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SARS-CoV-2 and Influenza co-infection turned out to be a huge threat in recent times. The clinical
presentation and disease severity is common in both the infection condition. The present paper deals
with studying co-infection model system through systems biology approaches. Understanding signaling
regulation in COVID-19 and co-infection model systems aid in the development of network-based models
thereby suggesting intervention points for therapeutics. This paper highlights the aim of revealing such
perturbations to decipher opportune mediating cross talks characterizing the deadly viral disease. The
comparative analysis of both the models reveals major signaling protein NFjB and STAT1 playing a cru-
cial role in establishing co-infection. By targeting these proteins at cellular level, it might help modulating
the release of potent pro-inflammatory cytokines thereby taming the severity of the disease symptoms.
Mathematical models developed here are precisely tailored and serves as a first step towards co-infection
model offering flexibility and pitching towards therapeutic investigation.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In 2019, coronavirus disease (COVID-19) originated in Wuhan,
China and has been declared as global public health emergency
[1,2]. It is caused by Severe Acute Respiratory Syndrome Coron-
avirus 2 (SARS-CoV-2) and the clinical symptoms includes dry
cough, fever, shortness of breath, pharyngitis and tiredness [3].
When virus enters the lower respiratory tract, it shoots up the
cytokine storm including IL6, IL12, IL1b, TNFa leading to viral sep-
sis, Acute Respiratory Distress Syndrome (ARDS) and multiple
organ failure that ultimately leads to the death of the patient.
The clinical symptoms and disease transmission mechanism of
SARS-CoV-2 infection are similar to influenza virus infection [4].
During the early stage of the pandemic, one of the studies on
5700 patients hospitalized with COVID-19 infection in the New
York City revealed that nearly 2.1% patients were found to have
co-infection with other respiratory viruses including influenza A
virus [5]. Furthermore, the percentage was increased in Wuhan,
China where 4.35% confirmed cases of SARS-CoV-2 and influenza
virus co-infection were reported [6]. Many parts of Europe and
USA, considered it as ‘Double threat’ as its been anticipated in
October 2020 that SARS-CoV-2 and Influenza virus might surge
simultaneously [7].

One of the characteristic aspects of COVID-19 infection is the
generation of cytokine storm. The molecular structure of
SARS-CoV-2 has four major proteins namely SARS-CoV-2 spike
(S), envelope (E), membrane (M) and nucleocapsid (N) [8]. Through
its spike (S) glycoprotein, it interacts with alveolar epithelial type II
cells which forms a protective layer on the inner respiratory tract.
The high affinity interaction of Spike glycoprotein occurs with
angiotensin-converting enzyme 2 (ACE2) and additionally pro-
cessed by transmembrane serine protease 2 (TMPRSS2) both being
present on the host cell [9]. The virus gets entry inside the cell,
leading to the excessive production of pro-inflammatory cytokines
such as IL6, IL1b, TNFa, IL12 and IL18. Most of these cytokines
functions in acute inflammatory responses and are liable for
causing Cytokine release syndrome (CRS) or Cytokine Storm
syndrome [10–13]. CRS is defined as cytokine-mediated systemic
inflammatory response caused by excessive production of
pro-inflammatory cytokines which ultimately results in clinical
symptoms such as unrelenting high fever, lymphadenopathy,
cytopaenia, central nervous system (CNS) abnormalities and if
not treated leads to multiple organ failure (MOF) and death [14].
The hallmark of CRS is the unchecked feed forward activation
and amplification of host cellular immune signaling which in turn
activates the nearby cells to produce similar pattern of cytokines
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Abbreviations

Abbreviations Full Form
ARDS Acute Respiratory Distress Syndrome
ACE2 Angiotensin-converting enzyme 2
CRS Cytokine release syndrome
CNS Central nervous system
CsA Cyclosporin A
COVID-19

Coronavirus disease, 2019
FACS Fluorescent activated cell sorting
GMCSF Granulocyte-macrophage colony-stimulating factor
H1N1 Haemagglutinin 1 and Neuraminidase 1
ICAM Intercellular Adhesion Molecule
iNOS Inducible nitric oxide synthase
IL6 Interleukin 6
IL12 Interleukin 12
IL1b Interleukin 1b
IFNc Interferon gamma
JAK Janus Kinase
KEGG Kyoto Encyclopaedia of Genes and Genomes
LFA Lymphocyte function-associated antigen-1
LIF Leukemia inhibitory factor
MAS Macrophage activated syndrome

