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Application of Machine Learning and Deep EfficientNets 
in Distinguishing Neonatal Adrenal Hematomas From 

Neuroblastoma in Enhanced Computed  
Tomography Images
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Abstract

Background: The aim of the study was to employ a combination of 
radiomic indicators based on computed tomography (CT) imaging and 
machine learning (ML), along with deep learning (DL), to differenti-
ate between adrenal hematoma and adrenal neuroblastoma in neonates.

Methods: A total of 76 neonates were included in this retrospective 
study (40 with neuroblastomas and 36 with adrenal hematomas) who 
underwent CT and divided into a training group (n = 38) and a test-
ing group (n = 38). The regions of interest (ROIs) were segmented 
by two radiologists to extract radiomics features using Pyradiomics 
package. ML classifications were done using support vector machine 
(SVM), AdaBoost, Extra Trees, gradient boosting, multi-layer percep-
tron (MLP), and random forest (RF). EfficientNets was employed and 
classified, based on radiometrics. The area under curve (AUC) of the 
receiver operating characteristic (ROC) was calculated to assess the 
performance of each model.

Results: Among all features, the least absolute shrinkage and selection 

operator (LASSO) logistic regression selected nine features. These ra-
diomics features were used to construct radiomics model. In the train-
ing cohort, the AUCs of SVM, MLP and Extra Trees models were 
0.967, 0.969 and 1.000, respectively. The corresponding AUCs of the 
test cohort were 0.985, 0.971 and 0.958, respectively. In the classifica-
tion task, the AUC of the DL framework was 0.987.

Conclusion: ML decision classifiers and DL framework constructed 
from CT-based radiomics features offered a non-invasive method to 
differentiate neonatal adrenal hematoma from neuroblastoma and 
performed better than the clinical experts.
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Radiomics; Neonate

Introduction

Neuroblastoma is the most prevalent perinatal malignancy, 
with the adrenal gland being the primary site in neonates. 
Adrenal hematomas can manifest as cystic suprarenal masses 
during liquefaction, and a high incidence of cystic tumors has 
been previously observed among prenatally diagnosed neu-
roblastoma [1]. Due to the significant differences in the final 
treatment methods, distinguishing between the two types of 
lesions is crucial for subsequent diagnosis and treatment plan-
ning [2]. Furthermore, differentiating neuroblastoma com-
plicated by hematomas from organized or calcified adrenal 
hematomas poses additional challenges. Generally, adrenal 
hematoma is a self-limiting condition that does not necessitate 
specific treatment [3]. However, its presence in patients can 
lead to potentially unnecessary surgical resection or bone mar-
row puncture in otherwise healthy neonates [1, 4]. Although 
partial or complete regression of the neuroblastoma has been 
observed, timely surgical removal may still be required for op-
timal prognosis [5]. Therefore, accurate preoperative assess-
ment and differential diagnosis of these two types of lesions 
are essential for tailoring appropriate treatment decisions.

Computed tomography (CT) imaging is the most used 
screening method for investigating suspected adrenal occu-
pying lesion [2]. However, due to the overlapping radiologi-
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cal characteristics of adrenal hematoma and neuroblastoma, 
imaging can sometimes lead to inconclusive results that de-
pend primarily on physician experience [6, 7]. Radiomics is 
an emerging and promising field that provides comprehensive 
quantification of tumor types through high-throughput extrac-
tion and mining of a large number of image features [8]. With 
the continuous advances in computer technology and the wide 
range of applications of machine learning (ML) algorithms, 
the use of ML in medical imaging has also been increasingly 
valued and has been extensively applied and developed [9]. 
ML can extract effective features from large amounts of image 
data [10], build classification or regression models, identify 
tumor types in new samples, and assist physicians in diagnosis 
and prognosis evaluation [11-14].

ML algorithms have demonstrated significant utility in 
predicting neuroblastoma outcomes [15]. Deep learning (DL), 
a subset of architecture-based artificial intelligence (AI) in-
spired by the human brain’s function and structure, encom-
passes convolutional neural networks (CNNs) that have been 
employed for fracture diagnosis [16]. In this study, we utilized 
radiomics to extract image features of adrenal hematomas 
and neuroblastomas from enhanced CT. By combining these 
features with clinical data, we developed appropriate feature 
vectors and employed ML algorithms to distinguish adrenal 
hematomas from neuroblastoma.

