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Neurological and neuropsychiatric disorders are mediated by several pathophysiological
mechanisms, including developmental and degenerative abnormalities caused primarily
by disturbances in cell migration, structural plasticity of the synapse, and blood-vessel
barrier function. In this context, critical pathways involved in the pathogenesis of these
diseases are related to structural, scaffolding, and enzymatic activity-bearing proteins,
which participate in Ca2+- and Ras Homologs (Rho) GTPases-mediated signaling.
Rho GTPases are GDP/GTP binding proteins that regulate the cytoskeletal structure,
cellular protrusion, and migration. These proteins cycle between GTP-bound (active)
and GDP-bound (inactive) states due to their intrinsic GTPase activity and their dynamic
regulation by GEFs, GAPs, and GDIs. One of the most important upstream inputs that
modulate Rho GTPases activity is Ca2+ signaling, positioning ion channels as pivotal
molecular entities for Rho GTPases regulation. Multiple non-selective cationic channels
belonging to the Transient Receptor Potential (TRP) family participate in cytoskeletal-
dependent processes through Ca2+-mediated modulation of Rho GTPases. Moreover,
these ion channels have a role in several neuropathological events such as neuronal
cell death, brain tumor progression and strokes. Although Rho GTPases-dependent
pathways have been extensively studied, how they converge with TRP channels in
the development or progression of neuropathologies is poorly understood. Herein, we
review recent evidence and insights that link TRP channels activity to downstream Rho
GTPase signaling or modulation. Moreover, using the TRIP database, we establish
associations between possible mediators of Rho GTPase signaling with TRP ion
channels. As such, we propose mechanisms that might explain the TRP-dependent
modulation of Rho GTPases as possible pathways participating in the emergence or
maintenance of neuropathological conditions.

Keywords: TRP channels, Rho GTPases, actin cytoskeleton, TRP interactome, GEFs, GAPs

INTRODUCTION

Neurological diseases encompass broad pathophysiological events, characterized by alterations
such as hypo- or hyper-connectivity of synapses, tumoral growth, and loss of neuronal networks
(Forrest et al., 2018; La Rosa et al., 2020; Liu Y. et al., 2020). Nevertheless, in most of the cases the
precise cellular and molecular mechanisms involved in the pathogenesis of these disorders have
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not been fully described. Ion channels have been widely described
as pivotal molecular entities that contribute to brain physiology
and are associated to the development of various brain diseases,
thus emerging as highly potential pharmacological targets (Bagal
et al., 2013). Several members of the TRP ion channel family
play key roles in the regulation of cellular and tissue structures,
such as membrane protrusions, synapses, endothelial barriers
and glial architecture (Goswami and Hucho, 2007; Goswami
et al., 2007a; Gorse et al., 2018; Zhao et al., 2018; Cornillot
et al., 2019), whose abnormal activity is intimately linked to
neurodevelopmental and neurodegenerative disorders (Morelli
et al., 2013). Despite that, how TRP channels participate in
brain physiology and brain-affecting diseases is still not fully
understood. The concerted activity of Rho GTPases has been
described as a signaling node that governs structural maintenance
and dynamic changes of cell architecture, mainly through the
control and integration of cytoskeleton rearrangements and
membrane trafficking. Similarly to TRP channels, Rho GTPases
command neurophysiological processes such as dendritic spines
morphology, axon cone growth, glial cells migration, blood-
brain barrier permeability and vascular tone (Wu et al., 2005;
Stankiewicz and Linseman, 2014; Pennucci et al., 2019). Thus,
coordinated TRP channels and Rho GTPases activity might
be a conserved mechanism for the modulation of changes in
physiological and pathophysiological contexts.

Rho GTPases in Actin-Based Processes
in Brain
Ras Homologs (Rho) proteins are a family of small GTPases
belonging to the Ras superfamily. Since the discovery of the
first Rho protein (Madaule and Axel, 1985), twenty members
have been identified in mammals, currently grouped in 8
subfamilies (Vega and Ridley, 2008). These proteins cycle
between an “active” GTP-bound state, and an “inactive” GDP-
bound state. The basis for the cyclic activity of Rho GTPases
lies in 3 regulators: (1) Guanine Exchange Factor (GEF)
proteins, which catalyze swapping of GDP to GTP, allowing
the transition of Rho proteins into their “active” state; (2)
GTPases-Activating Proteins (GAP), which increase the intrinsic
GTPase activity of the guanosine nucleotide-binding protein,
promoting GTP hydrolysis and leading to the “inactive” state
(Bos et al., 2007); and (3) Guanine Dissociation Inhibitors
(GDI), which sequester the inactive form of Rho GTPases
to prevent their activation by GEFs (Dovas and Couchman,
2005) (Figure 1).

Rho GTPases are crucial for the regulation of the actin
cytoskeleton (Rottner et al., 2017) and processes involving
cellular motility such as contractility, migration, and membrane
protrusions (Machacek et al., 2009). RhoA, Rac1 and Cdc42
are the most studied and distinguished members of this family
(Ridley and Hall, 1992; Ridley et al., 1992; Wedlich-Soldner
et al., 2003). In neurons, actin cytoskeleton remodeling is
essential for several processes including neuronal growth (Marsh
and Letourneau, 1984), dendrite development and synapse
formation (Sin et al., 2002). These events are indispensable
for proper establishment and plasticity of brain circuits. Thus,

neurons require accurate actin cytoskeleton regulation, which
in turn depends on the fine spatiotemporal and coordinated
control of Rho GTPases activity (Murakoshi et al., 2011).
Accordingly, the modulation of Rho GTPases has been described
to occur in a time/length scale of minutes/micrometers (Pertz,
2010). Canonically, Rac1 activation facilitates the formation of
dendritic spines (Luo et al., 1996) and membrane ruffles, while
RhoA inhibits these processes and promotes spine shortening
(Tashiro, 2000). Moreover, while Glutamate-promoted Cdc42
activity is confined to stimulated dendritic spines, active RhoA
spreads along the dendrites (Murakoshi et al., 2011). Thus,
spatiotemporal regulation of Rho GTPases is a key point in
spine structural plasticity (Hedrick et al., 2016). In addition
to their role in neurons, Rho GTPases also play pivotal
functions on brain vessels and glial cells. For instance, Rho
GTPases regulate contractility and permeability of endothelial
brain vessels (Kutcher et al., 2007; Kruse et al., 2019), as
well as coordinate different morphological changes on glial
cells (reviewed in Zeug et al., 2018). Therefore, these proteins
are an essential component for maintaining brain homeostasis
and deregulation of their activity lead to several neurological
pathologies (Huang et al., 2017).

