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ABSTRACT: Label-free quantification has become a common-practice
in many mass spectrometry-based proteomics experiments. In recent
years, we and others have shown that spectral clustering can considerably
improve the analysis of (primarily large-scale) proteomics data sets. Here
we show that spectral clustering can be used to infer additional peptide-
spectrum matches and improve the quality of label-free quantitative
proteomics data in data sets also containing only tens of MS runs. We
analyzed four well-known public benchmark data sets that represent
different experimental settings using spectral counting and peak intensity based label-free quantification. In both approaches, the
additionally inferred peptide-spectrum matches through our spectra-cluster algorithm improved the detectability of low abundant
proteins while increasing the accuracy of the derived quantitative data, without increasing the data sets’ noise. Additionally, we
developed a Proteome Discoverer node for our spectra-cluster algorithm which allows anyone to rebuild our proposed pipeline
using the free version of Proteome Discoverer.
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■ INTRODUCTION
Label-free quantification (LFQ) has become a core method to
derive quantitative data from mass spectrometry (MS)-based
proteomics data. Especially in clinical settings, the number of
samples often surpasses the number of reagents available in
isobaric tag-based experiments, such as iTRAQ, TMT, and/or
SILAC. Additionally, at the start of clinical studies, the total
number of patients might not be foreseeable while initial results
are required as quickly as possible to potentially adapt working
hypotheses. Another advantage of using LFQ approaches is the
reduced cost, as no expensive tagging reagents are needed.
Two main methods exist for LFQ in MS-based proteomics.

Peak-intensity based quantification estimates peptide abun-
dance based on the MS1 precursor ion intensity while spectral
counting based approaches simply use the number of spectra
identified per protein (peptide spectrum matches, PSMs) to
subsequently perform protein-based quantification. Spectral
counting-based methods have the disadvantage that they can
only utilize identif ied MS2 spectra. To achieve reproducible
results, the mass spectrometer must fragment the same
precursor ions in every MS run and subsequently record MS2
spectra of sufficient quality in order for them to be identified by

the search engine. Many label-free peak intensity based
algorithms circumvent this downside by employing the so-
called “match-between-runs” (MBR) approach.1 Here, the
retention times of all MS runs are aligned and the peptide
identifications are propagated between runs based on matching
MS1 features. This greatly increases the number of usable events
for quantification, while decreasing the number of missing values
and thereby potentially improving the overall reproducibility.
Among the other existing applications of spectral clustering,2

we and others have recently shown that it can be used as a first
step to help in the identification of unidentified spectra by
inferring identifications from consistently identified spectra
included in the same spectral cluster.3,4 If, for example, two
experiments measure the same protein in high and low
abundance, respectively, search engines will more likely identify
the high quality spectra from the first one. Through clustering,
low quality spectra can be clustered with high quality spectra and
thus can be identified. At the time of writing, four main
clustering algorithms exist for MS/MS based proteomics data
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that are capable of processing millions of MS/MS spectra:
msCluster,4 MaRaCluster,5 spectra-cluster,3 and msCRUSH.6

Originally, we developed our spectra-cluster algorithm to
process repository sized data sets, such as the data sets submitted
to the PRIDE Archive.3,7 There, it allowed us to identify
correctly and incorrectly identified spectra, as well as millions of
consistently unidentified spectra. In short, the spectra-cluster
algorithm is a greedy clustering algorithm merging the first
spectra that pass the set threshold. To reduce the risk of
incorrect matches, clustering is performed in different rounds
with decreasing thresholds. The current default setting (used in
this manuscript) is to start with a target accuracy of 100% (only
nearly identical spectra are merged) and over 5 rounds reach a
final accuracy of 99% (1% incorrectly clustered spectra). The
similarity of two spectra is assessed using a probabilistic score
where the similarity of the m/z values is assessed using a
hypergeometric distribution and the similarity of the intensity
values, using the Kendall Tau correlation. The two p-values are
combined using Fisher’s method (for a detailed description see
ref 3).
Here, we propose to use the additional identifications inferred

through spectrum clustering to improve the accuracy of LFQ-
based methods. We show that spectral clustering can increase
the accuracy of both spectral counting based and peak-intensity
based methods by benchmarking our approach using four
established published data sets. Finally, we present a novel
Proteome Discoverer (PD, Thermo Fisher Scientific) node that
incorporates our spectra-cluster algorithm3 into the widely used
PD software suite, making it easily available to the wider
proteomics community.

