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Abstract
Purpose: To develop a deep learning model design that integrates radiomics
analysis for enhanced performance of COVID-19 and non-COVID-19 pneumo-
nia detection using chest x-ray images.
Methods: As a novel radiomics approach,a 2D sliding kernel was implemented
to map the impulse response of radiomic features throughout the entire chest
x-ray image; thus, each feature is rendered as a 2D map in the same dimen-
sion as the x-ray image. Based on each of the three investigated deep neural
network architectures, including VGG-16, VGG-19, and DenseNet-121, a pilot
model was trained using x-ray images only. Subsequently, two radiomic feature
maps (RFMs) were selected based on cross-correlation analysis in reference
to the pilot model saliency map results. The radiomics-boosted model was then
trained based on the same deep neural network architecture using x-ray images
plus the selected RFMs as input.
The proposed radiomics-boosted design was developed using 812 chest x-ray
images with 262/288/262 COVID-19/non-COVID-19 pneumonia/healthy cases,
and 649/163 cases were assigned as training-validation/independent test sets.
For each model, 50 runs were trained with random assignments of train-
ing/validation cases following the 7:1 ratio in the training-validation set. Sensi-
tivity, specificity, accuracy, and ROC curves together with area-under-the-curve
(AUC) from all three deep neural network architectures were evaluated.
Results: After radiomics-boosted implementation, all three investigated deep
neural network architectures demonstrated improved sensitivity, specificity,
accuracy, and ROC AUC results in COVID-19 and healthy individual classifica-
tions.VGG-16 showed the largest improvement in COVID-19 classification ROC
(AUC from 0.963 to 0.993),and DenseNet-121 showed the largest improvement
in healthy individual classification ROC (AUC from 0.962 to 0.989).The reduced
variations suggested improved robustness of the model to data partition.For the
challenging non-COVID-19 pneumonia classification task, radiomics-boosted
implementation of VGG-16 (AUC from 0.918 to 0.969) and VGG-19 (AUC from
0.964 to 0.970) improved ROC results, while DenseNet-121 showed a slight
yet insignificant ROC performance reduction (AUC from 0.963 to 0.949). The
achieved highest accuracy of COVID-19/non-COVID-19 pneumonia/healthy
individual classifications were 0.973 (VGG-19)/0.936 (VGG-19)/ 0.933 (VGG-
16), respectively.
Conclusions: The inclusion of radiomic analysis in deep learning model
design improved the performance and robustness of COVID-19/non-COVID-19
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pneumonia/healthy individual classification, which holds great potential for
clinical applications in the COVID-19 pandemic.
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1 INTRODUCTION

Since its first discovery in 2019, the coronavirus disease
(COVID-19) has affected more than 100 million peo-
ple globally, and more than 5 million deaths related to
COVID-19 were reported by the end of 2021.1 Accu-
rate and efficient diagnosis of COVID-19 is crucial to
interrupt disease transmission and to start treatments
of affected individuals. Currently, reverse transcription-
polymerase chain reaction (RT-PCR) has been recog-
nized as the gold standard for COVID-19 diagnosis for
its high specificity.2 While RT-PCR test may have limited
sensitivity and long time of processing (a few hours to
2 days),3 radiographic procedures, including chest x-ray
and CT exams, have been adopted clinically as alter-
native diagnosis tools.4 While COVID-19 related abnor-
malities could be more easily found in volumetric CT
images,5 planar chest x-ray has its unique advantages in
COVID-19 diagnosis.Specifically, the short imaging time
on a more accessible X-ray unit enables rapid COVID-
19 exams, which can be critical in areas with high-
volume patients and/or limited-resource medical facili-
ties. To date, pilot studies have revealed that certain x-
ray image features, including peripheral consolidations
and ground-glass opacities, have been widely observed
in COVID-19 infected patients.4–9 However,the prevalent
application of chest x-ray imaging in COVID-19 diag-
nosis is challenged by relatively limited sensitivity and
specificity.5 Additionally, radiographic exams including
chest x-rays may not be optimal for radiologists’ reading
in the differentiation of non-COVID-19 pneumonia from
COVID-19, which is important for early patient stratifica-
tion that can lower COVID-19 mortality rate with more
targeted treatments.10,11