The precise coordination of Rho GTPases activity highly
depends on GEFs, GDIs and GAPs defined by establishing
differential protein–protein interactions (PPIs) of Rho GTPases
and their modulators. For instance, Rac1 regulation is mediated
by selective association with other proteins such as Tiam1 (Rac-
GEF), Bcr (Rac-GAP) (Um et al., 2014), and Vilse (Rac-GAP)
(Lim et al., 2014). Moreover, RhoA activity is regulated by
the interaction of Graf1c (RhoA-GAP) with the tyrosine kinase
Pyk2 in postsynaptic neurons, resulting in spine retraction (Lee
et al., 2019). Furthermore, Rho GEFs that contain the PDZ-
domain interact with lysophosphatidic acid, which promotes
RhoA activation (Yamada et al., 2005). Hence, GAP and GEF
differential localization and/or interactions are crucial elements
for the spatiotemporal regulation of Rho GTPases. Consistently,
mutations on these proteins (GAP/GEF) lead to several
congenital malformations or developmental neuropathologies
(O’Brien et al., 2000; Bai et al., 2015; Pengelly et al., 2016). In this
context, the existence of over 70 GEFs and over 70 GAPs adds
a further level of complexity in the regulation of Rho GTPases
(Müller et al., 2020). In line with this, GEFs and GAPs are tightly
regulated by protein interaction partners, second messengers
such as Ca2+, and posttranslational modifications (PTM) such as
phosphorylations (Bos et al., 2007) (Figure 1).

Rho GTPases are also modulated by posttranslational
modifications (PTMs). Prenylation of the carboxyl-terminal is
the most frequent modification, which entails the addition
of a 15- or 20- carbon isoprenoid to a cysteine residue
immersed in a CAAX motif (Roberts et al., 2008; Reddy et al.,
2020). This PTM causes Rho GTPase targeting to the plasma
membrane (Hodge and Ridley, 2016), leading to GTP-bound Rho
GTPases interaction with their effectors and regulators (Reddy
et al., 2020). Moreover, several Rho GTPases phosphorylations,
ubiquitylation, sumoylation, and their differential upstream
enzymes and outcomes have been reported (extensively reviewed
in Hodge and Ridley, 2016).
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FIGURE 1 | Cyclic Rho GTPase modulation, functions, and TRP channel-mediated regulation hypothesis. Rho GTPases cycle between an active form bound to GTP
(blue arrows) and an inactive form that is attached to GDP (red arrows). Binding to guanosine nucleotide is induced by GEF proteins. GAP proteins promote GTPase
activity, and GDI proteins preclude GDP exchange to GTP. The active state of Rho GTPase promotes the rearrangement of the actin cytoskeleton by the modulation
of several effectors. The actin cytoskeleton mediates multiple processes depending on the cell types. In neurons, axon outgrowth and dendritic spine dynamics
regulation. In brain vasculature, Rho GTPases regulate endothelial permeability and vascular tone regulation. Rho GTPases regulates migration in glial cells. TRP
channels-mediated Ca2+ influx regulates signal transductors/modulators, leading to changes in GAP, GEF, or GDI activity, thus promoting Rho GTPases
activation/inactivation and actin cytoskeleton regulation.

The activity of several Rho GTPases is linked to depolarization
and Ca2+ influx in neurons (Hirata et al., 1992; Szászi et al., 2005).
This Ca2+ influx is related to Voltage-gated Ca2+ Channels
(VGCCs), although intracellular Ca2+ reservoirs and Store-
Operated Ca2+ Entry (SOCE) also might have an important role
in the activation of Rho GTPases as has been widely reported
(Jin et al., 2005; Saneyoshi and Hayashi, 2012; Bollimuntha
et al., 2017). In this context, most of the mechanisms described
involved in Ca2+-dependent Rho GTPase modulation rely
on Calmodulin (CaM) and Calmodulin-dependent Kinases
(CaMKs) as transductors of Ca2+ signals through the regulation
of GEFs, GAPs, and GDIs. For example, neurotrophins induce
intracellular long-range Ca2+ waves, increasing RhoA activity
during axon formation (Takano et al., 2017). Interestingly,
Ca2+ waves promote CaMKI activation, leading to recruitment
and interaction with GEF-H1, promoting RhoA activation
(Takano et al., 2017). Also, CaMKII phosphorylates GEFs and
GAPs of Rac1 and Cdc42, such as the Rac1 GEF Tiam1,
and RICS, a Cdc42/Rac1 GAP (Okabe et al., 2003). CaMKII-
dependent phosphorylation of the Rac1 GEF Kalirin-7 promotes
cytoskeleton rearrangement and leads to the plasticity of
dendritic spines (Xie et al., 2007).

In this context, the correlation between local/broad Ca2+

signals and the activation of different Rho GTPases is an
interesting issue, but the molecular entities responsible for these
Ca2+ signals have not been fully identified. TRP channels are
implicated in a myriad of cellular processes associated with actin-
based events in migratory cells, through the regulation of Rho
GTPases activity (Canales et al., 2019). These channels also play
an important role in brain physiology (Dussor et al., 2014; Zeng
et al., 2016). As such, TRP channels might serve as key hubs

for signaling transduction related to Rho GTPases activities,
regulating several features of brain function and architecture.

TRP CHANNELS

The TRP ion channel family comprises six subfamilies of
non-selective cationic channels in mammals, corresponding to
TRPA, TRPC, TRPM, TRPML, TRPP, and TRPV (Clapham
et al., 2001). All members present six transmembrane domains
(S1 – S6) and cytoplasmic amino- and carboxyl-terminal
segments of varying length, and a pore-loop between S5 and
S6 domains (Table 1) (Hellmich and Gaudet, 2014). The first
identified TRP channel in mammals was named as classical
or canonical (TRPC). The remaining subfamilies have been
named depending on the designation of the first identified
member of the respective subfamily, which relies on activation
properties, function and/or featured domains (Montell, 2005;
Venkatachalam and Montell, 2007).

Transient receptor potential channels can be activated
by multiple stimuli, such as temperature, pH changes, and
membrane mechanical stress (Clapham, 2003). Moreover, the
activity of these channels can be modulated by PIP2 (Nilius
et al., 2008; Rohacs, 2014), PTMs such as phosphorylation
(Cerda et al., 2015; Xu et al., 2019; Liu X. et al., 2020) and
interacting proteins (Singh et al., 2002; Zhu, 2005; Cho et al.,
2014; Rivas et al., 2020). Monomers can form heterotetrameric
functional channels with distinctive properties in relation
with their homotetrameric counterparts (Chubanov et al., 2004;
Ma et al., 2011; Kim et al., 2019). Heteromultimerization can
occur not only among members of the same TRP subfamily but
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TABLE 1 | TRPA, TRPC, TRPV, TRPM and TRPML channels features.