■ EXPERIMENTAL SECTION

Test Data Sets

We used four established public benchmark data sets to enable a
direct comparison with previous results: (i) a data set coming
from the Clinical Proteomic Technologies Assessment for
Cancer (CPTAC) study 6;8 (ii) a data set from the Association
of Biomolecular Research Facilities Proteome Informatics
Research Group (iPRG) 2015 study;9 (iii) a benchmark data
set run on a Orbitrap QExactive Plus generated by Shailt et al.10

(PXD001385); and (iv) a benchmark data set run on a LTQ-
Orbitrap Velos generated by Ramus et al.11 (PXD001819). In all
cases we downloaded the original RAW files (CPTAC study:
https://cptac-data-portal.georgetown.edu; iPRG study: ftp://
iprg_study@ftp.peptideatlas.org/, password "ABRF329"; Shailt
et al. and Ramus et al., from PRIDE Archive12) and converted
them to MGF format using ProteoWizard’s msconvert tool
(version 3.0.9393)13 and the corresponding vendor libraries.
From the CPTAC study, we only evaluated the Sigma

Universal Proteomics Standard (UPS) spiked-in samples into a
yeast background. These consist of replicate measurements of
six samples containing 60 ng/μL yeast lysate spiked with various
concentrations of the 48 UPS 1 proteins (0.25−20 fmol/L,
samples A−E in ascending concentrations). These samples were
sent to different laboratories for analysis. For this benchmark, we
used three of the four Orbitrap data sets: two from site_65
(LTQ-XL-OrbitrapP − “site_65-OrbiP” throughout the manu-
script - and LTQ-OrbitrapW) and the one from site_86.
The iPRG study was purely focused on the evaluation of

bioinformatic algorithms and approaches. The study partic-

Figure 1.Overview of used workflows to assess the influence of additionally inferred PSMs through clustering on LFQ, for both spectral counting and
intensity-based approaches.
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ipants were provided with a set of RAW files, search results, and
extracted precursor ion intensities. It was up to the study
participants which data to use. Four samples were measured in
triplicate, each containing 6 spiked-in proteins in different
concentrations into a background of 200 ng of yeast digest (see
Table 1 in ref 9). To make our results as comparable as possible
to the iPRG study results, we chose to use the provided search
results for our analysis in the spectral counting pipeline but
reanalyzed the RAW files when using the PD pipeline (Figure 1).
Shalit et al. spiked four different amounts of E. coli lysate (3 ng,

7.5 ng, 10 ng, 15 ng) into a HeLa cell background and analyzed
three replicates per concentration value. The analysis then
represented concentration changes of 5:1, 2:1, and 1.5:1 where
all amounts were compared against the 15 ng one.
Ramus et al. spiked nine different concentrations of UPS1

proteins into a yeast background (from 50 amol to 50,000 amol)
and analyzed three replicates per concentration value. In the
original manuscript, three comparisons were performed: 5,000
amol vs 50,000 amol (1:10), 500 amol vs 50,000 amol (1:100),
and 12,500 amol vs 25,000 amol (1:2).

Spectral Clustering and Spectral Counting Based
Quantification

The complete workflow is summarized in Figure 1. Searches
were performed using X!Tandem (version 2017.2.1.2),14 and
MSGF+ (version 10089)15 against a combined version of the
UniProtKB/SwissProt Yeast database (version October 2016)
and the UPS 1 and 2 sequences and a combined version of the
UniProtKB/SwissProt human database (version October 2016)
and the UniProtKB/SwissProt E. coli database (version
September 2018). Carbamidomethylation was set as fixed
modification, and oxidation of methionine and N-terminal
acetylation as variable modifications. The enzyme was set to
trypsin with 2 missed cleavages allowed. Reversed decoy
sequences were appended to the database. The precursor ion
tolerance was set to 20 ppm (CPTAC, Ramus et al.) or 10 ppm
(Shalit et al.), the fragment ion tolerance was set to 0.5 m/z
(CPTAC, Ramus et al.), and 0.05m/z (Shalit et al.) units for X!
Tandem, and in MSGF+ the instrument was set to “Orbitrap”.
Search results were filtered at 1% FDR at the PSM level using the
target-decoy approach. Search results from the different search
engines were not merged but processed individually (see
below). The input MGF files used in the clustering process were
annotated with the results of the search using the “mgf_sear-
ch_result_annotator.py” tool from the “spectra-cluster-py”
Python package (version 1.0, http://www.github.com/spectra-
cluster/spectra-cluster-py).
For the iPRG data, the original search results provided by the