This study aimed to explore the feasibility of utilizing 
ML for distinguishing neonatal adrenal hematomas from neu-
roblastomas, providing novel ideas and methodologies to en-
hance the level of differential diagnosis for these two types of 
lesions while offering valuable references for doctors in devel-

oping more accurate treatment plans.

Materials and Methods

Description of dataset and patient population

The institutional ethics review board approved this retrospec-
tive study. This study systematically reviewed the clinical 
database of CT images from 40 neonates with neuroblastoma 
from January 2013 to January 2022 at our hospital.

Inclusion criteria were as follows: 1) patients underwent 
preoperative CT plain scan and two-phase enhanced scan with-
in 3 weeks before surgery; 2) no history of radiotherapy and 
chemotherapy; and 3) tumors were diagnosed by postoperative 
pathology and had complete clinical data. The data of 36 neo-
nates with adrenal hematomas in our hospital were included in 
the study. The patient inclusion criteria were as follows: 1) clin-
ical or pathological confirmation of adrenal hematomas; and 
2) imaging follow-up (complete resolution of the hematoma).

Exclusion criteria were as follows: 1) images with severe 
motion artifacts or evident noise; 2) maximum tumor diameter 
less than 1.0 cm; and 3) other tumor diseases.

We reviewed the medical records for clinical findings in-
cluding age at presentation, localization of the lesion, gender, 
neuron-specific enolase (NSE), lactate dehydrogenase (LDH), 
and ferritin, and compared them between the neuroblastoma 
and adrenal hematomas patients. These patients were randomly 
separated into a training cohort and a test cohort at a 1:1 ratio.

Figure 1. Workflow of this study.
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Image acquisition

All CT scans were obtained using a 64-detector row scanner 
(LightSpeed VCT; GE Healthcare, Chicago, IL). The scan pa-
rameters were as follows: 8,100 kV; 40 to 70 mA current; 5 
mm thickness; 1.375 pitch, and field of view (FOV), 512 × 512 
mm. Iodixanol was used for the enhanced CT scan (300 mg 
iodine/mL, dose 1.5 - 2 mL/kg, rate 1 - 3 mL/s).

Image segmentation and radiomic feature extraction

Blinded to patients’ mass results, two radiologists (with 5 
and 20 years of diagnostic experience) manually segmented 
the region of interest (ROI) respectively by using the freely 
available open-source software package 3D-slicer [17]. Pyra-
diomics library v2.2.0, as an extension of 3D-slicer, was used 
to extract radiomic features [18], implemented according to 
the consensus definition of Imaging Biomarker Standardiza-
tion Initiative (IBSI), with a total of 107 quantitative features 
[19]. No wavelet features were incorporated. Images and data 
are pre-processed by resampling and standardization to ensure 
repeatability of results. The intra-observer and inter-observer 
reproducibility was evaluated by intra-class correlation coef-
ficient (ICC). After 3 months, the radiologists performed ROI 
segmentation again. ICC greater than 0.9 indicated good con-
sistency. A complete schematic is presented in Figure 1.

Classifiers and validation

Inter-group difference analysis was conducted for all features, 
independent sample t-test was used, and column standardi-
zation was carried out for features with P < 0.05 compared 
between groups to eliminate the impact of inter-feature scale 
differences. Ten-fold cross-validated least absolute shrinkage 
and selection operator (LASSO) regression model was used 
to select features with non-zero coefficients (Fig. 2). Based on 

the selected features, we developed six ML models (AdaBoost, 
Extra Trees, gradient boosting, multi-layer perceptron (MLP), 
support vector machine (SVM) and random forest (RF)) to 
classify the patients. Compared with other CNNs, the Effi-
cientNets has fewer parameters and is more accurate and effi-
cient, and its baseline architecture consists of 18 convolutional 
layers with a resolution of 224 × 224 [20]. We applied adrenal 
hematoma and adrenal neuroblastoma CT images to the model 
for transfer learning. The network was trained for at a learning 
rate of 0.001 in 150 epochs.