TRP subfamily Size PCa
2+

/PNa
+ Domains N-term Domains C-term Phosphoinositides-

Binding
Localization

TRPA ∼1000 aa 0.8–1.4 Ankyrin-repeats TRP-box-like motif
Inositol phosphate binding region
Coiled-coil region

PIP2 – Activation Plasma Membrane

TRPC <1000 aa 0.5 – 9 Ankyrin-repeats
Coiled-coil regions

TRP-box motif
Calmodulin-binding
CIRB domains
PDZ domains

PIP2-Activation/Inhibition Plasma Membrane

TRPV <900 aa 1 - >100 Ankyrin-repeats TRP-box motif
Calmodulin-binding

PIP2 –
Activation/Inhibition PG-
Activation (V1) PI-
Activation (V1) PS-
Activation (V1)

Plasma Membrane

TRPM <1500 aa 0.5–10 (Except
M4/5 which
have <0.05)

Melastatin family
channel homology
region

TRP-box motif
Coiled-Coil region
Nudix (M2)
Kinase (M6/7)

PIP2 – Activation Plasma Membrane
Melanosomes (M1)

TRPML <600 aa ∼1 – EF-Hand motifs PIP2 – Activation Endolysosome vesicles

also with those of different subfamilies (Ma et al., 2011). These
features and the wide expression of these channels in multiple
tissues and cell types, grant a high level of complexity to their
role in diverse physiological and pathophysiological processes
(Venkatachalam and Montell, 2007). In this context, several TRP
channels are implicated in cellular processes related to central
nervous system (CNS) functioning such as the modulation of
neuronal excitability (Mickle et al., 2016; Hong et al., 2020b),
maturation or establishment of subcellular structures such as
dendrites (Tai et al., 2008), excitatory synapses (Zhou et al., 2008),
axonal outgrowth (Jang et al., 2014), frontal cortex postnatal
development (Riquelme et al., 2018) and brain blood flow
regulation (Earley et al., 2004; Cornillot et al., 2019). Also, current
evidence suggests that TRP channels could regulate downstream
processes such as gene expression or more lasting effects, like
Long Term Potentiation (LTP). Hence, it is not surprising to
find CNS pathophysiological conditions associated with TRP
channels activity (Table 2). TRP channels have been associated
to stroke (Zhang and Liao, 2015), CNS ischemia-reperfusion
damage (Gauden et al., 2007; Chen et al., 2017; Leiva-Salcedo
et al., 2017), status epilepticus (Kim et al., 2013; Phelan et al.,
2017), Alzheimer’s and Parkinson’s diseases (Zhang et al., 2013;
Hong et al., 2020b), and progression of neoplasms of neuronal
(Chen et al., 2014; Middelbeek et al., 2015) or glial (Lepannetier
et al., 2016; Ou-Yang et al., 2018) origin.

Several reports suggest a role for TRP channels on Rho
GTPases regulation. In this context, interactome maps based
on different Protein–Protein Interaction databases suggest
associations between TRP channels with Rho GTPases-related
proteins. For instance, the TRIP database, a curated database
from individual studies that report protein interactions with
TRP channels, provides insightful information regarding the
TRP-Rho GTPase interactions (Shin et al., 2011). Other general
interactome databases such as BioGRID (Oughtred et al., 2019)
and BioPlex (Schweppe et al., 2018), generated from high-
throughput interactome datasets and curated individual studies,
complement these interactions. The resulting interactome map
reveals that the TRP-interacting proteins network reveals several

Rho GTPases-related regulators, such as Src, PLC-γ1, Akt, PKC
and the GTPase Gαq (Shin et al., 2011) (Figure 2). In this
context, the activity or expression of TRPC3 (Kitajima et al.,
2011; Numaga-Tomita et al., 2016), TRPC5 (Tian et al., 2010)
TRPC6 (Singh et al., 2007; Tian et al., 2010), TRPM4 (Cáceres
et al., 2015), TRPM7 (Su et al., 2011), TRPV1 (Li J. et al.,
2015; Li et al., 2015a), and TRPV4 (Ou-Yang et al., 2018;
Zhao et al., 2018) increase the activity of several Rho GTPases
(Table 3). Also, there is evidence showing that TRPM8 (Sun
et al., 2014), TRPV2 (Laragione et al., 2019), and TRPV4 (Thoppil
et al., 2016) channels inhibit Rho GTPases (Table 3). These
opposite effects could rely on multiple mechanisms that give
versatility to Ca2+ signals-dependent responses such as specific
localization in membrane subdomains or cellular substructures
of the channels, leading to differential and dynamic interactions
with Ca2+-regulated proteins that might modulate Rho GTPases.
This regulation might occur via activation of Ca2+-dependent
kinases proteins such as PKC and CaM kinases, leading to direct
regulatory phosphorylations on Rho GTPases (Hodge and Ridley,
2016). Despite the above, the elevated number of GAPs and GEFs
(Müller et al., 2020) and the diverse outcomes on cytoskeleton
rearrangement elicited by TRP channels (Kuipers et al., 2012;
Canales et al., 2019) might point to an indirect TRP channels-
dependent regulation of Rho GTPases through these modulators
(GEFs and GAPs).

In the following sections, based on established and
inferred interactions, we will discuss and hypothesize possible
mechanisms for TRP channels participation via Rho GTPases in
different neuropathologies.

TRPC Channels
TRPC is the founding subfamily of the mammalian TRP channel
family, since the first TRP channel found in mammals was named
”canonical” owing to its similarities to the TRP channel from
Drosophila (Montell and Rubin, 1989; Clapham et al., 2001). The
mammalian TRPC subfamily can be divided into two subgroups
based on the percentage of identity between their sequences: (1)
TRPC1/TRPC2/TRPC4/TRPC6 and (2) TRPC3/TRPC6/TRPC7.
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TABLE 2 | TRP channels-associated pathologies and possible Rho GTPases-dependent mechanisms.

