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Abstract
In this study, an individual tree crown ratio (CR) model was developed with a data set from a

total of 3134 Mongolian oak (Quercus mongolica) trees within 112 sample plots allocated in

Wangqing Forest Bureau of northeast China. Because of high correlation among the obser-

vations taken from the same sampling plots, the random effects at levels of both blocks

defined as stands that have different site conditions and plots were taken into account to

develop a nested two-level nonlinear mixed-effect model. Various stand and tree character-

istics were assessed to explore their contributions to improvement of model prediction.

Diameter at breast height, plot dominant tree height and plot dominant tree diameter were

found to be significant predictors. Exponential model with plot dominant tree height as a pre-

dictor had a stronger ability to account for the heteroskedasticity. When random effects

were modeled at block level alone, the correlations among the residuals remained signifi-

cant. These correlations were successfully reduced when random effects were modeled at

both block and plot levels. The random effects from the interaction of blocks and sample

plots on tree CR were substantially large. The model that took into account both the block

effect and the interaction of blocks and sample plots had higher prediction accuracy than

the one with the block effect and population average considered alone. Introducing stand

density into the model through dummy variables could further improve its prediction. This

implied that the developed method for developing tree CR models of Mongolian oak is

promising and can be applied to similar studies for other tree species.
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Introduction
Tree crown size is an important variable that is commonly involved in growth and yield models
used as decision-support tools in forest management [1–3]. Tree crown size is usually charac-
terized using crown length (CL), crown width (CW), and crown ratio (CR). Tree CR is defined
as the percentage of crown length from the base of live crown to the tree top to its total height.
The value ranges from 0 (for the trees without crown, such as dead or defoliated trees) to 1 (for
the trees with crowns extending the entire tree bole). Tree CR is considered to be an indirect
measure of photosynthetic capacity of trees [2]. Moreover, tree CR is also a useful indicator of
vigor [4–7] and stand density [8]. Additionally, it is a variable of interest in the management of
many non-timber resources including recreation forests and wildlife habitats [9]. In forest
inventory, however, measuring tree CR for all sampled trees is time- and money-consuming
(e.g., [5, 10]). Therefore, developing accurate tree CR models is necessary, which allows forest
managers to accurately predict tree CR.

One common approach used to obtain values of tree CR is to develop either deterministic
or stochastic models from tree characteristics [1–3, 5, 10, 11]. So far, most of the obtained mod-
els (see Table 1) are simply linear or nonlinear (e.g., Exponential, logistic and Weibull models)
and often developed as a function of diameter at breast height (1.3 m above ground) (D), total
tree height (H), age (A) and so on, using ordinary least squares techniques [12, 13]. When the
relationships of tree CR with other tree variables are modeled, measurements of the variables
are often collected within sample plots that are allocated in different stands that represent dif-
ferent site conditions, called blocks in this study). This hierarchical structure leads to the fact
that the selected trees are located within the same plots and the plots selected within the same
blocks and that measurements are likely correlated with each other significantly [14–16]. In
this case, using ordinary least square regression technique to fit the data often leads to bias as
the standard errors of parameter estimates would get inflated [15]. To deal with this problem,
several approaches have been proposed [14, 17, 18].

Table 1. Existing tree crown ratio (CR) models.

Model Predictors Model form Source Model no

CR = [1 + exp(βX)]-1 HT, D, HT/D,BAL, CCF, ELEV,SL,AZ Logistic Hasenauer and Monserud, 1996 II.1

CR = [1 + exp(βX)]-1 D,HT,TSC,CCF,BAL, ELEV, SL, ASPECT Logistic Temesgen et al., 2005 II.1

CR = [1 + exp(βX)]-1 CCR, D Logistic Toney and Reeves, 2008 II.1

CR = [1 + exp(βX)]-1 D, HT, BA Logistic Leites et al., 2009 II.1

CR = [1 − exp(βX)]-1 MHT, TSC Logistic Popoola and Adesoye, 2012 II.2

CR = a/[1 + b exp(−βX)] Age, SD, DH, D Logistic Soares and Tomé, 2001 II.3

CR = a + exp(−βX) MHT, TSC Exponential Popoola and Adesoye, 2012 II.4

CR = exp(βX) D, HT, BA, CCF,PCT Exponential Leites et al., 2009 II.5

CR = a[1 – b exp(−βX)] Age, SD, DH, D Exponential Soares and Tomé, 2001 II.6

CR = [1 − exp(−ϕβX)] Age, D, HT, Exponential Dyer and Burkhart, 1987 II.7

CR = [1 − exp(−ϕβX)] BA, DH, D, HT Exponential Hynynen, 1995 II.7

CR = [1 + exp(−βX)]−1/2 MHT, TSC Richards Popoola and Adesoye, 2012 II.8

CR = a/[1 + b exp(−βX)]1/c Age, SD, DH, D Richards Soares and Tomé, 2001 II.9

CR = a/[1 − b exp(−βXc)] Age, SD, DH, D Weibull Soares and Tomé, 2001 II.10

Note: MHT: merchantable height, TSC: tree slenderness coefficient, D: diameter at breast height, H: total tree height, BA: stand basal area, CCF: stand

crown competition factor, PCT: The percentile in the stand basal area distribution, CCR: compacted crown ratio, BAL: basal area per ha for trees larger

than the subject tree, ELEV: elevation, SL: slope, ASPECT: aspect, SD: stand density, DH: dominant tree height, AZ: azimuth of aspect in radians, Age:

tree age, a, b, c: model parameters, β: parameter vector, x: vector of stand or tree variables.

doi:10.1371/journal.pone.0133294.t001
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One of the approaches is the use of nonlinear mixed-effect (NLME) models [19]. This
approach provides an efficient way to analyze correlated hierarchical structure data and make
accurate local predictions ([19, 20]. NLME models contain both fixed- and random-effect
parameters. The fixed parameters provide the potential to account for covariate or treatment
effects as in traditional regression, while the random parameters offer the capacity to explain
various sources of heterogeneity and randomness in the data caused by known and unknown
factors [20–25]. Therefore, the NLME models have been widely applied in forest growth and
yield modelling over the past decades (e.g., [21–25]). They can be used not only to account for
stochastic variability in tree CR models, but also to provide the potential of increasing accuracy
of tree CR prediction. To the authors’ knowledge, however, only a few studies have been con-
ducted to model tree CR using the NLME models, especially multilevel NLME models [26, 27].