Computed aided diagnosis systems (CAD) may have
the potential to solve the aforementioned problem with
high throughput quantitative analysis. In the last sev-
eral months under the COVID-19 pandemic, studies
revealed that CAD systems outperformed radiologists
in radiographic-based COVID-19 diagnosis; with CAD
information as reference information, radiologist read-
ing results could be significantly improved.11–13 One
approach for such a CAD system is radiomics-based
image analysis, which first extracts radiomics features
as computation image biomarkers and then uses the
extracted features in hand-made or machine learning
classifier tasks. Although handcrafted radiomics fea-
tures are commonly used in medical image analy-
sis with possible qualitative image interpretability, the

reported accuracy (75%–80%) of COVID-19 diagnosis
is still limited in the representative radiomics-based CAD
works.14–16 Driven by recent theoretical developments
and access to massive computation power, deep learn-
ing has demonstrated its great potential in CAD develop-
ments. It has been reported that deep learning solutions
based on artificial neural network deployment could
achieve high (>90%) specificities in COVID-19 diag-
nosis against healthy individuals17,18; moreover, decent
specificities (>85%) of differentiating COVID-19 from
non-COVID-19 pneumonia have been achieved.11,19–21

Nevertheless, like all other deep learning applications
in medical image analysis, the hyperparameters in the
neural network are generated without explicit human
knowledge intervention. Thus, the "black box" nature of
deep learning-based CAD inhibits their interpretability,
and potential clinical applications of these CADs could
be impaired by limited interpretability by clinicians.

In this work, we aim to develop a radiomics-boosted
deep learning CAD design for chest x-ray based COVID-
19 diagnosis.Because hand-crafted radiomics and deep
learning are complementary approaches to image rep-
resentation, their integration may facilitate better model
performance and interpretation.22 Innovative implemen-
tation of radiomics analysis was included to analyze
deep features from 3 custom-trained neural networks
for COVID-19, non-COVID-19 pneumonia, and healthy
individuals classification, and such radiomics analysis
results were then incorporated as additional image-
based input sources for 3 improved neural network
designs.The proposed methodology may enhance deep
learning interpretability for COVID-19 diagnosis from a
current radiomics knowledge perspective.

2 MATERIALS AND METHODS

2.1 Image dataset

In this IRB-waived retrospective study, a total of 812
chest x-ray images were collected from three pub-
lic databases,23–25 including 262/288/262 images of
COVID-19/non-COVID-19 pneumonia/healthy individ-
uals, respectively. The image numbers from the three
categories were approximately the same for eliminat-
ing categorical bias during deep learning training. All
collected images were verified by experienced med-
ical physicists with proper lung x-ray display settings
and with absences of the overlaid image reading
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F IGURE 1 Diagrams of the three studied deep neural networks. (a) VGG-16, (b) VGG-19, and (c) DenseNet-121

annotations. To unify image data size, all images were
resized to a 256 × 256 matrix grid size using b-spine
interpolation and were normalized to 256 gray levels.
649 and 163 images (8:2) were assigned for the model
training set and the independent test set, respectively.

2.2 Neural network architecture

To investigate radiomics-boosted deep learning as a
general methodology, we studied three deep neural
networks, VGG-16 (Figure 1a), VGG-19 (Figure 1b),
and DenseNest-121 (Figure 1c), for COVID-19/non-
COVID-19 pneumonia/healthy individual classification.
Based on pre-trained deep learning schemes,26,27 the
investigated three deep neural networks share the
same two-part design: the 1st part is the convolutional

base: In VGG-16 and VGG-19, the convolutional bases
consist of five convolutional blocks. Each convolutional
block is stacked by two to four convolutional layers and
a max-pooling layer. In each convolutional layer, the filter
size is 3 × 3 with padding and stride of 1. Max-pooling
is performed over a 2 × 2-pixel window with a stride
of 2. In DenseNet-121, the convolutional base consists
of one convolutional block and four dense blocks. The
convolutional block consists of 7 × 7 convolutional
layers with a stride of 2 and a 3 × 3 Max-pooling with
a stride of 2. The dense blocks consist of 6, 12, 24, and
16 convolutional units, respectively. Each unit is stacked
by a 1 × 1 and a 3 × 3 convolutional layer. The first three
dense blocks are followed by three transition layers,
which consist of a 1 × 1 convolutional layer with stride
1 and a 2 × 2 average pool with stride 2; the 2nd part
is the Dense part, which is the stack of dense layers.
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F IGURE 2 A workflow summary of radiomic feature map (RFM) calculation in this work