TRP Channel TRP Channel activity deregulation-associated disease Possible Rho GTPase-dependent mechanism for TRP
channel role in disease

TRPC3 Mwk phenotype (Wu et al., 2019), Cerebellar ataxia
(Dulneva et al., 2015)

Aberrant spine remodeling/morphology due to deregulation of
CaMKII/Tiam1 axis

TRPC5 Substance abuse (Pomrenze et al., 2013) – Excitotoxicity
(Phelan et al., 2013)

Rac1 and DR-2-mediated regulation of RhoA

TRPC6 Glioma (Ding et al., 2010). AD (Lessard et al., 2005; Feng, 2017) Glioma: Promotion of FAK activation, cell proliferation and migration

AD: Loss of TRPC6 expression leads to the activation of Rac1,
promoting the amyloidogenic pathway

TRPV1 AD (Balleza-Tapia et al., 2018; Du et al., 2020), Glioblastoma
(Nabissi et al., 2016)

AD: Protective effect due to induction of axonal filopodia or
dendritic spines Glioblastoma:Increment of cell invasion through
RhoA activity

TRPV2 Possible participation in neurodegenerative processes Rac1/RhoA-mediated neuritogenesis and tubulogenesis modulation

TRPV4 ICH, TBI (Zhao et al., 2018), AD (Zhang et al., 2013) RhoA-mediated endothelial dilation and vascular tone regulation

Glioma progression (Ou-Yang et al., 2018) Increased cell migration due to enhanced Rac1 activity

TRPM4 IS (Leiva-Salcedo et al., 2017; Chen et al., 2019), glutamatergic
toxicity (Schattling et al., 2012), SCI (Gerzanich et al., 2009)

Rac1-mediated induction of NADPH oxidase and ROS production

TRPM7 IS (Chen et al., 2015), Neuroblastoma (Middelbeek et al., 2015) IS: RhoA upregulation and subsequent induction of cell death.

Neuroblastoma: RhoA-dependent cytoskeleton remodeling
Endothelial Barrier disruption

TRPM8 Migraines (Gavva et al., 2019; Ling et al., 2019), Glioblastoma
(Zeng et al., 2019)

Regulation of cerebral arterial vasodilation

TRPML1 Mucolipidosis type IV (Bargal et al., 2000) Control of Rho GTPases-dependent membrane trafficking

ICH, intracerebral hemorrage; IS, ischemic stroke; TBI, traumatic brain injury; SCI, spinal cord injury; AD, Alzheimer’s disease.

Of note, TRPC2 is a pseudogene in Homo sapiens (Wang et al.,
2020). These channels can heteromultimerize with members of
the corresponding (TRPC) or other sub-families, which yields
functional non-selective ion channels with a wide range of
relative PCa/PNa (Table 1) (Chen et al., 2020). All these channels
are responsive to GPCR/RTK-induced PLC activation (Wang
et al., 2020). Some members also respond to ER-Ca2+ stores
depletion via STIM1, such as TRPC1, TRPC3, TRPC4, and
TRPC5 (Yuan et al., 2007; Lee et al., 2014). Moreover, TRPC
channels activity is regulated by PIP(4,5)2 and PIP2-derivates
such as DAG, IP3, PI(4)P and PI. Structurally, TRPC channels are
composed by intracellular N-terminal and C-terminal domains,
and six membrane-spanning domains. Expression of TRPC
channels has been reported in various tissues, such as kidney,
salivary glands, hippocampus, pancreatic β cells, heart, and
vascular smooth muscle, and therefore participate in a wide
variety of physiological processes (Chen et al., 2020).

TRPC3
TRPC3 channels are characterized by their coupling to tyrosine
kinase and G protein coupled receptors activation, acting as
mediators of Ca2+ signals induced by these receptors (Ambudkar
and Ong, 2007). TRPC3 channels are especially abundant in
the brain, mainly in the cerebellum, caudate nucleus, putamen
and striatum (Riccio et al., 2002). These channels participate in
Purkinje cells physiology in the cerebellum (Hartmann et al.,
2008). Indeed, mGluR1 promotes TRPC3-dependent rises of
local Ca2+ signals, leading to slow membrane depolarization at
Purkinje cells dendrites (Hartmann et al., 2008). Accordingly,
changes in the expression or mutations of TRPC3 gene

cause detrimental consequences on motor functions such as
the ‘Moonwalker’ (Mwk) phenotype (Wu et al., 2019). Mice
with Mwk phenotypes display gait and limb incoordination
(Becker, 2017). Interestingly, TRPC3 upregulation in Mwk
animals impairs the development of dendrites (Becker et al.,
2009). Furthermore, the mutant variant R672H of the human
TRPC3 gene leads to cerebellar ataxia (Dulneva et al.,
2015). Consequently, TRPC3 activity deregulation might induce
structural alterations during the progress of cerebellar ataxia by
modulating dendrite development.

There is not a direct evidence for TRPC3-mediated regulation
of Rho GTPases in neurons or brain tissues. Nevertheless, data
obtained from other models, as well as TRPC3/Rho GTPases
associated pathways, might suggest a functional relationship
between these proteins. For instance, BDNF induces Rac1 and
Cdc42 activation, but not RhoA, through activation of TrkB
receptor (Hedrick et al., 2016). Moreover, BDNF-induced TrkB
activation leads to TRPC3 activation, which is necessary to induce
spine remodeling (Amaral and Pozzo-Miller, 2007), suggesting
that TRPC3 activation might be a mediator for BDNF-dependent
activation of Rac1 and Cdc42, although further studies would
be needed to confirm this. Interestingly, TRPC3 inhibition
in heart mouse model induces a reduction of CaMKII and
Rac1 activity (Kitajima et al., 2011). CaMKII-mediated Tiam1
phosphorylation leads in turn to Rac1 activation (Fleming
et al., 1999; Buchanan et al., 2000; Tolias et al., 2005). These
data suggest that TRPC3 activation by BDNF might induce
Tiam1 CaMKII-dependent phosphorylation (Table 3), resulting
in dendritic spine remodeling by Rac1 activity (Figure 3).
Furthermore, downstream effectors might include PAK1, since
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FIGURE 2 | Map of curated TRP ion channel interactors associated with Rho GTPases pathways. Data obtained from the TRIP database showing interactors of
TRPC3, TRPC5, TRPC6, TRPV1, TRPV2, TRPV4, TRPM4, TRPM7, TRPM8, and TRPML1. TRP channels members are grouped and color-coded by families.

