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Improving grain yield in the staple food crop rice has been long sought goal of plant
biotechnology. One of the traits with significant impact on rice breeding programs is
peduncle elongation at the time of heading failing which leads to significant reduction
in grain yield due to incomplete panicle exsertion. To decipher transcriptional dynamics
and molecular players underlying peduncle elongation, we performed RNA sequencing
analysis of elongating and non-elongating peduncles in two Indian cultivars, Swarna
and Pokkali, at the time of heading. Along with genes associated with cell division
and cell wall biosynthesis, we observed significant enrichment of genes associated
with auxins, gibberellins, and brassinosteroid biosynthesis/signaling in the elongating
peduncles before heading in both the genotypes. Similarly, genes associated with
carbohydrate metabolism and mobilization, abiotic stress response along with cytokinin,
abscisic acid, jasmonic acid, and ethylene biosynthesis/signaling were enriched in
non-elongating peduncles post heading. Significant enrichment of genes belonging
to key transcription factor families highlights their specialized roles in peduncle
elongation and grain filling before and after heading, respectively. A comparison with
anther/pollen development-related genes provided 76 candidates with overlapping roles
in anther/pollen development and peduncle elongation. Some of these are important
for carbohydrate remobilization to the developing grains. These can be engineered
to combat with incomplete panicle exsertion in male sterile lines and manipulate
carbohydrate dynamics in grasses. Overall, this study provides baseline information
about potential target genes for engineering peduncle elongation with implications on
plant height, biomass composition and grain yields in rice.

Keywords: heading, rice, peduncle, stem, anther, panicle exsertion, internode

INTRODUCTION

With huge diversity in morphological architectures of flowering plants, a thorough understanding
of plant morphology is not only essential to appreciate the diverse shapes and forms exhibited by
the plant world but also vital to engineering crop plants with improved agricultural traits. A slight
modification in plant architecture can have a profound effect on the agronomic performance of crop
plants. This was clearly demonstrated during the green revolution, where breeding for semi-dwarf
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genotypes led to higher yields and lodging resistance in rice
(Coyne, 1980). Subsequently, several architectural features such
as shape, size and angle of the leaf, number of tillers, and
branching, were found to dramatically impact grain yield and
stress responses (Peng et al., 2008).

One of the crucial morphological traits that significantly
influences grain yield in rice is the elongation of the uppermost
internode, also known as the peduncle. Elongation of peduncle
at the time of heading facilitates the emergence of panicle from
the flag leaf sheath, commonly known as panicle exsertion,
which is also crucial for anther dehiscence and pollination
(Bardenas, 1965). Incomplete panicle exsertion dramatically
reduces seed set in rice and thus adversely affects agronomic
yield (Yin et al., 2007). Moreover, peduncle elongation is highly
sensitive to environmental factors. Several abiotic stress factors,
particularly extremes of temperature and drought stress at the
time of heading, result in dramatic yield losses by inhibiting
peduncle elongation and, subsequent panicle exsertion and
anther dehiscence in rice (Muthurajan et al., 2011; He and Serraj,
2012; Wu et al., 2016). Incomplete panicle exsertion is also
observed in cytoplasmic male sterile lines with about 30–40%
of panicles remaining enclosed in the flag leaf sheath, therefore
making the spikelets unavailable for cross-pollination (Devi et al.,
2011). Thus, incomplete panicle exsertion is one of the major
impediments to obtain high yields in rice breeding programs.
One of the common strategies used to combat this challenge
involve spray of gibberellins but it significantly enhances the cost
of production (Yin et al., 2007).

Furthermore, peduncle also contributes to grain filling. The
excess photoassimilates, accumulated in the form of sucrose
and starch in rice stems before heading, are mobilized to the
panicles after heading to supplement grain filling (Chen and
Wang, 2008; Wang et al., 2016). The transport of these non-
structural carbohydrates from flag leaf to the panicle is facilitated
through a continuous mature transport phloem network in leaf
sheath, peduncle, and the rachis that supports spikelets on panicle
(Slewinski, 2012). Since peduncle goes through a sink to source
transition during the heading stage, elucidating transcriptional
dynamics of peduncle at the time of heading is of fundamental
importance to understand the mechanism of non-structural
carbohydrate remobilization as well.

Till date, a handful of genes have been experimentally
characterized to affect internode elongation through forward
and/or reverse genetic strategies (Rutger and Carnahan, 1981;
Luo et al., 2006; Zhu et al., 2011; Duan et al., 2012; Gao et al.,
2012; Magome et al., 2013; Ji et al., 2014, 2019; Wang et al.,
2017; Xie et al., 2018; Chu et al., 2019). However, lack of a
comprehensive study to understand the overall gene expression
dynamics during panicle elongation at the time heading is still
limiting our understanding of panicle exsertion process in rice.

To fill this gap in our understanding, we investigated the
transcriptional dynamics during peduncle elongation at the time
of heading in two indica genotypes of rice, Swarna and Pokkali,
so that genotype-specific effects could be minimized. These
genotypes exhibit contrasting physiological and morphological
traits in terms of cell wall composition, plant height, and
grain yields (Jahn et al., 2011). Swarna, an elite indica cultivar,

developed by crossing Vasista and Mahsuri rice varieties in 1982,
has low glycemic index and is the most widely grown rice cultivar
in Southern India (Rathinasabapathi et al., 2015). Pokkali, on the
other hand, is a salinity tolerant indica landrace, mainly grown
in coastal region of Southern India, for its salinity tolerance, high
protein content, extra-large grains, peculiar taste, and medicinal
properties (Hoang et al., 2016; Mishra et al., 2020). Expression
profiling of elongating and non-elongating peduncles collected
before and after heading, respectively, from both the genotypes,
revealed conserved genetic elements and pathways underlying
peduncle elongation at the time of heading in rice. These genes
can be targeted using reverse genetic approaches to increase
yield stability and stress tolerance in rice (Slewinski, 2012).
Those implicated in cell wall biosynthesis would be important
candidates for engineering stem biomass composition to enhance
biofuel production. At the same time, genes regulating anther
development as well as peduncle elongation can be leveraged to
devise strategies to combat panicle enclosure in male sterile lines.