MCP-1 Monocyte Chemoattractant Protein-1
MCSF Macrophage colony-stimulating factor
MOF Multiple organ failure
NDFs Numerical differentiation formulas
NFjB Nuclear factor-jB
NSAIDs Non-Steroidal Anti-inflammatory Drugs
PCA Principal component analysis
PPI Protein-protein interaction
PK/PD Pharmacokinetic/pharmacodynamics
PRRs Pattern Recognition Receptors
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
STAT Signal transducer and activator of transcription
SBML Systems biology mark-up language
TMPRSS2 Transmembrane serine protease 2
TNFa Tumor necrosis factor alpha
TLR Toll-like receptor
TRIF Toll/interleukin-1 receptor) domain-containing adaptor

protein inducing interferon beta
TRRUST Tanscriptional regulatory relationships unravelled by

sentence-based text-mining
VCAM Vascular cell adhesion molecule
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leading to cytokine storm [15]. Similar to COVID-19 infection, the
cytokine storm plays a crucial role in severe influenza infected
patients where aggressive pro-inflammatory response and in suffi-
cient anti-inflammatory response leads to MOF and death of the
patient [16–18]. Literature survey suggested that risk of death with
SARS-CoV-2 was double in people which were prior infected with
flu [19]. Furthermore, the current data suggested that the co-
infection brings out synergistic effect of these two viruses which
drastically increase the mortality rate as well as the demands of
the health services [20].This necessitated the design of new thera-
peutics targeting co-infection dynamics at basic cellular level and
apparently help reduce the mortality rate.

Macrophage plays crucial role in disease manifestation during
both the infection. The activated alveolar epithelial cells release
excessive amount of MCP-1 and GM-CSF which in turn recruits
macrophages at the site of infection. The macrophages engulf the
infected epithelial cells for phagocytosis. The single-cell transcrip-
tomic profiling study of broncho alveolar lavage fluid samples from
88 patients with SARS-CoV-2-induced respiratory failure suggested
that SARS-CoV-2 infects alveolar macrophages, which in turn
respond by producing T cell chemo attractants [21]. Moreover,
SARS-CoV-2 transcriptome has been found in alveolar macro-
phages. This shows that the capacity of SARS-CoV-2 to infect cells,
is not only limited to alveolar epithelial cells but it can also infect
alveolar macrophage. Further, macrophages play a central role in
antiviral responses, tissue repair and fibrosis. Macrophages can
be reprogrammed by environmental cues and thus can change
their phenotype during an antiviral immune response as the viral
infection progresses [22]. Thus, macrophages are considered as
prominent candidate for therapeutics development in COVID-19
infections. The nature of both the viruses is similar. SARS-CoV-2
is positive strand, non-segmented RNA virus having their genetic
material protected in viral envelope. The outermost layer has a
spike glycoprotein which is recognised by the host cell whereas
influenza is negative strand, segmented RNA virus, protected by
viral envelope. The surface protein includes Haemagglutinin and
Neuraminidase [23,24]. Literature survey suggested that the RNA
genome of SARS-CoV-1 and H1N1/H1N5 is recognized by Toll-
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like receptor 3 which is one of the major pattern recognition recep-
tor (PRR) functioning in innate immune system [25–27]. Like TLR7,
TLR8, TLR9 and TLR3 is present intracellular in an endosomal com-
partment and is known to recognize viral genome [28]. Conse-
quently, TLR3 is likely to be involved in pathogenesis of SARS-
CoV-2 virus infection. Further in SARS-CoV-1 infection, the stimu-
lation of TLR3 activates NFjB transcription factor through TRIF sig-
naling resulting in activation of pro-inflammatory genes such as
IL6, TNFa, IL12p40 and IL1b [27]. Influenza A utilizes PI3K/ Akt
pathway to activate transcription factor NFjB [29]. These cytoki-
nes are likely to activate nearby macrophages and epithelial cells
resulting in massive production of cytokines and activation of
macrophages, the phenomena called as Macrophage activated syn-
drome (MAS). One of the major genes activated by pro-
inflammatory cytokines is Intercellular Adhesion Molecule (ICAM)
and Vascular Cell Adhesion Molecule (VCAM). ICAM and VCAM
function in cell–cell interaction. It is expressed by endothelial cell,
epithelial cell and immune cells including macrophages. ICAM-1
interacts with LFA-1 present on leukocytes and facilitates its entry
in tissues. ICAM-1 is found to enhance influenza viruses infection
and their survival during an early stage of infection [30]. Similarly,
VCAM also functions in leukocyte-endothelial cell interaction and
both the cell adhesion molecules are likely to play a role in
SARS-CoV-2 and influenza virus infection [31–33]. Together with
IL6, TNFa, IL12 and IFNc, Macrophage Colony Stimulating Factor
(MCSF) levels were also found to be elevated in COVID-19 infected
patients [34]. MCSF is responsible for proliferation and differentia-
tion of monocytes. MCSF plays a major role in establishing MAS
during SARS-CoV-2 infection.