Statistical analyses

Pearson Chi-square test or Fisher exact test was used to com-
pare categorical variables presented as ratios between groups. 
The Shapiro-Wilk test was used to check if continuous vari-
ables follow a normal distribution. Comparisons of continuous 
variables were performed using a Student’s t-test or Mann-
Whitney U test. To evaluate the predictive performance of dif-
ferent models, the confusion matrix method was used to sum-
marize the performance of ML algorithms and clinical experts 
during data testing, that is, to binarize all labels of the model. 
The diagnostic performances of these models were compared 
by the area under the curve (AUC) of the receiver operating 
characteristic curve (ROC), accuracy, sensitivity, specificity, 
positive prediction value (PPV), and negative prediction value 
(NPV). SPSS software (version 26.0, IBM) and Python soft-
ware (version 3.5.6) [21] were applied for statistical analysis.

Results

Study population

A total of 76 patients were included in this study for the final 
analysis. Of these patients, 36 were diagnosed with adrenal he-
matomas either by clinical, pathological, or follow-up CT re-

Figure 2. Radiomics feature selection with the least absolute shrinkage and selection operator (LASSO) regression model. (a) 
The vertical lines indicate that the optimal value of the LASSO tuning parameter λ is 0.0168. (b) LASSO coefficient profile plot 
with different log (λ) was shown. Nine radiomic features with non-zero coefficients were selected.
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sults, with 40 being diagnosed with neuroblastoma. The AUC 
for the radiologist was calculated to be 0.831 (0.734 - 0.929) 
based on the report issued by the radiology department and the 
final clinical referral of the child. The clinical characteristics in 
the whole cohorts are shown in Table 1.

Radiomic signature models and performances

A total of 107 3D original radiomic features were extracted 
from a single ROI. These features included 18 first-order fea-
tures, 14 shape features, 24 gray-level co-occurrence matrix 
(GLCM) features, 14 gray-level dependence matrix (GLDM) 
features, five neighboring gray-tone difference matrix (NGT-
DM) features, 16 gray-level size zone matrix (GLSZM) fea-
tures, and 16 gray-level run-length matrix (GLRLM) features.

We compared the performance of six radiomics-based ML 
models. Model performance results are presented in Table 2. 
In the test cohort, the best radiomic models were SVM, MLP, 
and Extra Trees, with an AUC of 0.985, 0.971 and 0.958, re-
spectively (Table 2). The ROCs of the radiomics models in the 
training and test cohorts are shown in Figure 3.

Performance of DL

The mean accuracy of identifying the two kinds of adrenal le-
sions was 92%. The AUC for this network was 0.987. Figure 
4a shows the confusion matrix of the accuracies and Figure 
4b shows the AUCs. Based on the total weight parameter, a 
heat map was drawn according to the gradient-weighted class 
activation mapping (Grad-CAM) method. The heat map shows 
the differences related to the location of the computer-focused 
imaging scan (Fig. 5).

Discussion

The performance of various ML algorithms in classifying im-
aging data was investigated in this study. Our analysis encom-
passed patient data from 40 neuroblastoma and 36 adrenal he-
matoma cases. This represents a substantively large cohort of 
neonatal cases achievable at a single institution. To our knowl-
edge, no previous study has utilized ML and DL for the differ-
entiation of neonatal adrenal hematomas and neuroblastoma. It 
might offer a potentially effective non-invasive approach that 
is both practical and dependable for assessing adrenal tumors.

Our study demonstrates that adrenal hematomas are pre-
dominantly in the right side, while the incidence of neona-
tal suprarenal mass was similar between males and females, 
consistent with the results of Zhang et al [22]. In general, the 
initial suspicion of neuroblastoma occurs when a suprarenal 
cyst is discovered prenatally [1], and our study showed simi-
lar results. The possibility of adrenal hemorrhage cannot be 
excluded, even if prenatally identified adrenal cysts favor neu-
roblastoma. The appearance of the hematoma is very variable 
depending on the hemorrhagic component; therefore, they can 
have aspects cystic-like or solid-like [23]. Although CT can be 
very useful in case of adrenal hemorrhage with complex mass 
aspect, it is still difficult to differentiate it from neuroblastoma 
[24]. Currently, a consensus on imaging features to classify ad-
renal hematomas and neuroblastoma has not been established. 
Consequently, a new non-invasive method is desired to differ-
entiate neonatal suprarenal masses.