authors were used. PSMs were filtered at 1% posterior-error
probability (iProphet probability ≥99%), and MGF files were
annotated accordingly before the clustering process, using a
custom Python script.
All MGF files from the same site and instrument (CPTAC

study) or from one study were clustered using the spectra-cluster-
cli tool (version 1.1.2, http://github.com/spectra-cluster/
spectra-cluster-cli). The precursor and fragment tolerance
were set to match the search engine settings. The “mz_150”
peak filter was enabled. All other settings were left at their default
values.
The PSMs were transferred to unidentified spectra using the

“id_transferer_cli” tool from the “spectra-cluster-py” Python
package (version 1.0) requiring at least 2 identified spectra in the
same cluster and a minimum ratio (proportion of spectra

identified as the same peptide sequence in the same spectral
cluster) of ≥70%.3,7 When processing PRIDE Archive, we
originally set the minimum number of identified spectra to 3. As
the data sets processed in this study are homogeneous with
known data set wide FDR values for the search results, we
decreased this value to 2. Protein inference was done using the
“protein_annotator.py” tool from the “spectra-cluster-py”
Python package (version 1.0). Only unique peptides were
used for quantification (peptides mapping to a single protein).
Label-free spectral counting-based quantification was done

using R (version 3.4.3) and the Bioconductor packages
MSnbase16 (version 2.4.1) and edgeR17 (version 3.20.7), on
the raw spectral counts. Result files from the “id_transferer_cli”
and “protein_annotator” tool were converted into MSnSet
objects using the “msnbase_adapter.r” script from the “spectra-
cluster-py” package. The complete R workflow can be found in
Supplementary File 1.
PD Workflow (Intensity-Based Label-Free Quantification)

The spectra-cluster PD node was created using C# and serves as a
wrapper for the spectral clustering algorithm. It is freely available
at http://ms.imp.ac.at/?goto=spectra-cluster. RAW files were
loaded directly into PD (version 2.1.21). Spectra were identified
usingMSAmanda (node version 2.1.5.4882) and clustered using
the spectra-cluster node. All parameters were identical to the
settings explained above. Quantification was performed with
IMP-apQuant18 (version 3.1.0.20387) using the iBAQ
method19 and all available peptides. Shared peptides were not
used for quantification. All other parameters were left at their
default values. The results (“Protein” table) were exported to tab
separated values (TSV) files, filtered for “master” proteins,
normalized using the MSnbase package,16 and the log-
transformed values processed using R and the Bioconductor
package limma20 (version 3.34.5). Missing values were imputed
using the 5% quantile if the protein was detected in all replicates
of the other concentration. The PD and R workflows can be
found in Supplementary File 1.
Software Availability

The complete workflow used to generate the spectral counting
based data is freely available as a nextflow (http://www.
nextflow.io) workflow at https://github.com/bigbio/nf-
workflows. The ProteomeDiscoverer workflow used to generate
the intensity-based quantification data and Jupyter notebooks
(https://jupyter.org) containing the complete R code used to
process the results are available in Supplementary File 1. All
tools of the spectra-cluster toolsuite, including the Proteome
Discoverer node, are available at https://spectra-cluster.github.
io.

■ RESULTS AND DISCUSSION
We used four public data sets for the benchmarking of our
algorithm: the CPTAC study 6 (subset data sets from two sites:
two different ones from site 65, and an additional one from site
86), the iPRG 2015 study, and benchmark data sets published by
Shalit et al. and Ramus et al. (Figure 1). In all but the iPRG data
set, we used two different search engines (X!Tandem andMSGF
+) to identify spectra. In the iPRG data set, we used the original
identification results provided for the spectral counting pipeline.
The nextflow (https://www.nextflow.io) workflows containing
the complete pipeline are available at https://github.com/
bigbio/nf-workflows.
We filtered all search results of the spectral counting pipeline

based on a PSM FDR level of 1%.Most studies currently employ
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both peptide and protein level FDRs which generally result in
considerably lower PSM FDR values.9 We deliberately used this
higher PSM FDR to represent the worst-case scenario for our
proposed pipeline. This higher FDR leads to a higher rate of
estimated incorrectly clustered spectra and thereby negatively
influences the assessment of the clustering accuracy (Figure S1).
Thereby, fewer additionally inferred identifications will be
assigned to unidentified spectra, as fewer spectral clusters will
reach the required minimum purity (at the peptide sequence
level) of 70%. Finally, a higher PSM level FDR increases the
number of PSMs retrieved from the identification analysis and
thereby reduces the proportion of additional PSMs inferred
through spectral clustering.
Intensity-based quantification was performed using the IMP-

apQuant PD node.18 Spectral clustering was performed using
the new spectra-cluster PD node (see below). Results were
assessed with and without IMP-apQuant’s MBR feature.