Literature survey suggested the presence of curated population
model defining spread of COVID-19 infection (e.g.
BIOMD0000000957 or BIOMD0000000958) but is unable to define
mathematically the co-infection dynamics. In the present work,
using numerical simulation [35,36], combination of bits and pieces
of literature evidences has acquired us to build new mathematical
model which define the co-infection dynamics at cellular level and
reveal crucial signaling proteins that can be targeted for generating
new therapeutic regime for COVID-19 infection (Fig. 1).



Fig. 1. Cytokine storm getting aggravated during co-infection causing Macrophage Activated Syndrome (MAS).
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2. Materials and methods

2.1. Databases for signaling network

For identifying each component in the interlinked signaling cas-
cade, we have employed various immune signaling based data-
bases. For IL6 signaling pathways we have used String database.
TLR signaling pathway (map04620), PI3K-Akt signaling pathway
(map04151), NFjB signaling pathway (map04064), TNFa signaling
pathways (map04668), influenza A pathway (map05164) and
SARS-CoV-2 infection pathway (map05171) has been obtained
from KEGG pathway database [37]. For identifying targets of tran-
scription factor NFjB, STAT1, STAT4 and STAT3 we have used
TRRUST (version 2) database [38].
2.2. Construction of mathematical model

Here, we have constructed two mathematical models namely
COVID-19 model and co-infection model (SARS-CoV-2 and influ-
enza virus) using SimBiology toolbox from Matlab v7.11.1.866.
SimBiology is a programmatic tool to model, simulate and analyse
dynamic systems focusing on pharmacokinetic/pharmacodynam
ics (PK/PD) and systems biology applications. It provides a block
diagram editor for building models or one can create models pro-
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grammatically using the MATLAB� language. It supports systems
biology mark-up language (SBML) format. Following are the steps
used to create and simulate mathematical model of COVID-19
and co-infection model:

2.2.1. Building model
The models were constructed in diagram editor using compart-

ment, species, reactions and plot building blocks. In ‘‘Model Build-
ing: Reaction Properties” we defined reactions and assigned
specific rate laws (e.g. for association/ dissociation, we used Law
of Mass action, for enzyme kinetics, we used Michaelis-Menten
equation and for gene expression, we used Hill equation). Follow-
ing this, concentration and parameter values are provided with
respective units. As we are dealing with immune signaling, the
concentration needs to be set between 103–106 signaling mole-
cules [39]. Further, the concentration of IL6 signaling pathway
has been obtained from FACS experimental data [40] and has been
incorporated to mimic the mathematical model close to physiolog-
ical condition.

2.2.2. Simulation
The reactions were defined along with concentration and

parameter followed by model simulation using ode15s (stiff/NDF)
solver. The solver computes the model’s state at the next time step
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using variable-order numerical differentiation formulas (NDFs).
The values of absolute and relative tolerance are kept as default.
The model is then simulated for 100 min close to 60 min of infec-
tion time taken by SARS-CoV-1 to infect the macrophages [41]. The
behaviour of each component in the system have been obtained in
the form of state v/s time graph.