In the field of medical imaging, radiomics is a non-inva-
sive and powerful diagnostic method to obtain more informa-
tion and uncover the genetically and pathologically heteroge-
neous features. Although there is currently no literature on the 
application of radiomics to differentiate neonatal adrenal neu-

Table 1.  Clinical Characteristics in the Cohorts

Variable Adrenal hematomas (N = 36) Adrenal neuroblastoma (N = 40) P-value
Time onset
  Prenatal 4 (11.1%) 30 (75.0%) < 0.001*
  Postnatal 32 (88.9%) 10 (25.0%)
Sex
  Male 19 (52.8%) 25 (62.5%) 0.391
  Female 17 (47.2%) 15 (37.5%)
Localization
  Left 5 (13.9%) 15 (37.5%) 0.003*
  Right 31 (86.1%) 21 (52.5%)
  Bilateral 0 (0%) 4 (10.0%)
Weight (kg) 3.56 (3.06 - 3.98) 4.50 (3.65 - 6.50) 0.001*
NSE (ng/mL) 31.95 (22.37 - 42.17) 45.65 (26.77 - 72.30) 0.037*
Ferritin (µg/L) 573.95 (359.85 - 769.23) 318.90 (216.10 - 426.00) < 0.001*
LDH (U/L) 667.00 (441.50 - 881.50) 299.00 (264.00 - 448.50) < 0.001*

*P < 0.05. Continuous data are presented as median (interquartile range). Categorical data are presented as numbers (%). NSE: neuron-specific 
enolase; LDH: lactate dehydrogenase.
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roblastoma from adrenal hematoma, it has been utilized for the 
prediction of response to neoadjuvant chemotherapy, genotyp-
ing, pathological classification and prognosis in neuroblasto-
ma [15, 25-28]. In this study, the final radiomics features used 
to identify neuroblastoma included first-order features (2/18), 

shape (1/14), GLRLM (2/16), GLDM (1/14), GLCM (1/24), 
and NGTDM (2/5). We observed that texture features were 
more important than shape features, suggesting that enhanced 
CT image texture features were more helpful to reflect tumor 
heterogeneity and distinguish tumor from hematoma.

Table 2.  Diagnostic Performance of Different Models in Training and Test Cohorts

Model name AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV
SVM
  Training 0.967 (0.900 - 1.00) 0.974 0.944 1.000 1.000 0.952
  Test 0.985 (0.958 - 1.00) 0.946 1.000 0.895 0.900 1.000
RF
  Training 1.000 (1.000 - 1.000) 1.000 1.000 1.000 1.000 1.000
  Test 0.937 (0.865 - 1.000) 0.892 0.778 1.000 1.000 0.826
Extra Trees
  Training 1.000 (1.000 - 1.000) 1.000 1.000 1.000 1.000 1.000
  Test 0.958 (0.905 - 1.000) 0.892 0.778 1.000 1.000 0.826
Gradient boosting
  Training 1.000 (1.000 - 1.000) 1.000 1.000 1.000 1.000 1.000
  Test 0.827 (0.699 - 0.956) 0.838 0.889 1.000 0.800 0.882
AdaBoost
  Training 0.967 (0.900 - 1.00) 1.000 1.000 1.000 1.000 1.000
  Test 0.882 (0.771 - 0.993) 0.838 0.778 0.895 0.875 0.810
MLP
  Training 0.969 (0.921 - 1.000) 0.921 0.944 0.900 0.895 0.947
  Test 0.971 (0.929 - 1.000) 0.919 0.833 1.000 1.000 0.864

CI: confidence interval; MLP: multi-layer perceptron; SVM: support vector machine; RF: random forest; AUC: area under the curve; NPV: negative 
prediction value; PPV: positive prediction value.