Depending on specific classification tasks, the number
and size of dense layers can be customized. In all three
deep neural network architectures, the self -defined
Dense classifier connects the convolutional base and
consists of five Dense layers with the size of 1024,
1024, 512, 256, and 3, respectively. The input of the
neural network is a three-channel image with a 256 ×

256 × 3 shape size, while the output is one of the three
categorical binary label vectors, i.e., [1,0,0], [0,1,0], and
[0,0,1], which correspond to COVID-19, non-COVID-19
pneumonia, and healthy results, respectively. To deal
with relatively small data size in this work, the convolu-
tional bases loaded the weights that were pre-trained on
ImageNet as a transfer learning scheme.28 In addition,
in order to make the models more relevant for the prob-
lem at hand, fine-tune technique was used with the last
few convolutional layers (marked * in Figure 1: the last
convolutional blocks in VGG-16 and VGG-19, as well as
the last dense block in DenseNet121) being set as free
parameters for task-specific training. To avoid the occur-
rence of overfitting, a dropout layer was added between
the first two dense layers with a dropout possibility of
0.5, and soft-max activation was used in the output
layer.

2.3 Radiomic feature map extraction

Classic radiomics analysis calculates radiomic features
as scalar values from a pre-defined region-of -interest
(ROI) in image space. While this approach has been
widely adopted to capture the overall textures in ROI,
it cannot capture the anatomy-driven subtle texture vari-
ations within the ROI. As such, we implement a RFM
calculation workflow,29 which is summarized in Figure 2.
For RFM generation, a 2D kernel (13 × 13 matrix size)
was adopted to form a ROI, and 37 radiomic features
were extracted as a 1 × 37 vector within this ROI follow-
ing classic GLCOM30 (21 features) and GLRLM31 (16
features) feature extraction methods using 32 grey lev-
els. For each feature, the calculated feature value was
assigned as the pixel value centered at the ROI.By mov-
ing this 2D kernel across the x-ray image as a sliding
window operation, 37 feature maps were formed in the

same dimension as original x-ray images. All radiomic
analysis was done using custom code that was bench-
marked with digital phantoms32 and complies with the
imaging biomarker standardization initiative.33

2.4 Model training and evaluation

For each of the three investigated deep neural network
architecture, two model versions were trained: in the 1st

pilot model, the x-ray image is the sole model input. To
accommodate the input shape of pre-trained neural net-
works, the grayscale x-ray images were broadcast to
three channels as a network input variable. This model
serves as the benchmarking deep learning model in this
work; in the 2nd version as a radiomics-boosted model,
the grayscale x-ray image and two derived RFMs were
stacked as the 3-channel neural network input variable.
These two RFMs were selected based on the analysis of
the 1st model’s saliency map (SM), which indicates how
important each pixel is with respect to the final classifi-
cation results of the neural network in the benchmarking
model. It is calculated as the absolute gradient of class
activation which is defined as the dot product of predic-
tion output and target divided by the input image34: a
pixel with a higher intensity value in SM indicates higher
importance of that pixel in neural network’s attention
for diagnosis. The two RFMs with the highest average
cross-correlation (CC) values against the SM results in
training data were selected. This action amplifies cer-
tain pixels (and regions) with potentially high importance
of disease diagnosis in the image space, which could
improve the overall diagnostic accuracy of the proposed
radiomics-boosted model in comparison with the 1st pilot
model.

To investigate model robustness, 50 runs of each
model version were trained using the training data set
(649 images). In each run, the training and validation
samples were randomly selected following a 7:1 ratio.
During deep learning training within the TensorFlow
environment using a Nvidia™ (Santa Clara, CA) Tesla
V100 graphic card, the loss function was categorical
cross-entropy, and Adam optimizer was selected. For
model evaluation, sensitivity, specificity, accuracy, and
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F IGURE 3 Image comparisons from three example cases for the VGG-16 pilot model. The GLRLM SRE RFMs and saliency map (overlaid
with X-ray image) are illustrated in 0.3 power scale

ROC area under the curve (AUC) results from both
model versions were analyzed. Statistical significance
of comparison was determined by Wilcoxon signed rank
tests at level 0.05.