The objective of this study was to develop an individual tree CR model for Mongolian oak
(Quercus mongolica) natural forests where sample plots were selected and the trees within the
plots were measured. A two-level NLME CR model with random effects at both block and plot
levels was first built to account for autocorrelation of hierarchical structure data. Various tree
and stand characteristics were then tested for their contributions to the improvement of the
CR model fits and predictions. The predictive ability and applicability of the obtained NLME
CR model were validated and demonstrated using an independent data set.

Materials and Methods

Study area and data
The used data were obtained from a total of 118 permanent sample plots (PSPs) established in
Mongolian oak natural forests allocated in Wangqing Forest Bureau of northeast China (123°
560–131°040 E, 43°050–43°400 N) (Fig 1, Table 2). These PSPs were nested within 15 blocks, out
of which 12 blocks with 100 PSPs are located in Tazigou forest farm and the other 3 blocks
with 18 PSPs in Jincang forest farm, that were randomly located in the study area to represent
the stands with different site conditions. When the data were collected, there were no regula-
tions setup to limit the scientific research in this forestry bureau and thus no specific

Fig 1. Location (upper left) of study area: Wangqing Forest Bureau (upper right) in northeast China
and spatial distribution of 15 blocks and 118 sample plots (bottom).

doi:10.1371/journal.pone.0133294.g001
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permission was required for the field work. In addition, there were no any endangered or pro-
tected species involved in the field study.

All the PSPs established in 2010 (100 plots) and 2013 (18 plots) by the Research Institute of
Forest Resources Information Techniques, Chinese Academy of Forestry, were square in shape
with an average size of 719 m2 and varying from 400 to 2500 m2. All standing live trees
(H> 1.3 m and D> 5cm) within each of the plots were measured for D, H and trunk height to
the crown base (HCB). Tree HCB was defined as the height from the ground to the base of the
first normal green branch as a part of the crown; this excluded the secondary branches (epicor-
mic and adventitious) [5]. Furthermore, a single green branch was not the base of tree crown if
there were at least three dead whorls above it [5]. Three to five dominant or sub-dominant
trees within each plot were chosen to measure plot dominant tree height (DH) and dominant
tree diameter at breast height (DD) [28]. Stand age (A) was determined by the mean values of
three average sample trees in each plot [29]. Canopy density (CD) for each plot was obtained
using a moose-horn method [30]. The measurements of the tree variables were collected from
a total of 3685 trees (Table 2).

Stand density (SD) affects tree growth significantly [3, 31, 32]. Our preliminary analyses
revealed that the differences of tree CR among different SD values of the PSPs were significant
at a risk level of 0.05. All the PSPs were thus stratified into five stand density classes by stand
density index (SDI) [33] (Table 2) and the effect of SDI on tree CR was then analyzed based on
the inventory data. The expression of SDI is given as [33]:

SDI ¼ SDðMD=D0Þb þ ε

where SD is stand density (trees ha-1),MD is stand arithmetic mean diameter (cm), D0 is stan-
dard mean diameter (cm), β is an estimated parameter, and ε is an error term. The values of
D0(D0 = 20) and β (β = 1.3798) in this study were obtained based on the study by Du et al.
(2000) in which stand density index models for 11 tree species groups for Wangqing Forest
Bureau, including Mongolian oak, were developed. The effect of Meyer’ site index (Meyer’ SI)
on tree CR was also analyzed in this study. The Meyer’ SI was given by Du et al. [29]:

SI ¼ DHexp½ða=AÞ � ða=A0Þ� þ ε

where α is a parameter, A is stand age (years) at time when DHmeasurements were collected,
and A0 is the standard age (base age) (years) of SI, equal to 40 for Mongolian oak [29]. A multi-
variate analysis was carried out to detect outlier data based on the distribution of Mahalanobis
distance between the observations and their expectations [15]. Only 6 PSPs were rejected from
this technique as they represented special cases, namely very low dense stands or over mature
stands. The remaining 112 PSPs were randomly divided into two groups: one for model fitting
and the other for model validation. The data used for model fitting consisted of 2166 trees from
74 PSPs and the data for model validation was composed of 968 trees from 38 PSPs (Table A in
S1 File). Summary statistics of the data and relevant stand characteristics are listed in Table 3.

Table 2. Numbers of sample plots and trees grouped into classes of stand density index (SDI) for Mongolian oak.

Variable Class Class midpoint Class range Number of plots Number of trees

Stand density index 1 150 0 < SDI � 300 17 253

(trees ha-1) 2 350 300 < SDI � 400 40 705

3 450 400 < SDI � 500 29 554

4 550 500 < SDI � 600 18 916

5 600 SDI > 600 8 706

doi:10.1371/journal.pone.0133294.t002
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Modeling approach
Two-level NLME models. Tree CR mixed-effect models with two-level random effects

were formulated according to multilevel nonlinear mixed-effect model techniques in this study
[34]. That is, blocks were used as the first level random effect and sample plots were nested in
each of block, showing interaction, as the second level random effect:

CRijk ¼ f ðϕijk; tijkÞ þ εijk; i ¼ 1; . . . ;M; j ¼ 1; . . . ;Mi; k ¼ 1; . . . ; nij ð1Þ

where CRijk is the crown ratio of the kth tree on the jth plot nested within the ith block,M is the
number of blocks,Mi is the number of plots within the ith block, nij is the number of observa-
tions in the jth plot of the ith block, and f(�) is a real-valued and differentiable function of a
group-specific parameter vector ϕijk and a covariate vector tijk. The within-group error εijk that
accounts for within-group variance and correlation was assumed to follow a normal distribu-
tion that has an expectation of zero and a positive-definite variance-covariance structure Rij

[35]. Rij is generally expressed as a function of the parameter vector λ [24]:

εijk � Nð0;RijðλÞÞ

Moreover, ϕijk can be expressed as [16]:

ϕijk ¼ AijkβþBi;jkui þMijkuij;ui � Nð0;ψ1Þ;uij � Nð0;ψ2Þ ð2Þ

where β is a p-dimensional vector of fixed effects, meaning the first-level random effects, ui is
independently normal distributed q1-dimensional vector with zero means and variance-

Table 3. Summary statistics of stand variables from the sample plots used for model fitting and validation, respectively.