Spectra-Cluster PD Node

The spectra-cluster PD node integrates our open source spectra-
cluster algorithm into one of the most commonly used analysis
tools for proteomics data (Figure S2). The spectra-cluster node
can handle both identified and unidentified spectra as input for
the algorithm. If identifications are provided, these are directly
incorporated into the clustering results and can be used to
transfer identifications to unidentified spectra using the
“Spectral Cluster Search” node. This node again creates
identifications as output which can be used by any other PD
node. Finally, clustering results are available through a
“Clusters” table in the PD results. This table contains one
entry per cluster showing basic statistics such as the number of

spectra, the number of identified spectra, and the frequency of
sequences within a cluster, as well as the number of spectra per
sample.
As with other PD tables, the “Clusters” table can easily be

exported to other formats for further analysis, using, for example,
the R programming language. Since the “Spectra Cluster Search”
node’s PSMs are incorporated into the PD workflow, the
additionally inferred identifications are visible throughout all
other PD result tables. Thereby, a spectral counting based
workflow can easily be created by exporting the PD’s peptide/
PSM table.
To our knowledge, this is the first time that a MS/MS

clustering algorithm is available in a widely used proteomics
software pipeline. Despite many potential applications, spectral
clustering algorithms are currently not widely used. We believe
that this is due to the computational expertise currently required
to use them. We expect that the integration of our spectra-cluster
algorithm into PD will make this approach readily available to
the community and will considerably decrease the effort
required to use spectral clustering.

Improved Detection of Low-Abundant Proteins

Throughout all test data sets, spectral clustering allowed us to
quantify more low abundant proteins (Figure 2, S3). In the
Ramus et al. data set, which spans the widest range of
concentrations, clustering inferred PSMs allowed us to
consistently identify spiked-in proteins already from the 50
amol concentration (Figure 2). As expected, this effect
decreased with increasing protein concentrations in all data
sets. For example, in the CPTAC study’s samples A, using the
spectral counting pipeline, the total number of detected UPS

Figure 2. Number of detected spiked UPS proteins (n = 48) in the Ramus et al. data set from the (A) spectral counting pipeline (two search engines
used, X!Tandem and MSGF+) and (B) the intensity-based pipeline (with and without MBR enabled).
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proteins over the three replicates increased from 28 to 49 (75%)
for MSGF+ and from 26 to 33 (27%) for X!Tandem. For
samples B, the proportion of additionally detected proteins was
17% for MSGF+ and 11% for X!Tandem (Figure S3). Finally,
for samples E, which contained the highest protein concen-
trations, no additional proteins were detected through
clustering. These results are in line with our original expectation
that clustering increases the detectability of low abundant
proteins. Low abundant proteins generally result in lower quality
spectra.We and others have shown that clustering can be used to
identify them through clustering with samples where the
proteins were observed in higher quantity.

As expected, apQuant’s MBR function quantified consid-
erably more low-abundant proteins than clustering alone
(Figure 2B, S3). In the CPTAC data set, for example, MBR
without and with clustering quantified 93 and 96 proteins
respectively, in the lowest concentration (summarized across all
three sites, Figure S3). Without the MBR function only 36 and
50 proteins without and with clustering, respectively, were
quantified. Again, this effect decreased with increasing
concentrations. In the highest concentration samples, all
approaches quantified 138 proteins (48 proteins in three
sites). Nevertheless, clustering increased the number of detected
proteins in three of the five CPTAC concentrations and all