3 RESULTS

Figure 3 shows an example of image comparison in
the pilot model of VGG-16, that is, the one using x-
ray only as input. As illustrated, the identified RFMs,
GLCOM entropy (CC = 0.33) RFM, and GLRLM short
run emphasis (SRE) (CC= 0.31) render more tissue tex-
tural variations in both lung and other soft tissue regions
than original x-ray images. Similarly, GLCOM entropy
(CC = 0.32) and GLCOM sum entropy (CC = 0.31)
RFMs were selected from VGG-19 pilot model,while the
GLCOM sum average (CC = 0.27) and GLRLM short
run high gray level emphasis (CC = 0.28) RFMs were
selected from DenseNet-121 pilot model.

Table 1 summarizes the quantitative comparisons of
sensitivity, specificity, accuracy, and ROC AUC between
pilot models and radiomics-boosted models. For the
VGG-16 architecture, the radiomics-boosted deep learn-
ing model achieved statistical improvements in all
parameters with p < 0.05. The largest improvements
were observed in non-COVID-19 pneumonia diagno-
sis. Additionally, the reduced standard deviations of the
reported statistics indicated the enhanced robustness
of the radiomics-boosted deep learning design. These
quantitative results highlight the superiority of the pro-
posed radiomics-boosted deep learning model in the
context of VGG-16 architecture. The standard deviation

of 50 runs is less than 3%, reaching a high level of
robustness. For VGG-19 architecture, the mean values
of all parameters were higher in the radiomics-boosted
model than the pilot model; however, the observed
numerical improvements were small, and only a few
improvements were found with statistical significance
in COVID-19 and healthy class results. The standard
deviations were also reduced as indicators of improved
model robustness.Results from DenseNet-121 architec-
ture were similar to VGG-16 and VGG-19 results except
for non-COVID-19 pneumonia classification, in which
mixed impacts in the radiomics-boosted model were
presented; nevertheless, the radiomics-boosted model
did improve COVID-19 and healthy individual classifi-
cation performance and increased model robustness in
the healthy individual classification. As a summary, the
radiomics-boosted design achieved best performance in
COVID-19 diagnosis in both VGG-16 and VGG-19 archi-
tecture applications, while it achieved the best perfor-
mance in healthy individual classification in DenseNet-
121 architecture application.

Figure 4 summarizes the ROC analysis results of
the three studied architectures. The blue and red solid
lines represent the average ROC results of 50 runs
of two deep model versions (x-ray only vs. x-ray +

RFM), and the colored bands represent the model
performance variation as ±1 standard deviation. For
VGG-16 architecture (Figure 4a), radiomics-boosted
design improved ROC results of all three classifica-
tion tasks, and the largest performance improvement
was observed in non-COVID-19 pneumonia diagno-
sis. Additionally, the radiomics-boosted deep learning
model has narrower ROC bandwidth, which suggests
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TABLE 1 Sensitivity, specificity, accuracy, and ROC AUC results summaries of top: VGG-16 architecture, middle: VGG-19 architecture,
bottom: DenseNet-121 architecture. The mean values and standard deviation of 50 trained runs are reported

Healthy Non-COVID-19 pneumonia COVID-19
VGG-16 X-ray X-ray + RFM X-ray X-ray + RFM X-ray X-ray + RFM

Sensitivity 0.854 ± 0.065 0.922 ± 0.059* 0.780 ± 0.092 0.857 ± 0.0361* 0.903 ± 0.071 0.949 ± 0.036*

Specificity 0.918 ± 0.044 0.938 ± 0.022* 0.941 ± 0.041 0.963 ± 0.023* 0.940 ± 0.037 0.973 ± 0.020*

Accuracy 0.895 ± 0.029 0.933 ± 0.023* 0.892 ± 0.029 0.931 ± 0.016* 0.927 ± 0.028 0.965 ± 0.016*

AUC 0.948 ± 0.027 0.979 ± 0.012* 0.918 ± 0.043 0.969 ± 0.017* 0.963 ± 0.023 0.993 ± 0.006*

Healthy Non-COVID-19 pneumonia COVID-19
VGG-19 X-ray X-ray + RFM X-ray X-ray + RFM X-ray X-ray + RFM