its activation by Rac1 that leads to actin remodeling through
LIMK1 activity (Edwards et al., 1999). Likewise, CaMKII-ß
regulates dendritic spine formation in Purkinje cells through
a mechanism that involves mGluR1 and PKC activation. This
CaMKII-ß-mediated effect requires IP3R activation (Sugawara
et al., 2017). Moreover, CaMKII has an important role in
the production of LTP by promoting the insertion of AMPA
receptors in the post synaptic region (Lisman et al., 2012).
Importantly, our curated search in the TRIP database showed
that TRPC3 interacts physically and functionally with the
IP3R isoforms (Kim J.Y. et al., 2006), and also with BDNF
receptor TrkB (Li et al., 1999) (Figure 2). Thus, we propose
that TRPC3 activation by BDNF/TrkB or mGluR1 in Purkinje
might elicit spine remodeling through CaMKIIß activation and
subsequent Rac1 activation. This proposed pathway could be
relevant for pathologies that entail degeneration of neuronal
processes. For example, morphology of dendritic spines is heavily
altered in conditions of aberrant CaMKII/Tiam1/Rac1 activity,
which might collaborate to intellectual disability of patients
bearing mutations of the ATRX-encoding gene (Shioda et al.,

2011). These data is consistent with a possible role for TRPC3
in this pathology due to the above-mentioned role of this
channel in BDNF-dependent spine remodeling, which might
open new avenues of studies for novel TRPC3 functions in
brain pathophysiology.

TRPC5
TRPC5 is another non-selective cation channel that belongs
to the TRPC subfamily. TRPC5 activity is related to many
sensorial features such as touch and hearing (Sexton et al., 2016),
satiety sensation (Gao et al., 2017), and internal physiological
pH chemosensitivity (Cui et al., 2011). TRPC5 regulates neurites
length (Greka et al., 2003), neurite outgrowth during neuron
differentiation (Heo et al., 2012), neurite retraction (Hui et al.,
2006), and axonal outgrowth (Oda et al., 2020). Moreover,
several studies link the function of TRPC5 to dynamic behavioral
processes that are tightly related to structural changes in synapsis,
such as fear (Riccio et al., 2009), addictive behavior (Pomrenze
et al., 2013), and tolerance to opioids (Chu et al., 2020) (Table 2).
Thus, TRPC5 activity has been intimately associated to LTP
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TABLE 3 | Rho GTPases regulated by TRP channels.

TRP Channel Effect on Rho
GTPase Regulation

Downstream Rho GTPase Possible mechanism for GTPase modulation by TRP channel

TRPC3 Positive Rac1 (Kitajima et al., 2011) CaMKII-induced Rac1 GEF Tiam1 phosphorylation/activation*

TRPC5 Positive Rac1 (Tian et al., 2010) Interaction with SESTD1*

Negative Rhoa A (Tian et al., 2010) Rac1 positive modulation, leading to RhoA inhibition*

TRPC6 Positive RhoA (Singh et al., 2007;
Tian et al., 2010;
Jiang et al., 2011)

Calcineurin-dependent regulation of RhoA*

Negative Rac1 (Tian et al., 2010) Downregulation of Rac1 GEF Tiam1 by TRPC6-mediated NMDA receptor
inhibition*

TRPV1 Positive RhoA (Li J. et al., 2015; Li et al., 2015a) TRPV1-mediated Inhibition of AMPA receptor endocytosis*

TRPV2 Negative Rac1/RhoA (Laragione et al., 2019) PKA activation by TRPV2-driven cAMP increases, leading to RhoA inhibition*

TRPV4 Positive RhoA (Zhao et al., 2018) PKC-dependent RhoA activation (Brain endothelial cells, Zhao et al., 2018)

Rac1 (Ou-Yang et al., 2018) Increasing AKT phosphorylation levels (U87 glioma cells, Ou-Yang et al., 2018)

TRPM4 Positive Rac1 (Cáceres et al., 2015) Modulation of Ca2+ signals – Vm depolarization-dependent phosphatidylserine
translocation*

TRPM7 Positive RhoA, Rac1, CDC42 (Su et al., 2011) RhoA: Modulation by p116RIP* Rac1: S1P1 activation through Mg2+ influx
(Endothelial cells [Zhu et al., 2019])

TRPM8 Negative RhoA (Sun et al., 2014) Regulation of mitochondrial function and ROS production, leading to
modulation of RhoA/ROCK (Vascular Smooth Muscle cells, Xiong et al., 2017)

TRPML1 Undetermined Possible modulation of Rac1,
Rac2, Cdc42 and RhoG

Interaction with Rac1, Rac2, Cdc42 and RhoG*

*Proposed mechanisms.

modulation (Phelan et al., 2013), suggesting a participation
on synaptic plasticity and in turn, on brain physiology
and pathophysiology. The morphological changes mediated
by TRPC5 overlap with Rho GTPases-dependent signaling,
since this has also been related to structural modifications
required for memory and learning (Diana et al., 2007). Thus,
TRPC5 might promote structural dynamic changes through
the modulation of Rho GTPases. Interestingly, enhanced Rac1
activity has been reported upon TRPC5 overexpression (Tian
et al., 2010), although, the underlying mechanisms remain
unclear. Interestingly, TRPC5 interacts with Rho GTPases
modulators, such as SESTD1 (Figure 2) (Miehe et al., 2010).
SESTD1 is a putative scaffold protein that diminishes dendritic
spine density by abolishing the interaction between Rac1 and
the Rac-GEF Trio8 (Lee C.C. et al., 2015). Nevertheless, it is not
known whether this mechanism could affect the retraction or
extension of dendritic spines. In this context, we suggest that
SESTD1 interaction with TRPC5 might decrease its available
levels to block the Rac1-Trio8 association, causing an indirect
TRPC5-dependent increased Rac1 activity. This is consistent
with the negative regulatory effect of TRPC5 on neurites growth
as discussed above. Rac1 activity promotes the growth of neurites
(Woo and Gomez, 2006). Therefore, a possible negative effect
of TRPC5 upon neurite extension through Rac1 modulation
seems paradoxical. However, it has been recently reported that
either hypo or hyperactivity of Rac1 could lead to neuritogenesis
impairment, giving arise to intellectual disability (Zamboni
et al., 2018). On the other hand, TRPC5 interacts with CaMKII
(Puram et al., 2011). This could be relevant since CaMKII is
an activator of RhoA and Cdc42, leading to the induction of
dendrites growth (Murakoshi et al., 2011). Consistently, TRPC5

promotes dendrite growth through CaMKII activity (He et al.,
2012), suggesting that TRPC5 might control this process through
CaMKII/RhoA/Cdc42 axis. As mentioned before, CaMKII is
important for the production of LTP response (Lisman et al.,
2012), which suggests a TRPC5 participation in processes related
to memory and learning.