Data Variable Min Max Mean SD CV%

Plots for model fitting

Area (m2) 400 2500 719 581 80.83

CR 0.06 1.00 0.61 0.17 28.49

HCB (m) 0.40 13.30 4.60 2.39 51.86

D (cm) 1.40 70.10 15.42 8.40 54.49

H (m) 1.80 25.60 12.18 4.18 34.29

SD (trees ha-1) 275 1863 877 515 59

CD 0.46 0.90 0.79 0.09 10.97

DH (m) 12.54 23.78 17.04 2.57 15.06

DD (cm) 16.75 38.90 24.53 5.08 20.69

Plots for model validation

Area (m2) 0.04 0.25 0.08 0.07 92.32

CR 0.01 0.93 0.60 0.18 29.15

HCB (m) 0.50 14.00 4.76 2.43 51.04

D (cm) 1.50 48.20 16.48 8.65 52.50

H (m) 2.20 25.60 12.49 4.14 33.16

SD (trees ha-1) 300 1575 662 381 58

CD 0.46 0.90 0.79 0.10 12.17

DH (m) 12.43 22.98 17.51 1.90 10.88

DD (cm) 16.88 34.55 25.48 5.32 20.89

Note: Area: sample plot area, CR: crown ratio, HCB: trunk height to crown base, D: diameter at breast height, H: tree height, SD: stand density, CD:

canopy density, DH: dominant tree height, DD: dominant tree diameter.

doi:10.1371/journal.pone.0133294.t003
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covariance matrixC1, indicating the second-level random effects, uij is independently normal
distributed q2-dimensional vector with zero means and variance-covariance matrixC2, and
Aijk, Bijk andMijk are design matrices, and ui, uij and εijk are independent of each other.

Predictor variables. Growth of individual trees is potentially affected by three groups of
variables: tree size and vigor effects, site condition effects and competition [36–39]. In this
study, a total of 14 variables, including 2 tree size and vigor effects related variables, 1 site con-
dition effects related variable, and 11 competition effects related variables (Table 4), were used
to evaluate their effects on tree CR.

The tree and stand variables were selected using a stepwise regression procedure. The mea-
surements of the variables were first analyzed by graphical examination and correlation statis-
tics [36]. Different combinations of the variables and their logarithmic transformations in
linear models were then tested based on the coefficient of determination R2. All the calculations
were performed using R/S-Plus nls function [40].

Model selection. The base model used to develop the NLME model of tree CR was deter-
mined from a total of 10 candidate models (Table 1) with selected predictors based on the per-
formance of model fitting and prediction. The models were first fit to the data from 2166 trees
of 74 PSPs and their predictions were then compared with the observations from 968 trees of
38 PSPs for the validation dataset. Nonlinear regressions were carried out using ordinary non-
linear least square (ONLS) technique with the R/S-Plus nls function [40]. The following four
statistical criteria were used to select the model that had the highest accuracy for both fitting
and prediction [25, 41]:

�e ¼
X

ei=N ¼
X

ðCRi � CRi

^ Þ=N ð3Þ

x ¼
X

ðei � �eÞ2=ðN � 1Þ ð4Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�e2 þ x

p
ð5Þ

R2 ¼ 1�
X

ðCRi � CR
^ Þ2=

X
ðCRi � �CRÞ2 ð6Þ

where CRi and CRi

^
are the observed and predicted values of tree CR for the ith observation

(i = 1,. . .,N), N is the total number of observations, �CR is the mean of the observed tree CR val-
ues, �e is the mean prediction error, ξ is the variance of prediction errors, δ is the root mean
square error, R2 is the coefficient of determination. δ combines the mean prediction error (�e)
and the variance of prediction errors (ξ), giving a robust measure of the overall model accuracy,

Table 4. A total of 14 candidate variables used for developing crown ratio model.

Groups of variables Variables

Tree size and vigor
effects

diameter at breast height (D), total tree height(H)

Site condition effects Meyer’ site index

Competition effects stand density (SD), canopy density (CD), dominant tree height (DH), plot
arithmetic mean diameter (AMD), plot dominant tree diameter (DD), plot quadratic
mean diameter (QMD), number of trees with diameter larger than the target tree
(LDN), total diameter of all trees with diameter larger than the target tree (LDTD),
mean diameter of all trees with diameter larger than the target tree (LDMD), total
basal area of all trees with diameter larger than the target tree (LDTBA), and
mean basal area of all trees with diameter larger than the target tree (LDMBA)

doi:10.1371/journal.pone.0133294.t004
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and therefore was selected as a primary criterion for model evaluation [25]. The selected model
with predictor variables was then used as a base model to construct NLME model of tree CR.

Construction of parameter effects. Several approaches were proposed to determine
which parameters should be modeled as mixed effects in the base model [21, 42, 43]. In this
study, we fitted all possible combinations of random effects on parameters including intercept
and slope terms in the base model and selected the one with the smallest Akaike’s information
criterion (AIC) and the largest log-likelihood (Loglik) [34]. To avoid over parameterization,
the likelihood ratio test (LRT) was also used [16, 43].