MATERIALS AND METHODS

Plant Material and Sample Preparation
Oryza sativa ssp. indica cultivars Swarna and Pokkali plants were
grown in the fields under puddle transplanted conditions at
ICAR-Indian Agricultural Research Institute (ICAR-IARI), Pusa,
New Delhi, India. The phenotypic data on plant height, peduncle
length, days to heading, and maturity were recorded from the
field-grown plants. Elongating peduncles (EP) about 2–4 days
before heading, and non-elongating peduncles (NP), about 2–
4 days after heading, were separately sampled for each cultivar.
Before heading, samples were collected when the maximum
bulge could be observed in the flag leaf with the panicle still
concealed beneath the leaf sheath. Conversely, heading stage
samples were collected once the panicle had fully emerged out
from the flag leaf sheath accompanied by flowering (Figure 1A).
The samples were frozen in liquid nitrogen and stored at −80◦C
until further processing.

RNA Isolation, Library Preparation, and
Sequencing
Total RNA from three biological replicates of peduncle
samples, collected from each cultivar at both elongating and
non-elongating stages, was extracted using TRIzolTM reagent
(Invitrogen) as per the manufacturer’s instructions. The quantity
and quality of RNA samples were determined using Nanodrop
2000 and Agilent 2100 Bioanalyzer. RNA samples with RIN
value >7 were processed for library preparation using TruSeq R©

Stranded Total RNA Sample Preparation Kit. Sequencing was
performed on Hisequation 2000 with a read length of 100 bp
(Illumina). The data has been submitted to NCBI GEO
(Accession No. GSE157727).

Data Analysis
After sequencing, raw reads were filtered to remove low-quality
and adapter-contaminated reads using NGSQC Toolkit with
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FIGURE 1 | Phenotypic assessment and transcriptomic analysis of rice peduncles. (A) The topmost internode, also known as peduncle, is marked in both before
heading and after heading Pokkali and Swarna plants. All leaves were removed to clearly show the stem internodes. (B) Graph showing comparative length of
elongating and non-elongating peduncles in Swarna and Pokkali plants. (C) Principal component analysis of all three biological replicates of each sample. Dots of the
same color represent biological replicates from same sample. (D) Venn diagram showing overlap between number of genes expressing with FPKM ≥ 1 in each
sample. The total number of genes expressed in each sample is given in brackets with sample names. SW, Swarna; PK, Pokkali; EP, elongating peduncles before
heading, and NP, non-elongating peduncles after heading.

default parameters (Patel and Jain, 2012). The high-quality
reads with Phred score ≥30 were aligned with the rice genome
available at Rice Genome Annotation Project Database version
71, using Hisat version 2.1.0 with the option – rna-strandness
RF, specific for stranded reads (Kim et al., 2015). Assembly was
performed using Stringtie with −rf option (Pertea et al., 2015).

1http://rice.plantbiology.msu.edu/

The final assembly for all samples was obtained by Cuffmerge
(Trapnell et al., 2012). Differential gene expression between both
the samples was determined by Cuffdiff using the – fr option
(Trapnell et al., 2012). The transcripts with log2 fold change ≥1
(upregulated genes) or ≤−1 (downregulated genes) with P-value
cutoff ≤0.05 were considered differentially expressed. The
expression levels of novel and annotated genes were quantified
in terms of Fragments Per Kilobase per Million (FPKM) using

Frontiers in Genetics | www.frontiersin.org 3 December 2020 | Volume 11 | Article 584678

http://rice.plantbiology.msu.edu/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-584678 November 28, 2020 Time: 19:52 # 4

Kandpal et al. Gene Expression Dynamics in Rice Peduncles

Cufflinks (Trapnell et al., 2010). Principal component analysis
(PCA) was performed on normalized FPKM values using prcomp
function (center = TRUE, scale = FALSE) of the R
package stats2. The 3D diagram of PCA for all 12 samples
was plotted using the R package scatterplot3d (version 0.3–
373). Gene ontology (GO) enrichment for differentially expressed
transcripts was performed using PlantGSEA4; (Yi et al., 2013),
and P-values for enrichment analysis of each GO term were
calculated using F-test. Only GO terms exhibiting P-value ≤0.05
were considered significant.

For metabolic pathway analysis, differentially expressed genes
were also mapped on Mapman software using mapping file
available for IRGSP loci (Thimm et al., 2004;5). The information
about previously characterized genes for their roles in internode
elongation, anther/pollen development, and grain filling was
collected from OGRO (Overview of functionally characterized
Genes in Rice Online database; Yamamoto et al., 2012;6) and
FunRice genes (Yao et al., 2018;7) databases supplemented with
manual literature survey. The list of differentially expressed
genes in nine rice male sterile mutants was extracted from
supplementary data provided by Lin et al. (2017).

RESULTS

Plant Growth and Phenotypic Analysis
The plant height and developmental stages of Oryza sativa spp.
indica genotypes, Swarna and Pokkali, grown in natural fields,
were monitored over time especially closer to the heading stage.
Both heading and maturity take longer in Pokkali as compared
to Swarna plants as Pokkali plants took on an average of 123
and 151 days after sowing for heading and maturity, respectively,
whereas, in Swarna plants, the average numbers of days for
heading and maturity were 112 and 136 days after sowing,
respectively. Phenotypic data collected from field-grown plants
revealed striking contrast in plant height and peduncle length in
both the genotypes (Figure 1A). The average height of Pokkali
was almost double (158 cm) compared to Swarna (82 cm) plants.
A similar trend was observed in the peduncle length. The average
length of elongating peduncles 2–4 days before heading was 2.9
and 5.3 cm in Swarna and Pokkali, respectively. However, with
prolific elongation observed closer to heading, peduncle lengths
increased to an average of ∼20 cm in Swarna and ∼30 cm in
Pokkali plants within 2–4 days post heading (Figure 1B). No
significant increase in peduncle length was observed 4 days post
heading, suggesting that the peduncle ceases to elongate as soon
as the whole panicle has emerged out of the flag leaf.