2.2.3. Parameter estimation
Parameter estimation is required to improve the accuracy of the

mathematical model. The parameter of each reaction in recon-
structed signaling network has been assigned within a range of
parameter space. The simulation is performed to fine tune these
parameters till a reproducible graph depicting the biochemical
behaviour has been obtained. The process is iterative in nature as
fine tuning of parameter space is required for proper estimation
together with algorithmic data fitted to reach physiological
accuracy.

2.3. Mathematical model analysis

The mathematical model is analysed using various systems dri-
ven techniques such as Sensitivity analysis, Flux analysis, deter-
mining network properties and principal component analysis.
The model is analysed through various aspects in order to churn
out the crucial reactions that are governing the dynamics of the
system (Fig. 2).

2.3.1. Elucidating network properties
Mathematically each biological network can be defined in terms

of an interacting network of nodes and edges where biological
components are the nodes and their interactions such as associa-
tion, dissociation, phosphorylation, de-phosphorylation, ubiquiti-
nation, translocation etc. are the edges. Since the present work is
based on immune signaling, the network is called as Protein-
Protein Interaction (PPI) network. The network is analysed using
Cytoscape (v 3.4.0) in terms of degree, clustering coefficient and
centrality.

2.3.2. Sensitivity analysis
The mathematical models were subjected to sensitivity analysis

in order to check the robustness. Sensitivity analysis is a technique,
wherein, the robustness of the mathematical model is achieved by
Fig. 2. Schematic diagram of the proposed st
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perturbing the parameters of each reaction in the system. It further
aids in parameter estimation close to physiological condition. Sen-
sitivity analysis is obtained in terms of sensitivity coefficient and
for the present work, we have performed local sensitivity analysis
using SimBiology tool box from Matlab v7.11.1.866. We have cal-
culated the time dependent sensitivities of the entire component
in the system using SimBiology tool box. The SimBiology sensitiv-
ity analysis uses the ‘‘complex-step approximation” to calculate
derivatives of reaction rates. It calculates the time-dependent sen-
sitivities of all the species states with respect to species initial con-
ditions and parameter values in the model. Thus, if a model has
species x and two parameters y, and z, then the time-dependent
sensitivities of x with respect to each parameter value can be rep-
resented at the time-dependent derivatives as Eq. dx/dy, dx/dz
where the numerators are the sensitivity output and the denomi-
nators are the sensitivity inputs to sensitivity analysis.
2.3.3. Principal component analysis
Principal component analysis was performed to reduce the

dimensionality of the large amount of sensitivity coefficients
obtained from sensitivity analysis. The principal component (PC)
score depicts the variation in sensitivities of each component in
the system. The high PCA score depicts the high sensitivity of the
component in the system or in other words the system might col-
lapse if that component would be targeted. In network biology,
highly connected nodes are those which has tendency to pass max-
imum biological information for one end to the other. The term
‘‘collapse” here means, the transfer of biological information which
is interrupted and which in turn greatly impacts the output of the
system. PCA is meant for reducing dimensionality and removing
the background noise of the biological data. For calculating PCA,
we have used Matlab’s function as score_cofficient = princomp A,
where A = m*n matrix, sensitivity scores for each component with
the other component in the system.
2.3.4. Flux analysis
The flux determines the productivity of each reaction, thereby

determining the contribution of each reaction in the system. Com-
parative flux analysis is one of the optimum strategies to deter-
mine higher productive reactions in the system that may
contribute to the disease pathogenesis. In the present work, we
rategy towards therapeutic intervention.
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have obtained flux of each reaction by using COPASI pathway sim-
ulator (v4.11).