DeterminingC1 andC2 structure. The variance-covariance matrices for the random
effects,C1 andC2, define the variability that exists among the sample plots and blocks, respec-
tively. As in the study of Calama and Montero [44], bothC1 andC2 are assumed unstructured
in this study.

Determining R structure. To account for the within-plot heteroscedasticity and autocor-
relation in Rij [24, 35], we applied the approach suggested by Davidian and Giltinan [35]:

Rij ¼ s2G0:5
ij ΓijG

0:5
ij ð7Þ

where σ2 is a scaling factor for error dispersion [21], given by the value of residual variance of
the estimated model, Gij is a nij × nij diagonal matrix explaining the variance of within-plot het-
eroscedasticity and Γij is a nij × nij matrix accounting for the within-plot autocorrelation struc-
ture of errors.

Three widely used variance models, including exponential model Eq (8), power model Eq
(9) and constant plus power model Eq (10) [16] each with different predictors, were used to
account for heterogeneity in variance. The LRT and AIC were employed to determine an
appropriate variance model.

varðεÞ ¼ s2expð2gxÞ þ ~ε ð8Þ

varðεÞ ¼ s2x2g þ ~ε ð9Þ

varðεÞ ¼ s2ðg1 þ xg2Þ2 þ ~ε ð10Þ

where x is one of the selected predictors; γ, γ1 and γ2 are the estimated parameters; ~ε is an error
term. In addition, two autocorrelation structures, AR (1) (autoregressive process of order one)
and ARMA (autoregressive moving average process) for matrix Γi, were evaluated, and the one
that had a higher fitting accuracy (i.e., smaller AIC) and provided the expected residual pattern
was selected.

Parameter estimation. The parameters in Eq (1) were estimated by maximum likelihood
(ML) estimation method using the Lindstrom and Bates (LB) [19] algorithm which alternates
between two steps: a penalized nonlinear least square (PNLS) step and a linear mixed-effect
(LME) step [16, 19]. This algorithm was implemented using the R/S-Plus nlme function [16]
and for its details, readers can refer to Lindstrom and Bates [19] and Pinheiro and Bates [16].

Model prediction and evaluation. When two-level NLME models are used to predict tree
CR, both population average (PA) and subject-specific (SS) responses [15, 34, 45] are often
considered. The former is related to the fixed effect response and prediction of tree CR in the
stands where independent stand or tree variables required by the models are measured, but
tree CR measurements are not collected. The latter is related to the predictions of tree CR in
the stands where in addition to the independent variables, the dependent variable tree CR is
also measured in a sub-sample of trees. In order to reduce both measurement cost and potential
errors, as Calama et al [15] and Temesgen et al [46] suggested, four randomly selected trees
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within each plot were measured for estimation of the random effect parameters in this study
[15, 46].

Population average model. A population average (PA) model means that it contains the
fixed effects as global parameters and the random effects as zero and has the following general
form [34]:

CRijk

^ ¼ f ðϕ̂ij; tijkÞ þ εijk ð11Þ

Where CRijk

^
are the predicted values of tree CR for the kth tree in the jth plot in the ith block, tijk

are other stand and tree variables for the corresponding tree, and ϕ̂ ij is the estimates of PA

model parameters and contains β̂.
Subject-specific response at block level. When a model accounts for the effects of block

on tree CR and ignores other effects such as the interaction of blocks and sample plots, its

parameter estimates ϕ̂ij in Eq (11) contain both β̂ and ûiði ¼ 1; . . . ;MÞ. Usually, the random
effect parameter estimates ûi are obtained by an empirical best linear unbiased prediction
(EBLUP) approach [20, 25, 34].

b̂ i � ĜĈ
T

i ðR̂i þ Ĉ iĜCT
i Þ�1

êi ð12Þ

where the superscript T denotes the matrix transpose operation, b̂ i ¼ û i is the q1 × 1 dimen-

sional random effects from blocks, Ĝ ¼ ψ̂1 is the q1 × q1 dimensional variance-covariance

matrix, Ĉ i ¼ Ẑ i is the ni × q1 dimensional design matrix of the partial derivatives of the non-

linear function f(�) with respect to random effect parameters ui, ni ¼
XMi

i¼1
nij. The values of

blocks in the data used for both model fitting and validation were identical. Thus, the values of
û i do not need to be recalculated in prediction. That is, they would be equal to the estimates
obtained when the model is fitted.

Subject-specific response at both plot and block levels

In addition to β̂, ϕ̂ij in Eq (11) also contains both û i and û ij. That is, it simultaneously incorpo-

rates the block effects and the interaction of blocks and sample plots. The random effect

parameters were calculated by Eq (12). The specific structure of b̂i,Ĝ and Ĉi (i = 1,. . .,M) in
the Eq (12) in this case are presented in Appendix 1.

Model assessment
Statistics �e, ξ, δ and R2 calculated by Eqs (3)–(6), and LRT were applied to assess the predictive
ability of the developed tree CR models using both fitting and validation datasets. The obtained
mixed-effect models were compared based on Loglik, AIC and LRT.

Results

Selection of base model
To avoid over-parameterization and collinearity in the models, only those variables that had
statistically significant contributions to improving the quality of the models fit to the data were
selected. The obtained variables were: D, DH and plot dominant tree diameter (DD). Espe-
cially, the variables D and DH were strongly correlated with tree CR and included in most of
the candidate models in Table 1. All the candidate models with selected predictors converged
except II.9 and II.10 in Table 1. The statistics for accuracy measures Eqs (3)–(6) to assess the
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performance of converged candidate models for both fitting and validation are calculated
(Table B in S1 File). It is found that the values of the same statistics were very similar to each
other among the models. For the data used to fit the models, the values of �e for all the candidate
model were very close to 0, and the values of both ξ and δ had the same range of 0.1681 to
0.1687. The coefficients of determination varying from 0.2469 to 0.2554 were very small. For
the data used to validate the models, the values of �e, ξ and δ for all the models had small ranges
of -0.0174 to -0.0147, 0.1712 to 0.1717, and 0.1718 to 0.1725, respectively. But, the model vali-
dation results showed that model II.1 had the smallest values of mean prediction error,
�e ¼ �0:0147, variance of prediction error, ξ = 0.1712, and root mean square error, δ = 0.1718,
suggesting a slightly higher prediction accuracy than the others. Additionally, another advan-
tage for model II.1 is that its predictions are constrained to be between 0 and 1, i.e., 0% to 100%
CR. Thus, the base model selected to construct the CR mixed-effect model is:

CRijk ¼ 1
1þexpð�0þ�1Dijkþ�2DHijþ�3DDijÞ½ � þ εijk ð13Þ

.
where Dijk are the diameter at breast height (cm) of the kth tree in the jth plot in the ith block
stand density index class, DHij and DDij are the plot dominant tree height (m) and plot domi-
nant tree diameter at breast height (cm), respectively, of the jth plot of the ith block stand den-
sity index class, and ϕ0, ϕ1, ϕ2 and ϕ3 are the model parameters and other variables as defined
previously.

Mixed-effect model
Considering four model parameters (ϕ0-ϕ3) involved and both block effects and interaction of
blocks and sample plots, a total of 15 different combinations of random effects were obtained
for Eq (13). The mixed-effect model with each of the combinations was fitted to the data. It
was found that only 10 mixed-effect model alternatives converged (Table C in S1 File). The fol-
lowing model Eq (14) with block effects and the interaction showed the smallest AIC, -1919.58,
and the largest Loglik, 970.79 (Table C in S1 File):

CRijk ¼ 1=½1þ expðb0 þ u0i þ u0ij þ ðb1 þ u1i þ u1ijÞDijk þ b2DHijk þ b3DDijÞ� þ εijk ð14Þ

where β0, β1, β2 and β3 are fixed-effect parameters, u1i and u3i are random-effect parameters
caused by blocks on ϕ1 and ϕ3, respectively, u1ij and u3ij are random-effect parameters caused
by the interaction of blocks and sample plots on ϕ1 and ϕ3, respectively.

The residuals from Eq (14) were graphed against the predicted values for the data used for
model fitting in Fig 2. The absolute values of the residuals tended to decrease as the observed
tree CR values increased. It indicated that some heteroscedasticity remained even after incor-
porating the effects of blocks and the interaction effects of blocks and sample plots in the non-
linear mixed-effects CR model (14). Furthermore, the empirical autocorrelation function
(ACF) for Eq (14) indicated that the autocorrelation was significant at a risk level of 0.05
among residuals within plots.

Within-plot variance-covariance (R) structure
The assessment statistics based on three variance models with each selected predictor (D, DH,
and DD) for Eq (14) were shown in Table 5. For comparison purpose, the assessment results of
this model were also derived and given when the variances of the error term εijk was assumed
homogeneous. Power model Eq (8) with DH as a predictor failed to converge. In the case of
homogeneous variance, whether D or DD or DH was used as a predictor, the values of AIC
and Loglik were significantly different from those using power model Eq (8), exponential
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model Eq (9) and constant plus power model Eq (10) at a risk level of 0.05. Even with random
effects in the parameters, heteroscedasticity still existed in the mixed-effect model Eq (14) for
tree CR. Among these variance models, exponential model Eq (9) with DH as a predictor
showed the highest accuracy for model fitting (Table 5) (AIC = -1987, Loglik = 1006). Eq (14)
with the Autocorrelation structure AR (1) produced a smaller AIC (AIC = -1950) than that
with the ARMA (1, 1) (AIC = -1931). Therefore, Eq (14) was fitted with an AR (1) autocorrela-
tion structure and an exponential variance model. The final nonlinear mixed-effects CR model

Fig 2. The residuals of predicted crown ratio values from Eq (14) graphed against the predicted
values for Mongolian oak in Wangqing Forest Bureau of northeast China.

doi:10.1371/journal.pone.0133294.g002

Table 5. Performance assessment of mixed-effect model Eq (14) usingmeasurements of crown ratio with different variancemodels.

Variance D DD DH

model AIC Loglik LR p value AIC Loglik LR p value AIC Loglik LR p value

1 -1920 971 -1920 971 -1920 971

PF -1965 994 47.26 <0.0001 -1965 994 46.95 <0.0001 None F F

EF -1970 997 52.02 <0.0001 -1957 991 39.72 <0.0001 -1987 1006 70.03 < 0.0001

CPF -1963 994 47.25 <0.0001 -1963 994 46.97 <0.0001 -1962 994 46.97 < 0.0001

Note: D: diameter at breast height, DD: dominant tree diameter, DH: dominant tree height, AIC: Akaike information criterion, Loglik: log-likelihood, LR:

likelihood ratio, Variance model 1 means that the variances are homogeneous, PF: power model—Eq (8), EF: exponential model—Eq (9), CPF: constant

plus power model—Eq (10), F denotes a model failing to converge.

doi:10.1371/journal.pone.0133294.t005
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was:

CRijk ¼ 1=½1þ expðb0 þ u0i þ u0ij þ ðb1 þ u1i þ u1ijÞDijk þ b2DHijk þ b3DDijÞ� þ εijk

εij ¼ ðεij1; . . .; εijnijÞ
T � Nð0;Rij ¼ s2G0:5

ij ΓijG
0:5

ij Þ

Gij ¼ diag s2expð2gDHijÞ; . . . ; s2expð2gDHijÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nij

0
BBB@

1
CCCA

Γij ¼
s2

1� r2

1 r � � � rðnij�1Þ

r 1 � � � rðnij�2Þ

..

. ..
. . .

. ..
.

rðnij�1Þ rðnij�2Þ � � � 1

0
BBBBBBBB@

1
CCCCCCCCA

; ð15Þ

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

where ρ is an estimated parameter in the matrix Γij with the autocorrelation structure AR (1),
and other variables and coefficients in this model defined as above.