2https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stats-package.html
3https://cran.r-roject.org/web/packages/scatterplot3d/index.html
4http://systemsbiology.cau.edu.cn/PlantGSEA/
5https://mapman.gabipd.org/
6http://qtaro.abr.affrc.go.jp/ogro
7https://funricegenes.github.io/

Sequencing Statistics and Principal
Component Analysis
RNA sequencing of 12 libraries representing elongating (EP) and
non-elongating peduncles (NP) of both the genotypes yielded
a total of 690 million paired-end reads with an average read
length of 100 bp. After removing low-quality and adapter
contaminated reads, >616 million high-quality reads with an
average Phred quality score (Q) ≥30 were used for reference-
based transcriptome assembly. More than 90% of the high-quality
reads from each replicate could be mapped onto the rice genome
(Supplementary Table 1), and a total of 54,966 transcripts were
annotated from both the cultivars.

To emphasize variation and correlation among EP and NP
stages collected from both the genotypes, we performed PCA.
As expected, elongating peduncles exhibited a distinct separation
from the non-elongating ones (Figure 1C). Furthermore, the
results revealed a higher correlation among EP samples of
both the cultivars. In contrast, non-elongating peduncles from
both the cultivars were well-separated indicating genotypic
differences in the transcriptional repertoire of non-elongating
peduncles (Figure 1C).

Further, genes expressed with FPKM ≥ 1 in all four samples
were compared (Figure 1D). The total number of genes
expressing in EP and NP stages in both the genotypes were
comparable with more than 16,000 genes expressing at EP stage
and over 15,000 genes expressing in NP samples from both the
genotypes. A total of 12,726 transcripts were common to both
EP and NP samples. In both the genotypes, Swarna had higher
number of genes expressing exclusively in elongating (609) as well
as non-elongating (841) peduncles (Figure 1D).

In silico Validation of Gene Expression
Patterns
Several genes in rice have been previously implicated in peduncle
elongation and panicle exsertion at the time of heading using
forward and/or reverse genetic approaches. To investigate if we
could capture their differential accumulation during peduncle
elongation, we checked the expression patterns of nine previously
characterized genes in our data (Figure 2). Among these, OsPK1
encoding a pyruvate kinase has been previously implicated
in regulating plant height, panicle exsertion and carbohydrate
transport during grain filling (Zhang et al., 2012). The mutant
exhibits dwarfism, panicle enclosure, and reduced seed set.
Consistent with its demonstrated role, OsPK1 expressed at high
levels in elongating peduncles before heading which escalated
further in non-elongating peduncles post heading in both the
genotypes (Figure 2). Another gene, OsSUT1, encoding the
sucrose transporter, has been previously shown to express in
rice peduncle with a critical role in facilitating the transport of
assimilates from the flag leaf blade to the base of filling grains
(Scofield et al., 2002, 2007). We observed a significant increase
in OsSUT1 expression post-heading in peduncles of both the
genotypes (Figure 2).

A cytochrome P450 gene, CYP714B1, that encodes gibberellin
13-oxidase has been shown to reduce gibberellin (GA) activity
in rice (Magome et al., 2013). Double mutation in CYP714B1
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FIGURE 2 | Expression profiles of previously characterized genes for involvement in peduncle elongation and/or panicle exsertion. The Y-axis represents FPKM
values, and the X-axis represents samples. Error bars represent standard error between biological replicates. SW, Swarna; PK, Pokkali; EP, elongating peduncles,
and NP, non-elongating peduncles. The names of the genes are given in italics on the top left of each bar graph.

and CYP714B2 resulted in elongation of uppermost internode in
rice at the time of heading indicating their role in suppressing
internode elongation post heading by downregulating GA
activity. Conforming to these observations, CYP714B1, with
negligible expression before heading, showed high expression
in rice peduncles after heading in both the rice genotypes
(Figure 2), whereas expression of a GA biosynthetic gene,
GA3Ox2 (Gibberellin 3 beta-dioxygenase 2) that plays a decisive
role in internode elongation in rice, was detected in elongating
peduncles pre-heading in both the genotypes (Iwamoto et al.,
2011; Figure 2).

Dwarfism 50 (D50) encoding inositol polyphosphate 5-
phosphatase is essential for proper formation of intercalary
meristem by regulating the direction of cell division, deposition
of cell wall pectin, and actin organization (Sato-Izawa et al.,
2012). As expected, D50 exhibited higher expression in rice
peduncles before heading with a significant decline observed
post heading in both the genotypes (Figure 2). Similarly,
another gene, SUI1 (Shortened Uppermost Internode 1) encoding
phosphatidylserine synthase, mediates cell expansion during
elongation of uppermost internode in rice by regulating the

secretion of cell wall components (Zhu et al., 2011; Yin et al., 2013;
Ma et al., 2016). The sui1 mutants exhibit immensely shortened
uppermost internode and a sheathed panicle indicating its role
in peduncle elongation and panicle exsertion at the time of
heading. SUI1, though expressed at very low levels, exhibited
a significant decline in expression post heading in both the
genotypes (Figure 2).

Furthermore, rice genes associated with brassinosteroid
biosynthesis and signaling have also been shown to affect
internode elongation. Loss of function of BRD2 (Brassinosteroid-
deficient dwarf 2) involved in the brassinosteroid biosynthetic
pathway and a putative BR receptor kinase, BRI1 (Brassinosteroid
Insensitive 1), leads to dwarf phenotypes confirming their role
in internode elongation (Yamamuro et al., 2000; Hong et al.,
2005). Both the genes exhibited a higher expression in elongating
peduncles before heading in rice genotypes with a significant
decline post heading in our data. Similarly, phytochrome-
regulated OsEREBP1-like transcription factor EBL1 which
regulates internode elongation at the heading stage in rice
by upregulating the expression of ACO1 (aminocyclopropane-
1-carboxylate oxidase), an enzyme associated with ethylene
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biosynthesis (Iwamoto and Takano, 2011), exhibited a significant
decline in expression in Pokkali plants post heading (Figure 2).
On the contrary, EBL1 expression in Swarna plants was negligible
both before and after heading. The differential expression of EBL1
could be due to differential photoperiod sensitivity or response
to ethylene levels in both the genotypes. Overall, we obtained
the expected expression patterns of the previously characterized
genes conforming to their demonstrated functions.