TRPC5 activity is also associated with cell viability. These
channels have been proposed to exert either a protective role
(Hong et al., 2020a) or promote neuronal loss depending on its
PTM status in neurodegenerative disorders such as Huntington’s
disease (Hong et al., 2015). Moreover, TRPC5 promotes cell death
induced by oxidative stress (Park et al., 2019) and excitotoxicity
during epileptic seizures (Phelan et al., 2013). Dopamine D2
receptor (D2R) activity has been reported to enhance cell
vulnerability by inducing neurite retraction and axon collapse
via RhoA/ROCK activity (Deyts et al., 2009). TRPC5 interacts
with D2R (Figure 2) (Hannan et al., 2008) and as such, TRPC5
channels might induce cell death in a RhoA-dependent manner,
although this still needs to be determined. Interestingly, Rac1
activity is associated with cell death promotion during oxidative
stress caused by neurovascular ischemia (Smith et al., 2017;
Karabiyik et al., 2018). Moreover, Rac1 activity might also have
a protective role in epileptic excitotoxicity (Posada-Duque et al.,
2015). In contrast, RhoA activation has been linked to Ca2+-
dependent neuronal loss elicited by excitotoxicity (Semenova
et al., 2007). This dichotomy between protective and degenerative
roles of Rho GTPases upon ischemic injury has been widely
reviewed elsewhere (Posada-Duque et al., 2014). As such, TRPC5
might have a dual participation in both dynamics of protrusive
processes and neuronal death. These effects might depend on
differential TRPC5-dependent spatiotemporal regulation of Rho
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FIGURE 3 | Possible mechanisms of Rho GTPases modulation by TRP channels. Glia and Neuroblastoma: TRPC6 might modulate RhoA in glial cells, thus
regulating cell migration. TRPM7 participates in neuroblastoma invasion. Vasculature: TRPV4 and TRPM8 display the opposite effect over RhoA. Both channels
modulate vasculature tone. TRPV4 promotes endothelial dilation in a RhoA-dependent fashion. Axon cone: TRPML1-dependent regulation of protein trafficking via
modulation of Rac1/Cdc42 might occur. TRPV1 promotes RhoA activity and modulates axonal growth. TRPV2 might have an inhibitory role of RhoA. Dendrites and
spines: TRPM4, TRPC3, TRPC6, and TRPC5 might induce Rac1 activity, leading to dendritic spines formation. Under ischemic conditions, these channels might
have a Rac1-dependent role in ROS production, leading to neuronal cell death. TRPM7 and TRPC5 are proposed to regulate RhoA, favoring the retraction of
dendritic spines or axonal growth.

GTPases, a process that could be further analyzed with new tools
to study more exactly ion channel-related spatiotemporal events.

TRPC6
TRPC6 shares close sequence and structural homology with
TRPC3. TRPC6 can also be modulated by tyrosine kinase
receptors and G protein-coupled receptors, being especially
sensitive to activation by diacylglycerol (DAG) (Hofmann et al.,

1999). TRPC6 is widely expressed in the peripheral nervous
system (Riccio et al., 2002). TRPC6 is located in excitatory
post-synaptic neurons and regulates the number of spines and
spatial learning and memory (Zhou et al., 2008) via CaMKIV
activation and CREB regulation, promoting both neurite and
dendrite growth (Tai et al., 2008; Heiser et al., 2013). The
transcription factor CREB is associated with the late phase of
LTP. Its activation results in changes in gene expression that
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promote synapsis development and structural rearrangements
(Frey et al., 1993; Nguyen et al., 1994). This suggests that TRPC6
contributes to the late phase of LTP. Interestingly, CaMKIV
has been associated with actin cytoskeleton remodeling, since
it regulates LIM Kinase 1 (LIMK1) activity to promote neurite
growth (Takemura et al., 2009). In turn, LIMK1 phosphorylated
cofilin to favor actin filaments stabilization (Yang et al., 1998).
This suggests that TRPC6 activity might affect synapsis formation
through the CaMKIV-LIMK1-cofilin pathway. Moreover, several
reports suggest a protective role for TRPC6 from excitotoxicity
by inhibiting NMDA receptor activity (Li et al., 2012; Shen et al.,
2013). Although no direct interaction has been reported between
TRPC6 and Rho GTPases, our analysis of the curated list of
interactors of TRP channels from the TRIP database (Figure 2)
reveals that TRPC6 interacts with several proteins that regulate
Rho GTPases function such as Calcineurin (Ly and Cyert, 2017).
Furthermore, several studies report the contribution of TRPC6
in RhoA regulation in non-excitable cells (Singh et al., 2007;
Tian et al., 2010).

Similarly to TRPC3, TRPC6 has been involved in different
brain disorders such as neuronal damage in stroke, Aβ-
production in Alzheimer’s disease and especially in the
development and progression of glioma (Ding et al., 2010).
TRPC6-mediated effects in the brain have been described as a
mix between positive and negative. One of the most studied
TRPC6-related roles in cerebral pathologies is in the development
and progression of gliomas. TRPC6 is overexpressed in glioma
samples compared to normal brain tissue. Additionally, its
activity is essential for G2/M phase transition and glioma
progression (Ding et al., 2010). Moreover, TRPC6 maintains
the stability of HIF-1α in glioma cells under hypoxia (Li
et al., 2015b) and mediates Notch-Driven glioblastoma growth
and invasiveness (Chigurupati et al., 2010). In this context,
the RhoA/ROCK signaling pathway is upregulated in glioma
cells, promoting cell migration and proliferation (Zohrabian
et al., 2009). Interestingly, RhoA/ROCK pathway is activated
by TRPC6 in other tissues such as the kidney (Yang et al.,
2013), suggesting that this relation between TRPC6 and
RhoA/ROCK might also play a role in glioma progression.
Moreover, upregulation of TRPC6 and subsequent increased
Ca2+ influx in podocytes lead to an aberrant activation of focal
adhesion kinase (FAK), which is necessary for focal adhesion
assembly and disassembly in migratory cells (Nakuluri et al.,
2019). RhoA activity can promote the activation of FAK (Al-
Koussa et al., 2020), suggesting an additional mechanism for
TRPC6-RhoA mediated tumoral progress in glioma (Figure 3).
Although there are several possible mechanisms for TRPC6-
mediated regulation of the RhoA/Rock pathway in glioma
progression, this still needs to be confirmed in the context of this
neoplastic disease.