0.902 ± 0.097 0.921 ±0.053 0.824 ± 0.059 0.854 ± 0.041 0.933 ± 0.047 0.969 ± 0.039*

Specificity 0.920 ± 0.030 0.940 ± 0.013* 0.969 ± 0.017 0.972 ± 0.020 0.969 ± 0.028 0.975 ± 0.023

Accuracy 0.914 ± 0.032 0.933 ± 0.019 0.925 ± 0.025 0.936 ± 0.013 0.956 ± 0.023 0.973 ± 0.017*

AUC 0.970 ± 0.015 0.978 ± 0.007 0.964 ± 0.028 0.970 ± 0.013 0.987 ± 0.013 0.994 ± 0.006*

Healthy Non-COVID-19 pneumonia COVID-19
DenseNet-121 X-ray X-ray + RFM X-ray X-ray + RFM X-ray X-ray + RFM

Sensitivity 0.810 ± 0.210 0.948 ± 0.048* 0.902 ± 0.070 0.872 ± 0.042 0.747 ± 0.150 0.800 ± 0.061

Specificity 0.920 ± 0.049 0.924 ± 0.045* 0.850 ± 0.109 0.922 ± 0.036* 0.971 ± 0.037 0.994 ± 0.014*

Accuracy 0.881 ± 0.056 0.920 ± 0.020* 0.866 ± 0.060 0.907 ± 0.017* 0.896 ± 0.038 0.928 ± 0.024*

AUC 0.962 ± 0.022 0.989 ± 0.008* 0.963 ± 0.017 0.949 ± 0.022 0.964 ± 0.022 0.972 ± 0.027

the enhanced robustness of its design under different
data sample uses. The same improvements were also
observed in VGG-19 results (Figure 4b),but the improve-
ments’ magnitudes were smaller than ones in VGG-16
results, which was mainly contributed by the higher per-
formance of VGG-19 prior to radiomics-boosted imple-
mentation. In Figure 4c of DenseNet-121 results, while
the ROC improvement by radiomics-boosted design
was prominent in healthy individual classification, the
improvement in COVID-19 diagnosis was limited. As
reported in Table 1, the ROC result in non-COVID-19-
pneumonia showed a slightly decreased performance
after radiomics-boosted design, though such decrease
has found no statistical significance.

As an example of saliency map visualization, the SM
results of the VGG-16 architecture are illustrated in the
last column of Figure 3. The pixel values in SM can
be interpreted as the attention of the deep learning
model. As seen, the attention patterns, that is, colored
hot regions distribution in SMs,demonstrated prominent
spatial heterogeneity across the image field-of -view. In
addition, the current SM illustration suggests potential
class-specific spatial patterns of deep network attention:
more attention might be drawn to lateral lung regions for
COVID-19 detection, while mediastinum regions might
be attention focus for non-COVID-19 pneumonia detec-
tion. In order to quantitatively analyze the attention pat-
terns across different patient cohorts, we calculated the
CC matrix for SMs of all three radiomics-boosted archi-
tectures in the test set in Figure 5, which includes all the
CCs between paired SM results from the test set. For
VGG-16 and VGG-19 results, CCs within each cohort

were relatively higher than those calculated across dif-
ferent cohorts. This result suggests that the developed
deep learning model captured cohort-specific features
for the classification task. Additionally, the mean CC
result of COVID-19 versus non-COVID-19 pneumo-
nia (VGG-16:0.12; VGG-19: 0.10) cohort was slightly
higher than the result of COVID-19 versus healthy
cohorts (VGG-16:0.07; VGG-19: 0.08) and non-COVID-
19 pneumonia versus healthy cohorts (VGG-16:0.09;
VGG-19: 0.09). This observed COVID-19/non-COVID-
19 pneumonia similarity supports the clinical reports
of challenges in COVID-19/non-COVID-19 pneumonia
differentiation.10,11 For the DenseNet-121, however, all
reported CCs were very small and were an order smaller
than those in VGG-16 and VGG-19 results. These
results suggest that SM from DenseNet-121 architec-
ture did not capture meaningful class-specific spatial
patterns.