Differential Gene Expression Analysis
and Pathway Enrichment
To identify genes exhibiting differential accumulation during
peduncle elongation at the time of heading in both the genotypes,
we used a cutoff ≥2-fold change with P-value ≤0.05. Expression
levels of 8,894 and 5,018 genes were altered in Swarna and
Pokkali, respectively. A total of 4,280 and 2,348 genes were
expressed at higher levels in elongating peduncles of Swarna and
Pokkali, respectively (Figure 3A), whereas 4,614 and 2,670 genes
expressed at higher levels in non-elongating peduncles of Swarna
and Pokkali, respectively. Since our study aimed to identify
the genes with conserved roles in peduncle elongation instead
of genotype-specific differences, we compared the differentially
expressed gene sets from both the genotypes. A total of 1,500
genes were expressed at higher levels in EPs of both the genotypes
compared to NPs (Figure 3B). Similarly, 1,723 genes expressed
at higher levels in non-elongating peduncles. A large number of
genes exhibiting contrasting transcript profiles imply genotype-
specific variations likely responsible for variation in cell wall,
biomass composition, stress tolerance, and other physiological
parameters (Figure 3B).

To identify critical genes and pathways underlying peduncle
elongation, irrespective of the genotype, we performed
pathway enrichment analysis with 1,500 and 1,723 genes
exhibiting differential expression in peduncles in both the
genotypes (Supplementary Table 2). Among 1,500 genes with
higher expression in elongating peduncles, those involved in
transcriptional regulation, posttranslational modifications,
cell organization, DNA synthesis, cell wall biosynthesis, lipid
metabolism, stress response, cell cycle, and auxin metabolism
were particularly enriched (Figure 3C). On the other hand,
the enriched categories among 1,723 genes exhibiting higher
expression in non-elongating peduncles were transcriptional
regulation, protein degradation, posttranslational modification,
development, calcium signaling, stress response, amino
acid metabolism, sugar transport, and ethylene metabolism
(Figure 3C). These observations conform with the developmental
events involving active cell division in the elongating peduncles
and mobilization of carbohydrates in non-elongating peduncles
after heading. Among those exclusively upregulated in elongating
peduncles of Swarna, protein synthesis, RNA processing,
development, and photosynthetic light reaction categories were
enriched. On the contrary, genes associated with vesicular
transport, signaling, and cell wall biosynthesis were exclusively
enriched in elongating peduncles of Pokkali (Supplementary
Table 5). Interestingly, genes associated with photosynthesis
were exclusively upregulated in non-elongating peduncles of

Pokkali, whereas those associated with protein degradation,
posttranslational modification, signaling, lipid metabolism, and
protein targeting were exclusively enriched in non-elongating
peduncles of Swarna plants (Supplementary Table 5).

In-Depth Analysis of Differentially
Expressed Genes Associated With
Transcriptional Regulation, Cell Wall,
Carbohydrate, and Hormone Metabolism
Taking cues from the pathways enriched during peduncle
elongation, we performed an in-depth profiling of differentially
expressed genes associated with cell wall biosynthesis and
modification, carbohydrate metabolism and transport,
hormone biosynthesis, signaling, and response, and
transcriptional regulation.

Cell Wall Biosynthesis and Modification
A total of 24 cellulose synthases (CESA) and cellulose synthase-
like (CSL) genes were differentially expressed in both the
genotypes with 22 of them exhibiting higher expression
in elongating peduncles compared to non-elongating ones
(Figure 4A; Supplementary Table 3A). The CSL genes exhibiting
higher expression in elongating peduncles belong to the CSLA,
CSLC, CSLC, CSLD, and CSLF families (Figure 4A). CSLE6 and
CSLH1, on the contrary, exhibited higher expression post heading
(Figure 4A). Several genes implicated in secondary metabolite
biosynthesis also exhibited higher expression in post heading
peduncles (Figure 4B).

However, genes associated with lignin biosynthesis showed
a mixed pattern with PAL (phenylalanine ammonia-lyase) and
CCR (cinnamoyl-CoA reductase) genes expressing at higher
levels in EPs while 4CL (4-coumarate: coenzyme A ligase)
and CCOMT (caffeoyl CoA 3-O-methyltransferase) exhibited
higher expression in non-elongating peduncles (Figure 4C;
Supplementary Table 3B). Further, three genes encoding 4CLs
(4-coumarate: coenzyme A ligases) and COMT (caffeic acid 3-
O-methyltransferase) exhibited contrasting patterns in both the
genotypes with higher expression in elongating peduncles of
Pokkali and non-elongating peduncles of Swarna rice. These
results may be explained by varying levels of lignification of
peduncles after heading in both the genotypes.

Carbohydrate Metabolism and Transport
Since the peduncle comprises an essential component of the
transport system facilitating carbohydrate mobilization during
grain filling post heading, we investigated the expression of
rice genes implicated in sucrose and starch metabolism as well
as transport in our data (Supplementary Table 3C). Several
genes regulating sucrose and starch degradation, as well as sugar
transport, exhibited differential expression in peduncles at the
time of heading (Figure 5). Notable among those were sucrose
synthases (Huber and Akazawa, 1986; Stein and Granot, 2019).
Rice SUS4 (sucrose synthase 4), which has previously been shown
to be associated with grain filling exhibited higher expression
in post heading peduncles, whereas SUS1 (sucrose synthase 1)
having a more ubiquitous role was downregulated after heading
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FIGURE 3 | Results of differential expression analysis and pathway mapping. (A) Bar diagram showing the number of genes differentially expressed (fold change ≥ 2
and P-value ≤ 0.05) at the time of heading with EP representing the number of genes exhibiting higher expression in elongating peduncles before heading and NP
representing number of genes exhibiting higher expression post heading. SW, Swarna; PK, Pokkali. (B) Venn diagrams showing the overlap between differentially
expressed genes in both the genotypes. (C) Pathway enrichment analysis of the differentially expressed genes, with EP representing genes exhibiting higher
expression in elongating peduncles before heading and NP representing genes exhibiting higher expression in non-elongating peduncles post heading, in both the
genotypes. The size of square correlates with number of genes in each category while color signifies P-values as shown by legend on the right.

in peduncles (Figure 5A). Antagonistic patterns of these genes
are likely due to their differential activity in different tissues. SUS1
is implicated in the regulation of vegetative growth, while SUS4 is
involved in assimilate portioning to the caryopsis during grain
filling (Sparks(ed.), 2012).