Figure 3.Results of the statistical analysis using limma for the intensity-based pipeline (A, B) and edgeR for the spectral counting based pipeline (C), as
true versus false positive rates. (A) Combined result for the three CPTAC data sets using the intensity-based pipeline. (B) Result for the Ramus et al.
data set from the intensity- and (C) from the spectral counting-based pipeline.
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samples of the Ramus et al. data set on-top of the MBR function
(Figures 2 and S3).
apQuant is one of the first quantification algorithms able to

estimate an FDR for quantified features. Once the quantified
features fall below the set threshold (5% by default and in this
study), they are discarded. Surprisingly, the MBR feature led to
fewer quantified proteins in the highest concentration samples in
both the Ramus et al. and the Shalit et al. data sets (Figures 2B
and S3). In the latter data set, clustering further decreased the
number of quantified proteins in this setup. This result indicates
potential risks of using the MBR function in complex samples
such as the Shalit et al. data set, or when larger numbers of
samples are included as is the case for the Ramus et al. data set (3
replicates for 9 concentrations). Most existing quantification
tools do not report feature FDR values but quantify any feature
available. Therefore, the user will not notice if feature detection
and quantification quality are deteriorating. apQuant’s reliability
assessment is able to highlight this issue. In our tests, the highest
number of spiked proteins was identified in the samples
containing the highest concentrations, but, interestingly, only
when disabling the MBR function and using clustering. This
indicates clustering without the MBR function produces more
comprehensive quantification results in certain setups.
Overall, clustering enabled us to quantify more proteins in all

of the three test data sets. This is consistent with previous studies
that showed that spectral clustering can be used to increase the
number of identified spectra.4,7 It also highlights that low-
abundant proteins result in lower-quality spectra that can still be
identified using clustering. Since clustering algorithms use
similar metrics as spectral library search engines, a combination
of a classical search engine with a spectral library search engine
might potentially lead to a similar improvement. In this respect,
clustering has the advantage that it does not need to rely on a
spectral library but can directly use the data set’s spectra which
may lead to a higher sensitivity.

Improved Detection of Regulated Proteins

We used the R Bioconductor packages edgeR17 to assess
differentially expressed proteins in the spectral counting
pipeline, and limma20 in the intensity-based pipeline (Supple-
mentary File 1). Spiked proteins were considered as true
positives and any regulated background proteins as false
positives. We did not include a statistical analysis of the iPRG
data set, as it only contains six spiked proteins.
Using the intensity-based pipeline, clustering improved the

results in four of the five evaluated data sets. In the CPTAC data
sets this was most pronounced in site_86, which overall showed
the worst results (Figure 3A). In site_65 and site_65_OrbiP the
results were nearly ideal when MBR was enabled and we did not
observe any changes through clustering. Without MBR,
clustering did improve the results in both data sets but could
not reach the level of the analyses performed with MBR enabled
(Figure 3A). This is expected as the MBR function can use the
always present MS1 data to improve quantification results
instead of the stochastic MS2 spectra.
In the Ramus et al. data set, clustering considerably improved

the statistical results when using MBR and only improved the
results in the 1:10 comparison without MBR (Figure 3B). This
was the only data set where the statistical results were better
without MBR in two comparisons. In this data set, MBR seemed
to produce unreliable results most likely due to the considerably
larger number of samples (see above). In these conditions,
clustering improved the results considerably.

When using the spectral counting pipeline, clustering did not
change the accuracy of the statistical results when combining all
comparisons of the data sets (Figure S4) but did improve
specific comparisons. In the CPTAC data sets, clustering
improved the results when comparing the lower concentration
samples (A-B, A-C, A-D, B-C) and led to worse results in the
highest concentrations samples, in the site_65 and site_65_Or-
biP data set (C-E, D-E, Figure S5). Here, clustering did not infer
any PSMs in the “E” samples and therefore decreased the fold
change. Consistently, the results improved in all comparisons
where both samples equally profited from the additional PSMs.
In the Ramus et al. data set, clustering clearly improved the

results of the “1:2” comparison while leading tomarginally worse
results in the “1:10” and “1:100” comparisons. Similar to the
CPTAC data set, in these two comparisons the highest
concentration sample was compared with two low concentration
ones. Here, clustering only increased the number of PSMs in the
low-concentration samples which led to lower fold changes. In
contrast, in the “1:2” comparison both samples equally profited
from the additional PSMs and the results improved. Moreover,
clustering ameliorated the originally worse performance of X!
Tandem, when compared to MSGF+ (Figure 3C).
In the Shalit et al. data set, both pipelines detected