2.4. Model reduction

The process is employed to reduce the complexity of the system
by eliminating reaction with no or low impact on overall dynamics
of the system. It simplifies the mathematical model through the
elimination of redundant parameters which are not contributing
to the system, thus easing in accurate prediction of the biological
system. Here, we are employing sensitivity, flux and principal com-
ponent analysis to churn out key components governing the
dynamics of the system.
3. Results

3.1. Mathematical modeling and simulation

3.1.1. COVID-19 model
The mathematical model has four compartments namely mem-

brane, cytosol, nucleus and endosome. There are total 61 signaling
components, 106 parameters, 58 reactions and kinetic laws
(Fig. 3a). The simulation was performed for 100 min, using Stiff
Deterministic ODE15s solver (SimBiology toolbox) which gener-
ates the first order non-linear ODEs for each reaction in the system.
The network shows production of four components at the end of
simulation i.e. ICAM, VCAM, iNOS and MCSF (Fig. 3b). The ODEs
of the two major reactions are given below and for the entire
model ODEs have been listed in supplementary file (S5). The ODEs
represent the kinetic equations involving two major components
of the system i.e. NFjB and STAT1, obtained after simulating the
entire system for 100 min. The model was submitted to Biomodel
database with identifier MODEL2101130001.

dð½NfKB�Â � VCytosolÞ
dt

¼ þVCytosol
100::IKKBComplex�ð Þ

50:IKKBComplex�ð Þ:VCytosol

þ VCytosol
100::TAK1�ð Þ

50:TAK1�ð Þ:VCytosol

þ VCytosol
355:IKKBComplex�ð Þ

800:IKKBComplex�ð ÞVCytosol ;

dð½STAT1:P�Â � VCytosolÞ
dt

¼ þVCytosol
200::JAK1:JAK2�ð Þ

50:JAK1:JAK2�ð Þ:VCytosol
� VCytosolð1e� 05:½STAT1:P�

þ VCytosol
500::JAK1:JAK2�ð Þ

100:JAK1:JAK2�ð Þ:VCytosol

þ VCytosol
400::TRAF6�ð Þ

100:TRAF6�ð Þ:VCytosol ;
3.1.2. Co-infection model
The mathematical model has four compartments namely mem-

brane, cytosol, nucleus and endosome. There are total 67 signaling
components, 118 parameters, 64 reactions and kinetic laws
(Fig. 4a). The simulation was performed for 100 min, using Stiff
Deterministic ODE15s solver (SimBiology toolbox) which gener-
ates the first order non-linear ODEs for each reaction in the system.
The network shows production of four components at the end of
simulation i.e. ICAM, VCAM, iNOS and MCSF (Fig. 4b). The ODEs
of two major reactions are given below (S6). The ODEs represents
the kinetic equations involving two major components of the sys-
tem i.e. NFjB and STAT1, obtained after simulating the co-infection
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model system for 100 min. The model was submitted to Biomodel
database with identifier MODEL2101130002.

dð½NfKB�Â � VCytosolÞ
dt

¼ þVCytosol
355:::IKKBComplex�ð Þ

800:IKKBComplex�ð Þ:VCytosol
� VCytosolð0:001:NFkB�

þ VCytosol
100::½IKKBComplex�ð Þ

50:IKKBComplex�ð Þ:VCytosol ;
dð½STAT1:P�Â � VCytosolÞ
dt

¼ þVCytosol
500:½JAK1:JAK2�ð Þ

100:JAK1:JAK2�ð Þ:VCytosol

þ VCytosol
200:½JAK1:JAK2�ð Þ

100þ ½JAK1:JAK2�ð Þ:VCytosol

þ VCytosol
400::TRAF6�ð Þ

100:TRAF6�ð Þ:VCytosol ;

By analysing both the models, we have deciphered the concen-
tration of ICAM, VCAM, iNOS and MCSF, which is increased in co-
infection model system as compared to COVID-19model indicating
the severity of the disease during co-infection (Fig. 5).
3.2. Analysis of mathematical models

The COVID-19 model consists of 66 nodes and 103 edges where
as co-infection model consist of 72 nodes and 112 edges (Fig. 6).
The clustering coefficient of the COVID-19 network is 0.302
whereas co-infection network is 0.290, depicting that both the net-
work are highly connected, therefore the flow of biological infor-
mation is faster. Digging into the biology of the network, we
have done network based ranking and identified five components
which are found to have high degree as well as centrality value
in both the network (Fig. 7). Degree, Closeness, Betweenness cen-
trality is the classic centrality measures. The betweenness central-
ity symbolizes the communication or flow of biological
information in the system. In both the model systems, cytoplasmic
and nuclear NFjB, phosphorylated STAT1, JAK, JAK1-JAK2 complex
are the components through which maximum amount of biological
information is transferred (Fig. 7a).