Invertases modulate the hexose to sucrose ratio by hydrolyzing
sucrose into glucose and fructose. Most of the invertases
exhibited a higher expression in post heading peduncles
(Figure 5A) Both cytosolic invertase 1 (CIN1) and vacuolar
invertase (INV3) were upregulated after heading (Morey et al.,
2018). A similar trend was observed for other starch metabolism
and sugar transport-related genes with significant upregulation
after heading (Figure 5B).

Before loading into the sieve element–companion cell
complex through sucrose transporters, sucrose is effluxed from
phloem parenchyma cells by SWEET (Sugars Will Eventually Be
Exported Transporters) genes (Ayre, 2011; Chen et al., 2012). We
observed significant upregulation of several SWEET genes in rice
peduncles after heading (Figure 5C). Besides, the genes encoding

ABC, potassium, calcium, peptides, amino acids, nucleotides,
phosphate, sulfate, ammonium, nitrate, and P- and v-ATPase
transporters also exhibited a higher expression post heading.
Several genes associated with carbohydrate partitioning such as
SUT1 and GWD1 also exhibited higher expression in peduncles
after heading (Figure 5C). The sucrose transporter-encoding
gene OsSUT1 has previously been shown to play a role in long-
distance transport of assimilates from the flag leaf blade to the
base of filling grains through the flag leaf sheath and uppermost
internode, referred to as peduncle in this study (Scofield et al.,
2002, 2007). GWD1, encoding alpha-glucan water dikinase, has
been implicated in carbohydrate partitioning after heading in
rice (Wada et al., 2017). Loss of function of GWD1 led to
hyperaccumulation of starch in leaves (Hirose et al., 2013).

Hormone biosynthesis, signaling, and response
Among differentially expressed genes, 68 genes have been
previously implicated in plant hormone biosynthesis/signaling
(Figure 6; Supplementary Table 3D). Although some of
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FIGURE 4 | Expression profiling of genes associated with cell wall biosynthesis and secondary metabolism. (A) Heatmap showing differential expression of cell wall
biosynthesis-related genes during heading in Swarna (SW) and Pokkali (PK) plants. Teal blue color represents genes exhibiting ≥2-fold expression in elongating
peduncles while cayenne red indicates ≥2-fold expression in non-elongating peduncles post heading. Gene names are given on the right of the heatmap.
(B) MapMan secondary metabolism overview with green boxes presenting genes with higher expression in elongating peduncles and red boxes representing genes
exhibiting higher expression in non-elongating peduncles. (C) Heatmap showing differential expression of lignin biosynthesis-related genes. Teal blue color
represents genes exhibiting ≥2-fold expression in elongating peduncles while cayenne red indicates ≥2-fold expression in non-elongating peduncles post heading.
Gene names are given on the right of the heatmap.

them showed a contrasting pattern, by and large genes
associated with auxins and brassinosteroids (BR) exhibited higher
expression in elongating peduncles before heading, whereas
those regulating abscisic acid (ABA), jasmonic acid (JA), and
cytokinin metabolism were predominantly upregulated post
heading (Figure 6). The genes associated with GA and ethylene
biosynthesis/signaling and response exhibited a mixed pattern
though overall trend suggested higher expression of larger
number of genes post heading (Figure 6).

Similarly, although majority of ABA-biosynthesis/signaling
genes expressed at higher levels in post-heading peduncles, some
exhibited contrasting expression patterns in both genotypes.
Several of the ABA signaling-related genes which exhibited
a higher expression after heading in peduncles of Swarna,
expressed at higher levels before heading in Pokkali plants
(Figure 6). Conversely, some of the genes associated with
ABA deactivation that expressed at higher levels before heading
in Swarna were upregulated in peduncles of Pokkali. These
observations point to ABA activation in Swarna while ABA
deactivation in Pokkali after heading.

Transcription Factor-Encoding Genes
A total of 836 transcription factors (TFs), belonging to more than
twenty families, were differentially expressed in rice peduncles
after heading (Supplementary Table 3E). Albeit members of the
same transcription factor family do not necessarily perform the

same function, we observed a large number of genes belonging to
the same family exhibiting similar expression patterns, thereby
indicating similar/coordinated functions of the gene family
members. Genes belonging to ARF, AUX-IAA, GRF, HMG,
OFP, Trihelix, PHD, and TCP families, mostly implicated in
cell division and elongation, exhibited a higher expression in
elongating peduncles (Figure 7), whereas those belonging to
ARR-B, C2C2-CO like C2C2-Dof, MADS, TRAF, AP2-EREBP,
bZIP, NAC, G2-like, HSF, OPHANS, WRKY, TIFFY, REP-RK, and
PLATZ families expressed at higher levels post heading. Members
of C3H, SNF2, C2H2, bHLH, GRAS, and HB exhibited mixed
patterns (Figure 7).

Differential Expression of
Anther/Pollen-Associated Genes During
Peduncle Elongation
Incomplete peduncle elongation and panicle enclosure are
frequently observed in male sterile lines. To investigate if the
genes associated with peduncle elongation have anything to
do with anther development, we compared the differentially
expressed genes during peduncle elongation with those
associated with anther/pollen development. Previously, Lin
et al. (2017) had generated a rice gene co-expression network
for anther development (RiceAntherNet) from 57 rice anther
tissue microarrays. They mapped differentially expressed genes
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FIGURE 5 | Expression profiling of genes associated with carbohydrate metabolism and transport. The outer illustration is the MapMan transport overview with
green boxes presenting genes with higher expression in elongating peduncles and red boxes representing genes exhibiting higher expression in non-elongating
peduncles. The inner portion presents heatmaps showing differential regulation of genes associated with sucrose metabolism (A), starch metabolism (B), and sugar
transport (C) Swarna (SW) and Pokkali (PK) plants. Teal blue color represents ≥2 folds expression in elongating peduncles and cayenne red indicates ≥2 folds
expression in non-elongating peduncles post heading. Gene names are given on the right of each heatmap.

from nine rice male-sterile mutants onto this network and
shortlisted a set of 286 genes associated with pollen formation.
We appended this list with anther/pollen-associated genes
extracted from Funrice and OGRO databases of rice. Finally,
a list of 493 genes implicated in anther/pollen development
in rice was compiled. Out of these 493 genes, 76 (15%) were
differentially expressed in peduncles at the time of heading
in both the genotypes (Figure 8; Supplementary Table 4).
Out of these, 50 overlapped with genes exhibiting ≥2-fold
expression in EPs, whereas 26 overlapped with genes exhibiting
≥2-fold expression in NPs (Figure 8). Most of the anther
development-related genes that exhibited higher expression
in elongating peduncles before heading (50 in number)
encode glycoside hydrolases, serine carboxypeptidases, kinases,
and other cell wall-related proteins. Some of these genes
have already been characterized for their roles in regulating
plant height, grain filling and/or anther/pollen development.
Conversely, those overlapping with high-expressing genes
in non-elongating peduncles (26 in number) as well as
anther development have been implicated in abiotic stress
and grain filling.