4 DISCUSSION

To our best knowledge, this work is the first of its
kind for combining radiomic analysis and deep neu-
ral network implementation. The results of this work
demonstrated that the inclusion of RFMs, as a new
form of handcrafted imaging biomarker rendering,
can improve deep learning-based COVID-19 detec-
tion. With the aid of RFMs, we achieve higher model
performances for COVID-19/non-COVID-19 pneumo-
nia/healthy classification with a smaller (812 patients in
total) than reported work. For example, Zhang et al.11
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F IGURE 4 The ROC results of pilot model versus radiomics-boosted model using (a) VGG-16, (b) VGG-19, and (c) DenseNet-121 deep
neural network architecture. 0.3 power scale was used in the y axis to highlight the difference

F IGURE 5 The SM cross-correlation matrix of radiomics-boosted model on test set for left: VGG-16; middle: VGG-19; right: DenseNet121
architectures. The x and y axes represent the sample ID in the test set, sorting with the order of healthy/non-COVID-19 pneumonia/COVID-19
cohorts
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achieved a sensitivity of 88% and a specificity of 79%
in COVID-19/non-COVID-19 pneumonia diagnosis with
a dataset of 2060 patients. Nishio et al.19 achieved an
accuracy of 83.7% for three categories of classification
(healthy/non-COVID-19 pneumonia/COVID-19) using
the VGG-16 model trained on 1248 images.Tulin et al.21

achieved an accuracy of 87.0% for tri-class classifi-
cation (healthy/non-COVID-19 pneumonia/COVID-19)
using the Darknet-19. In this work, we studied a total of
812 chest x-ray images from three public datasets,23–25

which were not curated by the typical medical image
study protocols. As a result, proper image processing
is necessary for streamlined deep learning implemen-
tation. In particular, we resized all images to 256 × 256
grid size and normalized all images to 256 gray lev-
els as uint8 format. These operations are standard in
digital image processing which will facilitate the data
reproducibility of this work. In addition, the robust-
ness of the developed model was systematically
analyzed. For each model design, we trained 50 runs
of models using randomly selected training and val-
idation samples following a ratio of 7:1. The small
standard deviation (< 0.06) of selected metrics and
ROC results revealed the enhanced robustness of
the developed model, which further demonstrates the
potential of the radiomics-boosted deep learning design
in clinical situations using different x-ray image data
sources.

The deep learning implementations in this work
adopted three commonly used deep neural network
architectures based on a transfer learning scheme.
VGG-16 was first selected for the following reason: (1)
it has been widely studied for medical image analysis
tasks as a transfer learning scheme; (2) in comparison
with other prevalent candidates, VGG-16 possesses
a smaller number of trainable parameters under the
transfer learning scheme and thus leads to reduced cal-
culation workload for network training; and (3) previous
studies19 reported that VGG-16 achieved the highest
accuracy in COVID-19 diagnosis tasks in compari-
son with several other pre-trained deep neural network
architectures. In addition to VGG-16,we studied VGG-19
and DenseNet-121 for the proposed radiomics-boosted
design. As reported in Figures 3 and 4, results of VGG-
19 after the radiomics-boosted design were similar
to the ones in VGG-16 implementation, which can be
attributed to the high similarity of network architecture
shown in Figure 1.26 On the other hand,the performance
improvement after the radiomics-boosted design was
higher in VGG-16 application than in VGG-19 applica-
tion: this can be explained by the fact that classification
performance from VGG-19 using x-ray image only was
higher than ones from VGG-16. Although the total train-
able parameter numbers under the transfer learning
scheme were approximately the same in VGG-16 and
VGG-19,VGG-19 has a larger dimension with more total
parameters due to the three additional convolutional

layers. Overall, the proposed radiomics-boosted design
still improved VGG-19 performance in terms of the 4
classification evaluators as well as model robustness.
In the DenseNet-121 study, the improvements after
radiomics-boosted design were rather limited. While
radiomics-boosted design improved healthy individual
classification results with statistical significance, ROC
results in non-COVID-19 pneumonia classification
showed a slight performance decrease. A plausible
explanation is the fact that DenseNet-121 has a larger
dimension with more trainable parameters (>70 m) than
VGG-16 and VGG-19 (∼40 m) under the transfer learn-
ing scheme.In addition,DenseNet-121 has more param-
eters in total (>75 m) than VGG-19 (∼55 m). As such, a
larger x-ray image set might be necessary to exploit the
full potential of the proposed radiomics-boosted design
in the DenseNet-121 application. Nevertheless, the
current results, especially the prominent performance
improvement in healthy individual classification, are
sufficient to support the benefit of radiomics-boosted
design in the DenseNet-121 application.