Closeness centrality determines the higher connectivity of the
respective components in the system (Fig. 7b) and degree central-
ity determines the local connectivity of the components (Fig. 7c).
Cytoplasmic NFjB is found to be the cross talk identified between
TNFa, IL1b, and TLR3 signaling pathway whereas phosphorylated
STAT1 is the cross talk between IL6 and IFNc signaling pathway
(Fig. 7d).
3.3. Flux analysis

The flux of each reaction in both the models have been calcu-
lated in terms of molecules/ second and are compared to get
broader picture of functioning of the two different models
(Fig. 8a). The comparative flux analysis shows that the reaction
associated with major pro-inflammatory cytokines such as IL12,
IL1b, IL6 and TNFa has high amount of flux (Fig. 8b & c). This sig-
nifies that these reactions are responsible for major output of the
system i.e., in the gene expression of ICAM, VCAM, MCP-1, iNOS
etc. Targeting any one of the reactions may alter the expression
levels of the above-mentioned gene resulting in decrease severity
of the disease. Moreover, the flux of IL1b and IL6 reactions are
increased which indicates their role in aggravated cytokine storm
causing MAS (Fig. 8b & c).



Fig. 3. Mathematical model showing Cytokine storm during Covid 19 infection in alveolar macrophage (a) Diagrammatic view of interconnected signaling network (b)
Simulated graph of the model depicting the increased levels of ICAM, VCAM, iNOS and MCSF as compared to the basal levels.
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Fig. 4. Mathematical Model showing Cytokine storm during Covid 19 and influenza co-infection in alveolar macrophage (a) Diagrammatic view of interconnected signaling
network (b) Simulated graph of the model depicting the increased levels of ICAM, VCAM, iNOS and MCSF as compared to the basal levels.
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Fig. 5. Comparative analysis of end product of COVID-19 and Co-infection model.
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3.4. Principal component analysis

The comparative analysis of PC score shows that major compo-
nents common in both the systems are IL6, gp130, IL1b, VCAM,
ICAM, NFjB and phosphorylated STAT1. The high score of IL6
and IL1b indicate their role in establishing pro-inflammatory
immune response during infection stage. The data is supported
Fig. 6. Comparative network analysis representing
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by experimental data, where IL6 and IL1b levels has been found
elevated in COVID-19 patients and IL6 is also considered as a
parameter for measuring disease severity [42,43]. Apart from this,
PCA shows novel components such as cytoplasmic NFjB and phos-
phorylated STAT1. These components can be considered as targets
as they have high centrality values. Targeting these components
may affect the immune signaling established during SARS-CoV-2
and Co-infection. VCAM and ICAM is the end product of the system
responsible for Macrophage Activated Syndrome (MAS).

Principal component analysis shows the most sensitive or the
most crucial components in both the model systems (Fig. 9). The
sensitivity coefficient of each component with respect to other
components in the system have been documented in supplemen-
tary data (S7).
3.5. Model reduction

The process of model reduction involves overlapping compo-
nents and reactions identified in centrality, flux, sensitivity and
principal component analysis. The complexities of both the models
were reduced that resulted in 89.65% reduction in COVID-19model
whereas 90.62% reduction in co-infection model system. The
reactions that are playing major role in regulating the dynamics
of the system are as follows:
(a) COVID-19 Model (b) Co-infection Model.



Fig. 7. Comparative network analysis of both the networks: (a) Betweenness Centrality (b) Closeness Centrality (c) Degree (d) Cross-talk identification.
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SNo.
 Reactions
 COVID-
19
Co-
infection
1.
 IL12{Membrane} + IL12R1 + IL12
R2 -> ‘‘IL12 signaling complex”
U
 U
2.
 IL6R + gp130 + IL6{Membrane} ->
‘‘IL6 signaling complex”
U
 U
3.
 IL1B{Membrane} + IL1R1 + IL1R2 -
> ‘‘IL1B signaling complex”
U
 U
4.
 TNFR1 + TNFA{Membrane} + TNF
R2 -> ‘‘TNFA signaling complex”
U
 U
5.
 IKKb complex ->NFjB
 U
 U
6.
 JAK1-JAK2 -> STAT1.P
 U
 U
NFjB and phosphorylated STAT1 are further selected for therapeu-
tic intervention in COVID-19 infection due to their high centrality as
PCA scores values (Figs. 7 and 9).