DISCUSSION

Peduncle elongation at the time of heading not only is crucial
for panicle exsertion but also exerts significant impact on
grain yield. To identify molecular players regulating peduncle
elongation and associated agronomically important traits, we
have performed RNA sequencing with peduncles before and
after heading collected from two contrasting genotypes of rice.
Although the total number of expressed genes (FPKM ≥1)
was similar in both the genotypes, those exhibiting differential
accumulation between EP and NP stages in Swarna were
almost double in number compared to differentially expressed
genes in Pokkali. This could possibly be because Swarna has
to make more transcriptional adjustments to cope up with
the abiotic stress post heading compared to the relatively
stress-tolerant Pokkali. Further, most of the genes exclusively
differentially expressed in Swarna are involved in the basic
metabolic functions including protein synthesis, degradation
and posttranslational modifications, signaling, RNA processing,
lipid metabolism, transport, development, and abiotic stress
response. PCA analysis further highlighted noticeable distance
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FIGURE 6 | Expression profiling of genes associated with hormone biosynthesis and signaling. Heatmaps showing differential expression of genes associated with
hormone biosynthesis and signaling in Swarna (SW) and Pokkali (PK). Teal blue color represents ≥2 folds expression in elongating peduncles and cayenne red
indicates ≥2 folds expression in non-elongating peduncles post heading. Gene names are given on the right of the heatmaps and hormone categories are given on
the left.

between non-elongating peduncles compared to elongating
peduncles likely due to differences in post heading stem biomass
composition and stress response of these genotypes (Jahn et al.,
2011). However, when we compared the expression patterns of
previously characterized genes which have been experimentally
shown to regulate peduncle elongation and grain filling in rice,
all of them exhibited a similar expression pattern in both the
genotypes though the amplitude of expression and fold change
varied, indicating that the genetic factors underlying peduncle
elongation are conserved across genotypes. Furthermore, changes
observed at the transcriptional level may not reflect in protein
abundance. Earlier, comparative analysis of transcript and
protein abundance of Pokkali and IR29 revealed a much higher
number of genes differentially expressed in Pokkali at the
protein level with little difference at the transcript level in
response to salt stress (Li et al., 2018). In fact, 75.5% of genes

exhibiting high protein abundance did not show relatively high
transcriptional abundance in Pokkali. The authors suggested that
higher stability and efficient loading of mRNAs in Pokkali could
be the possible explanation for lower number of differentially
expressed transcripts in Pokkali.

Candidate Genes Associated With
Peduncle Elongation and Grain Filling
Elongation of peduncles is accompanied by active cell division
and cell wall biosynthesis. This is obvious from enrichment of
glycosyltransferase (GTs) in elongating peduncles of both the
genotypes. Glycosyltransferases comprise a large gene family with
more than 600 genes in rice which have been classified into
subfamilies based on the presence of distinct sequence domains
(Cao et al., 2008). Among these, CESAs belonging to the GT2
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FIGURE 7 | Expression profiling of transcription factor-encoding genes.
Heatmaps showing differential expression of transcription factor-encoding
genes in Swarna (SW) and Pokkali (PK). Members of the same gene family are
clubbed together in one heatmap. Teal blue color represents ≥2 fold
expression in elongating peduncles while cayenne red indicates ≥2 fold
expression in non-elongating peduncles post heading. Names of the
transcription factor families are given on the right of each heatmap.

subfamily are mainly involved in cellulose biosynthesis, while
cellulose synthase-like (CSL) genes play key roles in hemicellulose
biosynthesis (Richmond and Somerville, 2001). CSLAs form the
β-1,4-mannan backbone of galactomannan and glucomannan,
CSLDs determine cellulose and xylose content, whereas, CSLFs
are essential for grass-specific mixed linkage glucan biosynthesis
(Li et al., 2009; Luan et al., 2011; Vega-Sánchez et al., 2012; Kaur
et al., 2017). Many of these have been shown to exhibit tissue
and developmental stage-specific expression. In-depth analysis of
these genes in our data provided 22 candidates with significant
accumulation in EPs relative to NPs implying their potential role
in regulating cell wall biosynthesis and biomass composition in
elongating rice peduncles.

Also, a shift from primary to secondary cell wall biosynthesis
is anticipated at the time of heading for providing mechanical
strength required to support increase in panicle weight due
to grain filling. OsMYB103 has earlier been reported to play

FIGURE 8 | Overlap between differentially expressed genes during peduncle
elongation and anther development. The Venn diagram shows the overlap
between genes exhibiting ≥2 fold expression in elongating peduncles (EP),
non-elongating peduncles (NP), and anther/pollen development. The key
pathways and characterized genes highlighted in the gene set common
between EP/NP and anther/pollen associated genes are given.

a role in secondary cell wall in sclerenchyma by activating
OsCESA4, OsCESA7, OsCESA9, and OsBC1 (Hirano et al., 2013;
Yang et al., 2014; Ye et al., 2015). All of these genes exhibit
higher accumulation in EPs indicating that molecular players
responsible for secondary cell wall biosynthesis are initiated
before heading. On the other hand, higher accumulation of
genes associated with biosynthesis of secondary metabolites in
NPs indicates their role in post-heading resistance to pathogens
though some of them may also act as precursors for secondary
cell wall components. Genes involved in lignin biosynthesis
exhibited contrasting pattern of expression in Swarna and Pokkali
likely due to varied lignin composition in these genotypes
(Jahn et al., 2011).