Parameter estimation
Table 6 shows the parameter estimates and performance results for fixed effects and variance-
covariance for Eqs (13), (14) and (15). Eq (13) had only one variance parameter (σ2) because
its error variance was assumed to be homogeneous. Eqs (14) and (15) had much smaller AIC

Table 6. Parameter estimates and performance assessment results of models.

Parameter estimates Eq (13) Eq (14) Eq (15) Eq (17)

Fixed-effect b̂0
0.6827 0.3650 0.3990 0.6026

parameters b̂1
-0.0126 -0.0166 -0.0168 -0.0169

b̂2
-0.0097 -0.0006 0.0007 -0.0046

b̂3
-0.0413 -0.0325 -0.0361 -0.0386

Canopy density b̂ð1Þ
0

— — — -0.1054

effects b̂ð2Þ
0

— — — 0.0199

b̂ð3Þ
0

— — — -0.0662

b̂ð4Þ
0

— — — 0.0344

Variance ŝ2
Block0 — 0.1627 0.1643 0.1733

parameters ŝ2
block1 — 0.0071 0.0070 0.0067

r̂Block01 — 0.324 0.173 0.185

ŝ2
Block�Plot0 — 0.2251 0.2058 0.2086

ŝ2
block�Plot1 — 0.0073 0.0042 0.0049

r̂Block�Plot01 — -0.94 -1 -1

ŝ2 0.1683 0.1514 0.3622 0.3620

ĝ — — -0.0521 -0.0521

r̂ — — 0.0618 0.0613

Model AIC -1568 -1920 -1993 -2063

assessment Loglik 789 971 1009 1045

Note: AIC, Akaike information criterion; Loglik, log-likelihood; r̂, parameter estimate for autoregressive process of order one.

doi:10.1371/journal.pone.0133294.t006
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values and larger Loglik values than Eq (13), which implied that the effects of blocks and the
interactions of blocks and sample plots on tree CR were significant. Among these models, Eq
(15) had the smallest AIC, -1993, and the largest log-likelihood, 1009. After the parameter esti-
mates were put into Eq (15), the tree CR model for Mongolian oak in northeast China is:

CRijk

^ ¼ 1=½1þ expð0:3990þ u0i þ u0ij þ ð�0:0168þ u1i þ u1ijÞDijk þ 0:0007DHij

� 0:0361DDijkÞ� þ εijk ð16Þ

Where

ui ¼
u0i

u1i

" #
� N

0

0

" #
; ψ̂1 ¼

0:1643 0:1730

0:1730 0:0070

 !( )
;

uij ¼
u0ij

u1ij

" #
� N

0

0

" #
; ψ̂2 ¼

0:2058 �1

�1 0:0042

 !( )
;

εij � Nð0; R̂ ij ¼ 0:3622Ĝ
0:5

ij Ĝ ijĜ
0:5

ij Þ;

Ĝij ¼ diag 0:3622expð�0:1042DHijÞ; . . . ; 0:3622expð�0:1042DHijÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nij

0
BBBB@

1
CCCCA

Γ̂ij ¼ 0:3636

1 0:0618 � � � 0:0618ðnij�1Þ

0:0618 1 � � � 0:0618ðnij�2Þ

..

. ..
. . .

. ..
.

0:0618ðnij�1Þ 0:0618ðnij�2Þ � � � 1

0
BBBBB@

1
CCCCCA

Model prediction
Table 7 presents the statistics of model performance based on the data used for both model fit-
ting and validation for the base model Eq (13), and two mixed-effect models Eqs (14) and (15)
in three cases: PA, block, and block plus interaction effects of blocks and sample plots. In
Table 7, Eq (13) itself was regarded as a population average (PA) model and its parameters
were directly estimated by fitting to the data without random effects, while Eq (14) PA model
only consisting of the components that account for the fixed effects was indirectly obtained by
first fitting the model that contained both fixed effects and random effects to the data and then
removing the components related to the random effects. This was also applied to Eq (15) PA
model. The results showed that although all the models produced the mean prediction errors
that were not significantly different from zero at a significance level of 0.05, the prediction
accuracy of the models with both the block effects and interaction was the highest, followed by
the models with block effects alone, and by the PA models. The major difference between Eqs
(14) and (15) was seen in the case of considering both the block effects and interaction. Eq (15)
had much smaller statistics of �e, ξ and δ than Eq (14) although both models slightly under-
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predicted tree CR and resulted in the mean prediction errors that were not significantly differ-
ent from zero at a risk level of 0.05.

Compared to that from Eq (13), the prediction accuracies of Eqs (14) and (15) with both the
block effects and the interaction of blocks and sample plots were much higher. Without the
interaction effects, moreover, Eqs (14) and (15) led to very small coefficients of determination
(R2 varying from 0.2439 to 0.4579). Adding the interaction effects into both models increased
the coefficients to 0.6359 and 0.6435 for Eqs (14) and (15), respectively. Based on the results of
model validation, Eq (15) with the interaction effects decreased the root mean square error by
38.65% and 38.33% compared to Eqs (13) and (14) (PA model). These implied that the random
effects from the interaction of blocks and sample plots on tree CR were substantially large.

The residuals from Eq (15) with the interaction effects of blocks and sample plots were
graphed against the predicted values for the data used for model fitting in Fig 3. Compared to
those in Fig 2, the residuals from Eq (15) with the interaction effects, especially the under-pre-
dictions, were greatly decreased. This further indicated that the exponential variance model
with HD as a predictor accounted for heteroscedasticity effectively. Similar results of the resid-
uals from the Eq (15) were also found for the data used for model validation. Additionally, the
error structures of Eq (15) did not show any signs of autocorrelation. Therefore, Eq (15) was
promising for predicting tree CR of Mongolian oak.