Figure 3. The receiver operating characteristic (ROC) curves of the support vector machine (SVM), random forest, Extra Trees, 
gradient boosting, AdaBoost, and multi-layer perceptron (MLP) in the test cohorts.
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Figure 4. Performance of the lesion classification model trained with the abdominal computed tomography (CT) images. (a) 
Confusion matrix was drawn using the test dataset (0: neonatal adrenal hematomas; 1: neonatal adrenal neuroblastoma). (b) Im-
age evaluation by the receiver operating characteristic (ROC) curve was drawn for neuroblastoma. Area under the curve (AUC) 
was calculated.

Figure 5. Computed tomography (CT) of the neonatal adrenal neuroblastoma and hematoma: original image (a, c) and heat 
map (b, d).
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The limited number of patients in our study may have 
resulted in a risk of overfitting the ML-based classification 
model. However, previous studies have indicated that sig-
nificant bias still occurs when the sample size is substantial. 
Therefore, we conducted data augmentation to improve class 
balance and prevent overfitting of the model before conduct-
ing further evaluations [29]. When the quantity of obtainable 
data is limited, it may require multiple attempts with different 
ML classifiers to identify the optimal ML approach. Com-
pared with traditional statistical models, ML methods can 
automatically capture the complex relationships in the data, 
which is more valuable for clinical research [30], especially 
in building clinical prediction models [31]. Six ML-augment-
ed approaches (AdaBoost, Extra Trees, gradient boosting, 
MLP, SVM, and RF) were employed. All yielded good dis-
criminative power to correctly classify as hematomas or tu-
mors and obtained an AUC range of 0.827 to 0.985 in the test 
set. This diagnostic performance surpassed the accuracy of 
the radiologists, who achieved an accuracy of 81.6%. SVM 
has satisfactory stability and efficiency, achieving almost the 
same performance as a large number of training samples and 
a few training samples [32, 33]. AdaBoost is in fact more 
appropriate for radiomics data because it is more robust to 
problems of overfitting [34] and commonly used with medi-
cal data due to its robustness with respect to noise and miss-
ing values [35].

The benefit of DL is its ability to replace manual feature 
acquisition with efficient algorithms for unsupervised or semi-
supervised feature learning and hierarchical feature extraction. 
Satisfactory performances have been demonstrated in thyroid 
tumor classification [36], automated analysis of renal histopa-
thology images [37], assisted reading of films for diagnosis 
of novel coronavirus pneumonia [38], diagnosis of fractures 
[16], and classification of severity of diabetic retinopathy [19]. 
Imaging omics analysis, as a non-invasive tool, can provide 
healthcare professionals with novel ideas for early diagnosis. 
Moreover, this technique facilitates the development of diag-
nostic and prognostic models for diseases, integrated with es-
sential clinical information.

This study had several limitations. First, this study is 
a retrospective, single-center, and small sample size study, 
which uses single-machine scanning and may have potential 
selection bias. The relatively rarity of neonatal suprarenal 
mass in general makes it difficult to build a sizeable cohort 
without multicenter support from multiple research teams 
[39]. Second, the types of neuroblastomas we included were 
not entirely cystic. Considering the heterogeneity of the tu-
mor and the complex situation of the hematoma [24], solid 
or cystic-solid masses can be used for training. In the future, 
more cystic adrenal lesions can be included for prospective 
verification. Finally, some controversy in defining the bound-
aries of manual segmentation relates to subjectivity [40], and 
3D ROI is not clinically practical due to the long duration of 
segmentation. 2D ROI is easier to calculate and takes less 
time, but the performance of CNN on 2D neuroblastoma 
slices is uniformly poorer than the best performance of other 
ML models [15]. In the future, optimized automatic selection 
of image planes would help push the method toward a purely 
unsupervised approach, which would be ideal for clinical in-

tegration [41]. This automation will enable validation of our 
work on large-scale datasets.

Conclusion

ML decision classifiers and DL framework constructed from 
CT-based radiomics features offered a non-invasive method to 
differentiate neonatal adrenal hematoma from neuroblastoma 
and performed better than the clinical experts.
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