Among the differentially expressed transcription factor
families, members of MYB, NAC, WRKY, bZIP, PLATZ, and
HSF transcription factors have been previously associated
with secondary growth, abiotic stress response, and carbon
mobilization (Oh et al., 2003; Agarwal et al., 2006; Zhang et al.,
2010; Golldack et al., 2014). Further characterization of these
genes would not only help to decipher the molecular mechanism
underlying peduncle elongation and biomass composition but
will also help in optimizing carbon remobilization in rice.

Interplay of Phytohormones During
Peduncle Elongation in Rice
Phytohormones play crucial roles in plant growth and
development. Previous studies have shown the involvement
of auxins, gibberellins, and brassinosteroids in promoting cell
division and growth during internode elongation in rice (Chen,
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2001; Yin et al., 2002; Tong et al., 2014; Oh et al., 2020). For
instance, BR receptor kinase OsBRI1 of rice positively regulates
internode elongation by inducing the formation of the intercalary
meristems (Yamamuro et al., 2000). Loss of function of this gene
prevents internode elongation and bending of the lamina joint.
We noticed a high expression of OsBRI1 before heading in both
the genotypes with an apparent decline after heading. Except for
OsBRL3, which is known to play a role in BR perception in roots
(Nakamura et al., 2006), all other brassinosteroid-related genes
also exhibited a higher expression in elongating peduncles before
heading. Similarly, auxins also act as a signal for cell elongation
(Chen, 2001). Developing panicles in grasses export auxin to
stem for promoting elongation (Wolbang et al., 2004). Except
for a few, most of the auxin-related genes were expressed at
higher levels in rice peduncles before heading. Among the genes
exhibiting higher expression post heading, OsARF19 is a negative
regulator of cell division as its overexpression in rice leads to
dwarf phenotype. Furthermore, OsARF19 directly regulates the
expression of BR receptor OsBRI1 by binding to its regulatory
region (Zhang et al., 2015). Upregulation of OsARF19 and
downregulation of OsBRI1 after heading therefore suggest that
OsARF19 likely suppresses peduncle elongation after heading by
downregulating OsBRI1.

Gibberellic acid (GA) has also been shown to act as a
key determining factor in peduncle elongation and panicle
exsertion (Yin et al., 2007; Chen et al., 2013). We observed a
mixed pattern of the genes associated with GA and ethylene
biosynthesis/signaling likely due to multilevel cross-talk or
negative feedback regulation of some of them. GA biosynthetic
gene, gibberellin 3-beta-hydroxylase (GA3Ox), which catalyzes
the final step of GA biosynthesis in plants by converting
GA20 to GA1, exhibited a higher expression before heading
with notable downregulation after heading (Iwamoto et al.,
2011; Figure 6). OsGA3Ox2 corresponds to the D18 mutant
that exhibits severe dwarfism due to decrease in level of
active GA1 (Itoh et al., 2002). Antisense plants with reduced
OsGA3Ox2 expression exhibited a higher expression of another
gene OsGA20Ox1 that regulates the synthesis of GA21 from
GA53 (Itoh et al., 2002). Interestingly, both the genes in our
study exhibited antagonistic patterns with GA3Ox2 exhibiting
downregulation and GA20Ox1 showing upregulation after
heading. Conversely, GA receptor Gibberellin Insensitive Dwarf
1 (GID1) which makes a complex with GA and induces
degradation of GA repressing DELLA proteins is upregulated
(Ueguchi-Tanaka et al., 2007; Sun, 2008) while DELLA protein-
encoding genes, SLR1 (SLENDER RICE 1) and SLR1 Like-
1 (SLRL1), are downregulated after heading, indicating that
suppression of GA activity after heading is not mediated
through DELLA proteins. It has been shown that a high
concentration of BR triggers BR-associated inactivation of GA.
The BR signaling component involved in this inactivation
process, BRI1-GSK2-DLT, is upregulated before heading in our
data (Tong et al., 2014). The effect of this can be observed with
increased expression of GA deactivation genes after heading.
For instance, CYP714B1 encoding gibberellin 13-oxidase which
reduces gibberellin activity in rice as well as GA2ox4 and
GA2ox6, implicated in endogenous GA deactivation (Chu et al.,

2019), expressed at higher levels in peduncles after heading
(Lo et al., 2008; Magome et al., 2013). Overall, regulation of
OsBRI1 by OsARF19 and its (OsBRI1) role in deactivation of GA
indicates interaction of auxin, brassinosteroids, and gibberellins
in maintaining the hormonal homeostasis during peduncle
elongation (Zhang et al., 2015).

Cytokinins, on the other hand, have been associated with post-
anthesis grain filling in rice (Yang et al., 2002; Zhang et al.,
2009). Since mostly cytokinins are transported from roots to
shoots and other aerial organs via xylem sap, elevated levels
of cytokinins in rice peduncles after heading suggest their
role in grain filling (Yang et al., 2002; Zhang et al., 2009).
Panicle enclosure has been shown to adversely affect spikelet
fertility and grain yield (He and Serraj, 2012). A genome-
wide association study using 205 rice cultivars clearly drew a
positive correlation between panicle exsertion and 1,000-Grain
Weight (Zhan et al., 2019). The grain filling is facilitated by
transport of carbohydrate resources stored in elongating stem
in rice in the form of starch and sucrose (Scofield et al.,
2007, 2009; Slewinski, 2012). The carbon remobilization from
the stem reserves to grains possibly occurs by an apoplasmic
mechanism through sugar transporters (Slewinski, 2012). Many
of the sugar transport genes were upregulated in the peduncles
suggesting their role in grain filling. For example, OsSUT1, a
member of the sucrose transporter family, is required for actively
pumping sucrose into phloem against the concentration gradient
(Scofield et al., 2007). In the present study, its upregulation before
heading conforms with its role in grain filling. Monosaccharide
transporter genes, OsMST4 and 6, implicated in supplying
monosaccharides for seed development during grain filling, are
also upregulated in NPs after heading in our study (Wang
et al., 2007, 2008). OsSUS4, involved in portioning of the carbon
assimilates to the caryopsis during grain filling (Sparks(ed.),
2012), is also upregulated in peduncles after heading. This
suggests that peduncle plays a critical role in transporting
carbohydrate reserves stored during stem elongation to the
developing grains, and hence, rice genes exhibiting increased
expression in NPs after heading may be leveraged to optimize
carbohydrate mobilization in rice.