4. Discussion

The formation of cytokine storm is the hallmark for the severity
of COVID-19 infection as well as influenza infection. The in-depth
analysis of cellular signaling reveals several components that plays
crucial role in disease progression. The high flux of IL6, IL1b, TNFa,
IL12, IFNc signaling indicate the establishment of cytokine storm
1680
in COVID-19 and Co-infection model systems. After 100 min simu-
lation, the end products are inflammatory proteins which include
ICAM, VCAM, MCP-1, MCSF and iNOS. The co-infection model
depicting the simultaneous infection of COVID-19 as well as influ-
enza virus shows higher production of these inflammatory proteins
indicating that the co-infection state is even worse than the
COVID-19 infection as alone. The condition can be controlled once
the productions of these inflammatory proteins are regulated at
cellular level. Further, the model reduction reveals cytoplasmic
NFjB and phosphorylated STAT1 as crucial therapeutic targets to
regulate the intensity of cytokine storm established during infec-
tion. At present, there are various drugs available to inhibit the
activity of NFjB such as Non-Steroidal Anti-inflammatory Drugs
(NSAIDs). Aspirin and sodium salicylate are examples of anti-
inflammatory agents that target NFjB activity during chronic
inflammation [44]. Cyclosporin A (CsA) and tacrolimus (FK-506)
are immunosuppressive agents used during organ transplant and
are found to inhibit calcineurin dependent NFjB activation [45].
The present line of therapeutics has their own potential side effects
whereas use of peptide in therapeutical application provides more
immunogenicity and specificity as well as has less off target effects.
Its envisaged that the therapeutical design of the peptides is ideal
to target the activity of NFjB for shorter duration of time.

With the beginning of 2021, new strain of COVID-19 has
emerged in United Kingdom [46]. The information on host-
parasite interaction, proteins involved, mechanism of action is still
unknown. It is foreseen that since we are targeting common cellu-



Fig. 8. Comparative flux analysis of COVID-19 and Co-infection model (a) Flux of all the reactions (b and c) Reactions with high flux values.

Fig. 9. Principal Component analysis depicting the crucial components in the model system.
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lar proteins responsible for aggravated immune response the
adopted strategy might be helpful or equally efficient against rising
mutant strains by providing long-term immunity.

5. Conclusion

The host immune signaling plays a crucial role in establishing or
combating any viral infection. The present piece of work provides
an in-depth system analysis of COVID-19 and Co-infection mathe-
matical model which reveals major cellular protein (including
transcription factors, cytokines, chemokines, receptors etc.) that
can be targeted for future therapeutic intervention. The major
components produced after 100 min simulations are IL6, IL12,
IL1b, TNFa, IFNc, iNOS, VCAM, ICAM and MCSF. The production
of iNOS, VCAM, ICAM andMCSF are high during Co-infection model
indicating the disease severity during co-infection of influenza and
SARS-CoV-2 virus. Further the network analysis highlighted the
cellular protein JAK2, phosphorylated STAT1, cytoplasmic and
nuclear NFjB showing high centrality value and indicating their
role in establishing pro-inflammatory immune response during
infection. These high centrality nodes are perfect targets to rewire
the impaired immune response during SARS-CoV-2 infection. The
models were further reduced to 90% through flux, sensitivity and
principal component analysis and we have identified cytoplasmic
proteins NFjB and phosphorylated STAT1as targets for future ther-
apeutic intervention in case of both SARS-CoV-2 virus or Co-
infection with the influenza virus. The underlying purpose here is
to provide list of common potential targets out of numerous cellu-
lar proteins activated during SARS-CoV-2 infection and co-
infection stage, which further might pave a way for generation of
single therapeutics that is efficient in combating both the infection
stages. The data generated here has opened new avenues for exper-
imental investigations with accessible realms.
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