As discussed above, TRPC6 also regulates several beneficial
processes in the neurons such as survival, synaptogenesis,
learning and memory, all of which are altered in Alzheimer’s
Disease (Feng, 2017). Overexpression of presenilin 2 and/or
Alzheimer’s-disease-related presenilin 2 variants, decreased
TRPC6-mediated Ca2+ entry in HEK293 cells (Lessard
et al., 2005). Moreover, TRPC6 expression and activity are

diminished in neurons from Alzheimer’s-disease patients. Also,
pharmacological activation of TRPC6 inhibited the elevation of
Aβ and phospho-tau in neurons of patients (Tao et al., 2020),
indicating a possible protective role of TRPC6 in Alzheimer’s-
disease. Moreover, upregulation of Rac1 appears to be important
in driving the progress of Alzheimer’s-disease by promoting
the production of the amyloid precursor protein and the
amyloidogenic pathway (Aguilar et al., 2017). Importantly, loss
of TRPC6 expression leads to the activation of Rac1 in the kidney
(Tian et al., 2010), which suggests that the lower expression of
this channel observed in the brain of Alzheimer’s-disease patients
could also promote the pathology by activating Rac1 (Figure 3).

TRPV Channels
The TRPV subfamily comprises six members, of which the
temperature-sensitive TRPV1 is the founder and the most
studied. TRPV1 was first described as an ion channel activated by
the vanilloid capsaicin, which explains the name of the subfamily
(Caterina et al., 1997, 1999; Güler et al., 2002). The members
of the TRPV subfamily share a similar architecture. These
channels contain an ankyrin-repeat domain (ARD) and follow
six transmembrane helix domains in the amino-terminal region.
Cytoplasmatic carboxyl-terminal contains the TRP domain and
other binding sites for lipid regulators, all of them with a resolved
structure (Yuan, 2019). In addition to the canonical role of TRPV
channels in temperature and pain sensing, other functions have
been attributed to these channels, wherein the regulation of Rho
GTPases emerges. Other characteristics are described in Table 1
and have been extensively summarized previously (Bevan et al.,
2014; Garcia-Elias et al., 2014; Kojima and Nagasawa, 2014).

TRPV1
TRPV1 was the first and most studied member of the vanilloid
subfamily of TRP ion channels (Caterina et al., 1997; Benítez-
Angeles et al., 2020). TRPV1 can be activated by exogenous
agonists such as capsaicin and resiniferatoxin (RTX) (Caterina
et al., 1997), as well as high temperature (>42◦C), pH and
membrane potential changes (Caterina et al., 1997; Piper et al.,
1999; Gunthorpe et al., 2000), mechanical forces (Ho et al., 2014),
ROS (Starr et al., 2008), arachidonic acid (Chu et al., 2003),
and endocannabinoids (Ross, 2003). Initial studies identified
TRPV1 in sensory neurons, describing its participation in
the regulation of pain transduction. TRPV1 is also expressed
in brain cortex, hippocampus, cerebellum, substantia nigra,
hypothalamus, midbrain, olfactory bulb and astrocytes (Mezey,
2000; Marinelli et al., 2003; Kim et al., 2005; Kim S.R. et al.,
2006; Cavanaugh et al., 2011; Park et al., 2012; Nam et al.,
2015). Interestingly, multiple studies associate TRPV1 activity
to cytoskeleton remodeling, cellular migration (Ho et al.,
2014; Miyake et al., 2015) and cell morphology (Goswami
and Hucho, 2007; Goswami et al., 2007b; Li et al., 2015a).
For example, mechanical stress-elicited TRPV1-dependent Ca2+

signals contribute to astrocyte migration (Ho et al., 2014).
Also, mitochondrial TRPV1 enhances microglial cell migration
(Miyake et al., 2015). Moreover, TRPV1 localizes in multiple
dynamic structures of neurons such as the growth cone, neurites
and axonal filopodia, displaying differential roles among these
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structures. TRPV1 activation results in rapid retraction of
growth cones in sensory neurons dependent on microtubule
depolymerization (Goswami et al., 2007b). Also, a recent study
established that Ca2+ influx mediated by TRPV1 is necessary for
NGF deprivation-induced axonal degeneration (Johnstone et al.,
2019). Interestingly, RhoA activity is necessary for axonal growth
cone collapsing and proper polarity establishment for axon
guidance (Wu et al., 2005; Loudon et al., 2006). Furthermore,
RhoA also controls microtubules protrusion during axonal
growth (Dupraz et al., 2019). Importantly, mechanical stress-
induced TRPV1 activity participates in guidance during neurite
extension of spiral ganglion neurons in a RhoA/ROCK-
dependent fashion (Figure 3) (Li et al., 2015a). Thus, along with
its participation on microtubule dynamics, TRPV1-dependent
modulation of RhoA-ROCK might also cooperate in guidance
during axonal growth (Figure 3). Since Ca2+ is crucial for axon
specification and outgrowth in CNS neurons (Davare et al., 2009;
Nakamuta et al., 2011), these TRPV1-dependent proposed effects
might occur in dorsal root ganglion (DRG) and CNS neurons as
well, although further studies would be needed to confirm this.

TRPV1 regulates axonal filopodia formation, a key process
for axonal branching (Spillane and Gallo, 2014). Interestingly,
this process is not dependent on the conductive activity of the
channel, but only on its C-terminal domain, which interacts
with microtubules (Goswami et al., 2007a). TRPV1-induced
filopodia resembles those formed upon ROCK and Myosin II
inhibition (Loudon et al., 2006). These data contrast with the
role of TRPV1 on the regulation of RhoA since this Rho-
GTPase canonically inhibits axonal branching (Spillane and
Gallo, 2014). We hypothesize that such discrepancy might be due
to the structural features rather than the conductive activity of
the TRPV1 channels on axon filopodia initiation, leading to a
differential mechanism on cytoskeleton regulation.

The complex role of TRPV1 in the modulation of neuronal
structures might be involved in neurodegenerative pathologies
such as Alzheimer’s disease. Indeed, a protective effect of TRPV1
in Alzheimer’s disease has been reported (Balleza-Tapia et al.,
2018; Du et al., 2020). One of the proposed mechanisms
consists in TRPV1-mediated inhibition of the AMPA receptor
endocytosis, which is a key modulator of spine development via
GEF-H1 (Kim et al., 2004; Kang et al., 2009). Thus, TRPV1-
dependent hampering of AMPAR endocytosis might be a putative
mechanism for TRPV1 positive modulation of RhoA, thus
contributing to the development of Alzheimer’s disease (Table 3).

