVs. These local disruptions are propagated throughout
the core and, in turn, drive the deleteriousness of various
disease-related SNVs.

Furthermore, we quantified the influence of rare and
common SNVs (present in healthy human populations) on
the frustration profiles of affected protein residues. We ob-
served that rare SNVs lead to larger local perturbations
of minimally frustrated surface residues compared to com-
mon SNVs. This observation is intuitively consistent, as one
would expect rare SNVs to have greater impacts on pro-
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tein stability. In addition, we also investigated the differen-
tial impacts of SNVs intersecting conserved regions com-
pared to variable genomic regions. The distinction between
conserved and variable regions was based on GERP scores,
which quantifies a cross-species conservation score on each
nucleotide position. This cross-species conservation analy-
sis indicated that there is no disparity between �F associ-
ated with benign SNVs in conserved and variable regions.
This lack of disparity can be attributed to the absence of sig-
nificant local perturbations induced by benign SNVs, which
do not compromise the overall stability of structures. In
contrast, disease-related SNVs in conserved and variable re-
gions of the genome exhibit significant differences in �F
values. This is consistent with prior studies, which indicate
that the deleteriousness of an SNV is more pronounced
when SNVs impact functionally important conserved re-
gions relative to variable regions of the genome.

In addition to studying disease-related variants in gen-
eral, tremendous progress in next-generation sequencing
has led to unprecedented efforts to characterize cancer
genomes. A great deal of effort has been invested in discrim-
inating between driver and passenger SNVs. Driver SNVs
are known to play important roles in driving cancer pro-
gression. Motivated by this, we examined the influence of
SNVs in driver and passenger genes. Specifically, we stud-
ied these effects in the context of the local stability of pro-
tein structures. Our analysis indicates that SNVs influencing
non-CAGs and CAGs lead to greater perturbations of sur-
face residues compared to core residues. In contrast, SNVs
that impact driver genes have similar affects on �F values in
core and surface residues. These observations support our
earlier conclusion that the deleteriousness of a given SNV
is determined by its ability to perturb the local interactions
of core residues. These local perturbations further propa-
gate through the core to completely destabilize the protein
structure.

Furthermore, cancer driver genes are often classified as
oncogenes or TSGs. SNVs in oncogenes generally lead
to cancer progression through GOF mechanisms, whereas
SNVs impacting TSGs generally contribute to cancer
growth through LOF events. These two distinct modes
prompted us to closely inspect SNVs originating in each cat-
egory, and we compared the �F profiles for SNVs across
both. We observed that SNVs in oncogenes and TSGs gen-
erate greater �F values at the surface and core, respectively.

Comprehensive catalogues of SNVs from large-scale ge-
nomics projects have clearly established the important roles
of disease-related and rare variants in human populations.
We foresee further growth in genomic data sets as large-
scale genomic consortia (such as the International Can-
cer Genomics Consortium, The Pan-Cancer Genome At-
las, The UK10K Project and the Mendelian Genomic Pro-
gram) continue to decipher the mutational landscape of hu-
man genomes and exomes. Similarly, advances in electron
microscopy, NMR, small angle X-ray scattering and other
techniques will further increase the availability of protein
structural data. These expanding knowledge bases of ge-
nomic variation and structural biology will facilitate inte-
grative studies to gain mechanistic insights into disease pro-
gression and to design effective disease therapy regimens.
We demonstrate the role of localized frustration as a metric

to quantify and investigate the influence of genomic vari-
ants on protein structures. The proposed framework is a
logical extension to earlier studies that primarily employed
global metrics (such as folding free energy changes) to quan-
tify the effects of SNVs. We believe that the combination of
these global and local metrics, along with sequence features,
will further help to elucidate the mechanisms as well as pre-
dict the impacts of genomic variants.
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