considerably fewer proteins than the 228 E. coli proteins
reported in the original study10 (Figure S6). Clustering did not
change these results in both pipelines. This is most likely caused
by the different methods of analyzing regulated proteins: Shalit
et al. defined regulated proteins only based on the observed
relative deviation from the expected fold change but did not use
any statistical method to detect regulated proteins. We used the
linear modeling provided by limma and edgeR, which takes the
background distributions into consideration as well as
apQuant’s estimate of quantification reliability. Therefore, no
clear conclusions can be drawn from this result.
Overall, clustering improved the statistical results in both

pipelines. The cases found in the spectral counting pipeline
where clustering led to slightly worse results were all caused by
only one sample profiting from the additionally inferred PSMs.
In these cases, protein abundances were already high enough for
the search engine to identify all of the protein’s corresponding
mass spectra. Therefore, the spectral counting based quantita-
tion reached its upper-limit of detection. When using clustering,
these cases can be detected, as no additional PSMs can actually
be inferred. This could be used to developmethods to correct for
such cases and thereby increase the dynamic range of spectral
counting based workflows.
The lower overall improvement of the statistical results in the

spectral counting pipeline compared to the intensity-based one
are counterintuitive when looking at the increased number of
observed proteins through clustering. This apparent contra-
diction is caused by the way additional PSMs are “used”. In the
spectral counting pipeline these directly increase the estimated
abundance of the respective protein. If a protein was originally
not detected in a low-concentration sample, this protein is
considered to have zero expression in the subsequent statistical
analysis which leads to a large fold change. In the intensity-based
pipeline, the additional PSM’s precursor intensity value is used
to calculate the protein’s abundance based on the integrated
intensity of all PSMs. Moreover, missing values for undetected
proteins were imputed using the 5% quantile of all intensities
(see Methods and Supplementary File 1). Therefore, the effect
of having additional PSMs resulted more likely in the
improvement of the accuracy of protein abundance estimates
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in the intensity-based pipeline, irrespective of the protein’s
abundance in the respective sample.

Stable Quantification Accuracy

Any method that increases the number of PSMs is at risk of
simultaneously increasing the corresponding FDR. A common
method to assess clustering accuracy is to compare the clustering
results with results coming from a search engine (Figure S1).
Benchmark data sets for quantitative proteomics offer additional
methods to assess our method’s accuracy: (1) by estimating the
error of the derived quantitative values; (2) by analyzing the
error of quantified replicate measurements; and (3) by analyzing
the estimated change of unchanged background proteins.
In all data sets and approaches used we found no significant

changes in the squared error of the estimated log-fold changes of
spiked proteins. Using the spectral counting pipeline, the
median squared error decreased from 0.79 to 0.78 (MSGF+),
from 0.87 to 0.86 (X!Tandem) in the Shalit et al. data set, from 1
to 0.5 in the iPRG data set, did not change in the Ramus et al.
data set (10 MSGF+, 11 X!Tandem), and increased from 3.5 to
4 (MSGF+) and from 5.1 to 5.3 (X!Tandem) across the
CPTAC data sets. Using the intensity-based pipeline, the
median squared error decreased from 2.5 to 2.2 (no MBR) and
remained at 0.4 (with MBR enabled) in the CPTAC data sets,
decreased from 3.0 to 2.4 (no MBR) and increased from 1.4 to
1.7 (with MBR) in the iPRG data set, decreased from 1.7 to 1.6
(noMBR) and from 0.03 to 0.02 (withMBR) in the Ramus et al.
data set, and did not change in the Shalit et al. data set (0.5 no
MBR, 0.1 with MBR). Overall, clustering inferred PSMs led to a
reducedmedian error in most cases and never led to a significant
increase. This additionally indicates that clustering did not
increase the number of incorrect identifications.
We estimated the precision of the quantitative results by using

the coefficient of variation (CV) of replicate measurements.

Again, we found no significant differences between both
approaches. In the spectral counting pipeline clustering
decreased the CV in all data sets but the Ramus et al. one,
where it led to a slight increase (22% to 26%, Figure S7). Using
the intensity-based pipeline, clustering never increased the CV.
In the CPTAC data set, the median CV decreased from 3.4% to
3.2% (no MBR) and did not change with MBR enabled (2.1%).
In the iPRG data set we did not observe any change. In the
Ramus et al. data set the median CV decreased from 0.8% to
0.7% (no MBR) and did not change with MBR (0.3%).
Similarly, in the Shalit et al. data set the CV decreased from 1.5%
to 1.4% (without MBR) and did not change with MBR (0.3%).
Clustering inferred PSMs generally reduced the CV, although
this improvement was marginal. More importantly, the data
showed no sign that clustering increased incorrect PSMs.
The considerably higher CVs in the spectral counting pipeline