The inclusion of RFMs is a key technical innovation.
Instead of calculating radiomic features as scalar val-
ues from selected volumes in image space, RFMs cap-
ture the anatomy-driven subtle texture variations within
ROIs. It has been demonstrated that radiomics are asso-
ciated with pulmonary function35 and lung ventilation
measurements29; as such, the potential functional infor-
mation in RFMs contributes to the enhanced COVID-
19 diagnosis accuracy. The selection of two RFMs from
37 RFMs is more than a trivial task. While direct com-
parisons of all possible RFM combinations are feasi-
ble, it requires a high computational cost without the
potential of transferring this technique to other clini-
cal applications. Driven by the hypothesis that certain
RFMs can be related to neural network hyperparam-
eters, we selected RFMs based on similarity metrics
between RFMs and neural network saliency maps which
measure the attention pattern of the network imple-
mentation. Such a pattern can be used as an auxiliary
tool for radiologists in image reading, that is, highlight-
ing specific regions as visual clues for human read-
ing. This potential human-aid tool can be important
in accurate COVID-19/non-COVID-19 pneumonia dif-
ferentiation, which can be a challenging task for radi-
ologists using chest x-ray images without volumetric
information.11 RFMs with higher similarities to SMs
could emphasize regional information to enhance neural
network attention, which increases synchronously with
SM results. It is worth mentioning that both VGG-16
and VGG-19 results identified GLCOM Entropy based
on SM results, which emphasizes the similarity of the
two deep learning architectures. In addition to the cur-
rent design, it would be of interest to investigate other
RFM selection mechanisms that can be complemen-
tary to the SM results (i.e., based on “dissimilarity”) for
potential performance improvement. DenseNet-121 SM
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results in Figure 5, however, did not show recognized
class-specific SM spatial patterns in comparison with
VGG-16 and VGG-19. The absence of such patterns
may stem from the potentially limited sample size due
to large variable numbers of DenseNet-121.Additionally,
ImageNet-based transfer learning may affect SM cal-
culation results as well. Future works of DenseNet-121
analysis, based on full training from scratch or transfer
learning from an x-ray-specific dataset, are of our inter-
est to continue SM-based deep learning interpretability
studies.

The presented design of combining radiomics anal-
ysis and deep neural network implementation may
create a new paradigm of the CAD system. The
implemented RFM calculation workflow may also
enhance neural network performance in other tasks,
particularly those where multi-channel imaging data are
required as input.36 Additionally, the proposed method
provides a radiomics perspective of deep learning
interpretability. The hyperparameters in the neural net-
work are trained without explicit human knowledge
intervention and thus are hard to interpret by empirical
knowledge. For deep learning-based CAD systems, the
“black box” nature impaired the clinical deployments
of such systems without clinicians’ confidence. As a
step towards deep learning interpretability, we inves-
tigated neural network attention information using a
radiomics-based analysis. Radiomics has been widely
studied as computational imaging biomarkers for dis-
ease detection and outcome monitoring,37 and it has
been demonstrated that radiomic feature spaces can be
mathematically decomposed to provide interpration.38

Following the saliency map analysis approach in this
work, additional parameters can be used to enhance
deep learning interpretability, such as histology sample
images from biopsy and anatomy contours from radi-
ation therapy. These directions will be studied in future
works when appropriate datasets become available.

5 CONCLUSION

In this study, we proposed a radiomics-boosted deep
learning design for x-ray based COVID-19 diagnosis
and non-COVID-19 pneumonia diagnosis.An innovative
RFM calculation workflow was implemented to generate
additional input sources for deep neural networks, and
such design was tested using three deep neural net-
work architectures. Results showed that the proposed
radiomics-boosted deep learning design improved the
performance and robustness of COVID-19/non-COVID-
19 pneumonia/healthy individual classification in con-
currence with a radiomics viewpoint of deep learning
interpretation. It holds great potential for clinical applica-
tions for COVID-19 diagnosis and generalization in other
diagnosis tasks.
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