Model extension
Our preliminary analyses revealed that the correlations between tree CR and the predictors
varied with stand density class. This implied that the accuracy of predicting tree CR could be
potentially increased by taking into account the stand density classes. To account for the varia-
tion among stand density classes, dummy variables (K1, K2, K3 and K4) with values of 1 and 0
were introduced into the model. That is, K1 = 1, K2 = 1, K3 = 1, and K4 = 1 meant the first, sec-
ond, third and fourth stand density class, respectively, and K1 = K2 = K3 = K4 = 0 implied the
fifth stand density class. Adding the dummy variables into Eq (15) led to following model:

CRijk ¼ 1=½1þ expðb0 þ u0i þ u0ij þ bð1Þ
0 K1 þ bð2Þ

0 K2 þ bð3Þ
0 K3 þ bð4Þ

0 K4 þ ðb1 þ u1i þ u1ijÞDijk

þ b2DHij þ b3DDij� þ εijk: ð17Þ

The estimates of model parameters for Eq (17) were listed in Table 6 and its statistics of per-
formance to predict tree CR were shown in Table 7. In both tables, Eq (17) was compared with
Eqs (13)–(15) based on the values of the performance statistics. The results showed that com-
pared to Eqs (15) and (17) decreased the value of AIC by 3.51% and increased the value of
Loglik by 3.57% (Table 6). Eq (17) also increased the coefficient of determination by 167.31%,
7.36%, and 6.09% compared to those from Eqs (13), (14) and (15), respectively. Based on the
results from the validation data, Eq (17) led to a root mean square error of 0.0653, decreasing
by 61.99%, 42.92%, and 38.05% compared to those from Eqs (13), (14) and (15). The residuals
from Eq (17) were graphed against the predicted values of tree CR for five stand density classes
(Fig 4). The results implied that if the stand density of each sample plot was known, Eq (17) in
which stand density class was introduced through dummy variables can result in further
improvement of predictions.

Discussion and Conclusions
A nonlinear mixed-effects model was appealing for the analysis of correlated hierarchical struc-
ture data because of its flexibility to account for the covariance structures that are not taken
into account in traditional regression approaches. A modified logistic model (Eq (15)) with

Multilevel Nonlinear Mixed-Effect Crown Ratio Models for Mongolian Oak

PLOS ONE | DOI:10.1371/journal.pone.0133294 August 4, 2015 13 / 20



Table 7. Performance assessment results of the models.

Model No. Model fitting Model validation

�e ξ δ R2 �e ξ δ

Eq (13) 0 0.1681 0.1681 0.2554 -0.0147 0.1712 0.1718

Eq (14)

PA -0.0016 0.1686 0.1686 0.2444 -0.0162 0.1702 0.1709

B 0.0044 0.1547 0.1547 0.4579 -0.0095 0.1647 0.1650

B+B*Plot 0.0017 0.0861 0.0861 0.6359 0.0034 0.1143 0.1144

Eq (15)

PA -0.0012 0.1687 0.1687 0.2439 -0.0159 0.1704 0.1712

B 0.0038 0.1549 0.1549 0.4568 -0.0094 0.1648 0.1650

B+B*Plot 0.0012 0.0814 0.0814 0.6435 0.0025 0.1054 0.1054

Eq (17) 0.0005 0.0412 0.0412 0.6827 0.0012 0.0653 0.0653

Note: �e: mean prediction error, ξ: variance of prediction error, δ: root mean square error, R2: coefficient of determination between the observed and

predicted values, B: block, and B*Plot: interaction of block with plot.

doi:10.1371/journal.pone.0133294.t007

Fig 3. The residuals of predicted crown ratio values from Eq (15) graphed against the predicted
values for Mongolian oak in Wangqing Forest Bureau of northeast China.

doi:10.1371/journal.pone.0133294.g003
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nonlinear mixed-effects model approach at both block and plot levels was recommended for
modelling CR of Mongolian oak trees. The results (Tables 6 and 7) showed that a random
effects model provided higher accuracy of prediction for the datasets used for both model fit-
ting and validation compared to a similar model without random effects. It is also worth point-
ing out that the variance-covariance matrices for the random effects and within-plot errors
play a more important role in prediction. If we ignore the random effects, within-plot heteroge-
nity and correlation, and apply the ordinary least square approach to the final chosen model
(Eq (15)), the statistics (�e, ξ and δ) for the prediction CR are obviously much larger than those
obtained by appropriate variance-covariance structure (see Table 7).

In this study, three tree and stand variables, including D, DD and DH, were selected and
involved in the mixed-effect model of tree CR. This finding was supported by other tree CR
model studies in which D was often used an independent variable [1, 2, 10, 11]. As Hasenauer
and Monserud [5] and Soares and Tomé [1] concluded, the parameter β1 in our Eq (15) was
negative, meaning that increasing D would result in a larger value of tree CR (Table 6). This
implied that the effect of D on tree CR was significant. In fact, D is one of the most important
tree variables and usually applied to account for stand structure, tree vigor and competition
capacity. Soares and Tomé [1] also included DH in their tree CR model for Eucalyptus globules
Labill plantations. In most forest growth studies, DH often implies development of trees and

Fig 4. Residuals of predicted crown ratio values from Eq (17) for each of five stand density classes
graphed against the predicted values for Mongolian oak in Wangqing Forest Bureau of northeast
China.

doi:10.1371/journal.pone.0133294.g004

Multilevel Nonlinear Mixed-Effect Crown Ratio Models for Mongolian Oak

PLOS ONE | DOI:10.1371/journal.pone.0133294 August 4, 2015 15 / 20



stands [47]. On the other hand, DH is a measureable stand characteristic and indicates the site
quality in terms of stand growth and yield [48]. In the study of Soares and Tomé [1], greater
values for DH resulted in smaller values of CR for Eucalyptus globulus Labill in the north and
central coastal regions of Portugal. The finding in this study was consistent with this conclu-
sion, that is, tree CR decreased as DH increased because the parameter β2 in the model (15)
was positive. In addition, the effect of dominant tree diameter DD on CR was also found to be
significant in this study and the negative β3 implied that tree CR increased as DD increased.