Jasmonic acid (JA) is another important phytohormone
associated with biotic and abiotic stress response and is known
to inhibit shoot growth in rice explaining the upregulation of JA
biosynthetic genes after heading (Liu et al., 2015). The level of JAs
has also been associated with availability of carbon and soluble
sugars, indicating the role of JA in carbon remobilization (Huang
et al., 2017). Upregulation of ABA-related genes after heading has
been associated with abiotic stress response during reproductive
development (Baron et al., 2012; Singh et al., 2012). Some
genes implicated in ABA biosynthesis and signaling exhibited
contrasting patterns of expression in both the genotypes. Further
investigations would be required to understand if this can be
explained by differential stress tolerance in Swarna and Pokkali
post heading. Overall, our data shows a clear trend with higher
expression of growth hormones, viz., AUX, GA, and BR, in
elongating peduncles before heading, whereas JA, ABA, and
cytokinins, associated with stress response, sugar signaling, and
remobilization, exhibit higher expression after heading.
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Common Genetic Elements Underlying
Peduncle Elongation and Male
Reproductive Organ Development
Crop improvement in rice to optimize agronomic yields and
stress tolerance largely relies on breeding programs. However,
panicle enclosure due to impeded peduncle elongation in male
sterile lines is a major challenge in achieving these goals.
A number of studies have associated enclosed spikelets with
inhibition of anther dehiscence, decreased pollen viability,
slower pollen tube growth, and abnormal ovary development
(Ekanayake et al., 1989, 1990; Jagadish et al., 2011, 2015).
A comparative study of cytoplasmic male sterile line with its
maintainer lines during panicle development revealed increased
levels of ABA and reduced levels of GA and IAA in the
cytoplasmic male sterile line (Chang’en et al., 1998). Deficiency
of IAA and GAs and excess of ABA hinder anther development
and induce pollen abortion (Shimizu and Kuno, 1967; Nakajima
et al., 1991; Sunohara et al., 2009). Later, Yin et al. (2007)
showed that deficiency of indole-3-acetic acid in panicle of male
sterile lines downregulates GA oxidase (OsGA3ox2) resulting
in decreased active GA levels, thereby hampering peduncle
elongation manifested in the form of enclosed panicles and poor
seed set (Yin et al., 2007). In the present study, several genes
related to anther and pollen development were differentially
expressed in both elongating and non-elongating peduncles.
Although it is a well-known fact that male sterile lines exhibit
varying degrees of panicle enclosure, the genetic basis of
the relationship between anther development and peduncle
elongation has not been established till date. To identify the
common genetic elements regulating peduncle elongation and
anther/pollen development, we compiled a list of 493 genes
implicated in anther/pollen development and checked their
expression in peduncles.

Most of the anther development-related genes, also exhibiting
higher expression in elongating peduncles before heading (50 in
number), encode glycoside hydrolases, serine carboxypeptidases,
and kinases. Some of these genes have already been characterized
for their roles in anther development and/or internode
elongation. Among these, DCW11 (Fujii and Toriyama, 2008),
OsSTRL2 [strictosidine synthase; (Zou et al., 2017)], EDT1
[Earlier Degraded Tapetum 1; (Bai et al., 2019)], OsABCG3 [ATP-
binding cassette transporter; (Chang et al., 2018)], OsGH3.8
(Yadav et al., 2011), OsSPO11D (Shingu et al., 2012), OsUAM3
(Sumiyoshi et al., 2015), and OsUCL23 (Zhang et al., 2020) have
been shown to regulate diverse aspects of anther and pollen
development. OsSTRL2 expression was detected only in tapetal
cells and microspores, and knockout mutant resulted in male
sterility mainly due to defects in anther wall and pollen exine
formation (Zou et al., 2017). Several others in this category have
been shown to regulate both vegetative and reproductive organ
development. For example, DNL1 (Dwarf and Narrow Leafed 1)
encoding cellulose synthase like D4 is the major QTL regulating
plant height and leaf width in rice. The mutant exhibits defects
in anther dehiscence and pollen formation as well (Yoshikawa
et al., 2013). Similarly, antisense transgenic plants of OsTUB8
encoding β-tubulin exhibit shorter plant height as well as reduced

seed set (Yang et al., 2007). Loss of function of OsER2 (ERECTA)
encoding phytosulfokine receptor led to reduced plant height
and panicle size by affecting cell proliferation and growth in
rice (Zhang et al., 2018). Furthermore, SLG (Slender Grain)
from this group encodes BAHD acyltransferase and has been
shown to regulate leaf angle, grain length, and plant height by
modulating brassinosteroid levels (Liu et al., 2016). Interestingly,
OsSWEET11, involved in sucrose transport and maintaining the
sucrose concentration in the embryo-sac, also exhibited higher
expression in EPs before heading (Ma et al., 2017).

Similarly, some of the genes exhibiting high-expressing genes
in non-elongating peduncles as well as anther development
have been experimentally shown to play role in grain
filling and abiotic stress response. Among these, OsMGD2
(monogalactosyldiacylglycerol synthase) affects plant height,
anther development, and overall rice grain yield (Basnet et al.,
2019). SSG6 (Substandard Starch Grain 6) has previously been
shown to regulate starch grain morphology and size in pollen
and seeds (Matsushima et al., 2016). The ssg6 mutant affected
duration to heading, culm length, number of panicles, and
seed weight. OsSUT1 an important sucrose transporter is also
upregulated after heading. Disruption of OsSUT1 does not affect
pollen maturation but their function gets impaired (Hirose
et al., 2010), whereas OsMST6 (Monfared et al., 2020) and
OsNHX1 (Almeida et al., 2017) regulate abiotic stress response.
Interestingly, OsCIPK23 (calcineurin B-like interacting protein
kinase) has been implicated in mediating common signaling
pathways between pollination and drought stress response
(Yang et al., 2008).

The pivotal roles played by these genes in regulating anther
development, plant height, grain filling, and abiotic stress
response at the time of heading suggest that these as crucial
candidates for alleviating the problem of panicle enclosure in
male sterile lines and related agronomically important traits.
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