compared to the intensity of one is primarily related to the way
PSMs are aggregated on the protein data. If a protein was only
identified through two spectra in one replicate and with four in
the other, this results in a difference of 100%. In the intensity-
based pipeline protein abundance is estimated based on the
aggregated spectra’ precursor intensities which reduces the
observed variation. These two very different approaches of
estimating protein abundances are reflected in the different
statistical pipelines used.
We additionally assessed the estimated fold change of the

background proteins. Using the spectral counting pipeline, in all
data sets but the Ramus et al. one., clustering reduced the
median absolute log-fold change of the background proteins
closer to the correct value of 0 (Figure 4). In the Ramus et al.
data set we observed a marginal increase for MSGF+ from 0.03
to 0.07. Using the intensity-based pipeline, the median absolute
log-fold change of background proteins did not change in the

Figure 4. Logarithmic fold change of background proteins from all comparisons using the spectral counting pipeline. In all analyzed data sets, the
estimated fold change of background proteins came close to 0 through the clustering of inferred identifications. Panels show the data for the CPTAC
data sets site_65 (A), site_65_OrbiP (B), site_86 (C), and the iPRG (D), the Ramus et al. (E), and the Shalit et al. data sets (F).
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iPRG and Shalit et al. data sets, decreased in the CPTAC data
sets, and increased marginally in the Ramus et al. from 0.11 to
0.13 (with MBR enabled) and did not change without MBR
(Figure S8).
Overall, clustering inferred PSMs did not have a negative

impact on the accuracy or precision of the derived quantitative
estimates. In our view, this is providing additional evidence that
spectral clustering can infer additional correct PSMs at a stable
FDR, as random incorrect identifications would also hinder the
accuracy of the quantitative results.

Outlook

Since the spectra-cluster algorithm was originally developed to
process highly heterogeneous repository sized data sets such as
those available in the PRIDE Archive, we deliberately chose
small data sets for this study in order to show that clustering
accuracy did not decrease with smaller data sets. In previous
work we already showed that spectra-cluster could accurately
process millions of MS/MS spectra.3,7 Therefore, this pipeline
seems highly suited for large-scale (clinical) studies. In such
cases, clustering could even be used prior to the identification
step to reduce the search and processing times by directly
identifying the resulting consensus spectra. Additionally,
differential expression analysis could be performed before the
identification step altogether to then target these spectra of
interest with potentially computationally more expensive
methods. This approach has recently been suggested in a
preprint using MaRaCluster.21 Such workflows are already fully
supported by our PD node. Spectral counts can easily be
exported through the respective results table and imported into
R. Then, any spectral counting workflow can be used on this
data.
Here we also showed that the additionally inferred PSMs can

improve the accuracy of spectral counting based LFQ, as well as
the detectability of low abundant proteins. This improvement is
most likely also applicable to related approaches such as the
Normalized Spectral Index22 which are readily available through
the MSnbase R Bioconductor package.16

Even though the intensity-based workflow already used
apQuant’s MBR functionality, spectral clustering still improved
the quantification results in several cases. In this study, this was
mostly linked to a reduction of apQuant’s quantification
reliability assessment through theMBR function. This highlights
that MBR approaches are not suitable for every experimental
setup. We observed that clustering did improve quantification
results in all of these cases.
In addition to our spectra-cluster algorithm, MSCluster4 and

MaRaCluster5 are other dedicated MS/MS clustering algo-
rithms. Since MaRaCluster and spectra-cluster are similar in
performance,23 it is very likely that both MS/MS clustering
algorithms will result in similar improvements.

■ CONCLUSIONS

We and others have shown that additional PSMs can be inferred
using spectral clustering.3,4 Nevertheless, we are unaware of any
subsequent working application of these results to improve
proteomics LFQ analysis workflows in practice.
Here we showed that clustering can indeed improve LFQ

results and increase the detectability of low-abundant proteins
without increasing the data set’s FDR. Additionally, to our
knowledge, this is the first time that a spectral clustering
algorithm has been integrated into a commonly used proteomics
software pipeline. With this integration of our spectra-cluster

algorithm into PD and its subsequent ease-of-use, we therefore
believe that clustering can be used to improve any LFQ pipeline.
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