Monserud and Sterba [49], Temesgen et al. [10], and Leites et al. [2] found that many other
stand or tree variables had significant effects on tree CR, such as tree height (H), and H/D,
named as tree slenderness coefficient [3]. In this study, these variables were also examined and
it was found that their contributions to the prediction accuracy of the tree CR model were sig-
nificant. However, measuring H of each tree is prohibitively high cost and time-consuming
[15, 47]. Therefore, H and H/D were not selected as predictors in the model (15) to enhance
the feasibility and practicality of the model, Site index (SI) affects tree growth significantly ([34,
36, 45, 50], but the effects of Meyer’ SI on CR is insignificant in this study. This is mainly
because (i) DH contained in the proposed model could reflect the site quality effectively; (ii) in
Wangqing Forest Bureau of northeast China, the environmental and climatic factors greatly
vary from sample plot to sample plot due to the complication of environmental and climatic
conditions so that the relationship between tree CR and SI greatly differs from place to place;
and (iii) introducing SI would complicate the model for a very small portion of gain in predict-
ability. Thus, the stand and tree variables such as SI were not selected.

The tree CR is widely used as a predictor variable to predict growth and yield of trees and
forests and also used as a key factor to determine target trees in the management of close-to-
nature forests [51–53]. In practice, forest inventory data do not necessarily include the mea-
surements of CR. The mixed-effect CR model (such as Eq (15)) proposed in this study can be
used to predict tree CR in those cases. The method that is used to predict CR based on the
mixed-effect CR model in practical application consists of two steps: parameter estimation and
prediction, which is similar as the approach that proposed in this study. For different tree spe-
cies or the same tree species but it comes from different area, the values of parameters in the
mixed-effect CR model may be different. Therefore, the parameters in the model should be
estimated before prediction. In addition, it is also noted that when predicting tree CR using the
mixed-effect models such as Eq (15), the random-effect parameters should be estimated from
the prior information obtained from the observations of the dependent variable [15, 25, 43, 44,
54]. In addition to the predictors D, DD and DH, tree CR has to be measured from a small sub-
sample of trees so that the random-effect parameters can be estimated using EBLUP theory
[20, 25, 34]. The appropriate number of trees to be measured for estimating the random-effect
parameters has been discussed in the literature [34, 44, 46, 47]. Temesgen et al. [46] and Yang
et al. [34] suggested that the more trees used for estimation of random-effect parameters, the
higher the prediction accuracy. However, as the number of trees increases, the decrease of pre-
diction error will become insignificant, while the cost of inventory will greatly increase. In fact,
the analysis of data using 1–6 trees revealed the accuracy of prediction with four trees was simi-
lar to that with five or six trees. As Calama and Montero [44] suggested, therefore, in this study
four randomly selected trees were measured for estimation of random-effect parameters.

The prediction of tree CR would have some potential random error. The value of the error
varies mainly depending on the prediction accuracy of the mixed-effect CR model (such as
(15)). Therefore, the predictions from the forest growth and yield models that use predicted
tree CR as a predictor are associated with uncertainty and subject to the random error in the
predicted tree CR. One direct method to reduce the uncertainty is using an accurate CR model
to predict CR. This is why we recommended the use of the nonlinear mixed-effect modelling
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approach to develop a CR model for improving the prediction accuracy in this study. In addi-
tion, several other approaches, such as simultaneous equations [55], errors-in-variables (EIV)
models [56] and Bayesian estimation [57], could also be used to reduce the uncertainty in the
case of using the predicted CR as a predictor variable in the forest growth and yield modelling.

Measuring tree CR is subject to error, even though stand and tree attributes are commonly
assumed to be measured without error [58, 59]. The measurement errors due to mistakes of
field crew and faulty instrument can be substantial [58, 60]. For example, tree CR is generally
measured with standard height measurement instrument, but, when the crown is uneven, one
often visually rearranges the crown branches to obtain the values of tree CR. There is ample
evidence in the literature about the ambiguity of visual estimation of tree characteristics. The
studies of Nicholas et al. [61] and Ghosh et al. [62] highlighted the degree of variation that can
arise from subjective measurements of tree and stand variables. All the existing tree CR models
(Table 1) including the models developed in this study are assumed that (i) tree CR is a random
variable; and (ii) the independent variables are fixed and observed without error. It is well
known that the violation of the second assumption may lead to biased estimation of regression
coefficients and the standard errors of the coefficients and consequently, to misleading test of
hypothesis [63]. If the predictors in Eq (15) are considered to have measurement errors, a new
approach for the nonlinear mixed-effect models should be developed. However, so far, no algo-
rithms and corresponding computational programs to implement this approach have been
available. We are in the process of developing such an appropriate algorithm to deal with this
problem, which will certainly be very challenging.

Appendix 1 Parameters and Matrix Structures for Calculation of
Random Effects at Both Plot and Block Levels
At both plot and block levels,

b̂ i ¼ ðuT
i ;u

T
i1;u

T
i2; . . . ;u

T
iMi
ÞTði ¼ 1; . . . ;MÞ

Is (q1 +Miq2) × 1 dimensional augmented random effect vector for the ith block.

Ĝ ¼ diagðψ1;ψ2; . . . ;ψ2Þ

is (q1 +Miq2) × (q1 +Miq2) dimensional block diagonal positive definite matrix,

Ĉ i ¼

Zi1 Ei1

Zi2 Ei2

..

. . .
.

ZiMi
EiMi

2
666664

3
777775

ni	ðq1þMiq2Þ

is design matrix. Zij and Eij (j = 1,. . .,Mi) are nij × q1 and nij × q2 dimensional matrices of the
partial derivatives of the nonlinear function f(�) with respect to random effect parameters ui
and uij, respectively.Mi is the number of plots within the ith block. nij is the number of observa-
tions in the jth plot of the ith block. q1 and q2 are the number of dimensions of ui and uij, respec-
tively.C1 andC2 are the variance-covariance matrixes of ui and uij, respectively. As
mentioned in modeling approach section, the values of û i in prediction are the same as the esti-
mates obtained in modeling.
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