TRPV1 has also been proposed as a negative prognosis marker
for glioblastoma (Nabissi et al., 2016), in which invasiveness
is highly dependent on RhoA activity since it regulates several
matrix metalloproteinases in this type of neoplasms (Al-Koussa
et al., 2020). Nevertheless, further studies are needed to detail
the participation of TRPV1 in the development of neoplastic
pathologies associated with neuronal or glial cells in the brain.

TRPV2
TRPV2 is a member of the vanilloid subfamily of TRP
ion channels that is activated by high temperatures (>52◦C)
(Caterina et al., 1999). TRPV2 is also activated by hypoosmolality
(Muraki et al., 2003), cell stretching (Sugio et al., 2017) and

chemical stimuli such as 2-aminoethoxydiphenyl borate (2-APB)
(Hu et al., 2004), cannabinoids (Qin et al., 2008), and probenecid
(Bang et al., 2007). TRPV2 is found in DRG neurons (Caterina
et al., 1999), trigeminal motor nucleus (Park et al., 2011),
hypothalamus and hindbrain regions (Wainwright et al., 2004;
Nedungadi et al., 2012), and astrocytes (Shibasaki et al., 2013).
TRPV2 localizes in subcellular domains enriched in filamentous
actin, such as the growth cone, filopodia, lamellipodia and
neurites, where interacts with soluble actin (Yadav and Goswami,
2019). Furthermore, inhibition of TRPV2 produces retraction of
the growth cone (Yadav and Goswami, 2019) (unlike TRPV1),
while its activation enhances axon outgrowth (Shibasaki et al.,
2010) and growth cone motility (Sugio et al., 2017), along with
inducing rapid membrane ruffling, changes in lamellipodial and
filopodial dynamics, and rapid translocation of leading edges
during neuritogenesis (Yadav and Goswami, 2019). Although the
downstream signaling pathway of TRPV2 activity has not been
elucidated yet, TRPV2 induces an increase in the cAMP levels
in neurites and their branching points (Yadav and Goswami,
2019). TRPV2-dependent increase of cAMP leads to PKA
activation, which inhibits RhoA (Figure 3) (Ellerbroek et al.,
2003; Oishi et al., 2012). Therefore, the remodeling effect on
the actin cytoskeleton by TRPV2 activity might be through
modulation of the Rho GTPase family via cAMP/PKA (Howe,
2004) (Table 3). Given this data, we hypothesize that these
mechanisms might lead to a TRPV2-dependent inhibition of the
growth cone retraction. Further studies are needed to determine
these mechanisms. Furthermore, PKA activates Rac1 (Goto et al.,
2011) and Cdc42 (Leemhuis et al., 2004), crucial proteins for the
formation of lamellipodia and filopodia, respectively. Moreover,
both GTPases activate PAK1 to promote the axonal growth cone
(Toriyama et al., 2013). Thus, these Rho GTPases might also be
molecular targets that explain the effects of TRPV2 activity on
lamellipodia and filopodia dynamics.

TRPV4
TRPV4 is a major regulator of muscle- and endothelium-
dependent vascular tone in blood vessels from multiple organs
such as the intestine, lungs and brain (White et al., 2016).
TRPV4 responds to shear stress and lipids, such as arachidonic
acid and epoxyeicosatrienoic (EET) acid (White et al., 2016),
which are essential vasoactive substances required for vascular
dilation/contraction (Sudhahar et al., 2010). The participation of
TRPV4 in the modulation of brain vessels is related to the activity
of the channel in endothelial cells (White et al., 2016) and vascular
smooth muscle cells (Chan et al., 2019). For instance, chronic
cerebral hypoperfusion produces a myogenic tone decrease of
brain parenchymal arterioles, an effect that was not observed in
TRPV4−/− mice (Chan et al., 2019). Additionally, TRPV4 loss-
of-function is associated with diminished endothelial dilation,
decreased cerebral perfusion and impaired cognitive function
in aged rats (Diaz-Otero et al., 2019). Moreover, TRPV4
promotes PKC-dependent RhoA activation, leading to stress
fibers formation during internal cerebral hemorrhage (ICH) in
endothelial cells (Table 2 and Figure 3), presumably by ROCK
activation and MLCP inhibition (Zhao et al., 2018). TRPV4
inhibition ameliorates damage produced by ICH, suggesting
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that TRPV4 promotes blood brain barrier disruption in ICH
conditions by inducing the formation of endothelial intercellular
gaps in a way that involves RhoA activation and stress fiber
formation (Zhao et al., 2018). Long-range Ca2+ signals caused
by Ca2+-Induced Ca2+ Release (CICR) induce RhoA activation
after neurotrophin-3 treatment (Takano et al., 2017). TRPV4
promotes CICR in neurons in ICH model, most likely by
regulating the IP3R (Shen et al., 2019). Moreover, the interplay
between TRPV4 and IP3R also occurs at astrocytes endfeet,
where TRPV4-dependent Ca2+ entry induces Ca2+ oscillations
mediated by IP3R, leading to neurovascular coupling and
vasodilation (Dunn et al., 2013). In this regard, we propose
that the propagation of Ca2+ waves in these cells might
contribute to RhoA’s spatiotemporal regulation and subsequent
cytoskeleton remodeling.

TRPV4 promotes Rac1 activity in glioblastoma U87 cells
leading to increased cell migration through TRPV4-dependent
Akt phosphorylation/activation (Ou-Yang et al., 2018) (Table 3).
Akt activation induces the phosphorylation of the Rac1 GEF
Tiam1, which promotes Rac1 activation, driving tumorigenesis
(Zhu et al., 2015). In this context, CaMKII has been shown
to phosphorylate Akt in ovarian (Gocher et al., 2017) and
prostate cancer cells (Schmitt et al., 2012). Thus, local Ca2+

signals elicited by these ion channels might promote Ca2+/CaM
binding to CaMK II, leading to Akt-mediated Rac1 activation
through Tiam1, suggesting participation of TRPV4-mediated
Rac1 regulation in glioblastoma progression.

TRPM Channels
Eight members of this subfamily have been identified. These
channels have differential ion selectivity between their members.
For instance, TRPM4 and TRPM5 are monovalent cationic
channels (Launay et al., 2002; Hofmann et al., 2003), while
TRPM7 and TRPM8 mediate divalent cationic (Nadler et al.,
2001) and non-selective cationic currents (McKemy et al., 2002).
TRPM channels share a Melastatin homology region (MHR)
domain located at the amino-terminal region, a transmembrane
domain similar to other TRP members, and a versatile carboxyl-
terminal that varies between the TRPM members. For instance,
TRPM7 contains a functional α-kinase domain in the carboxyl-
terminal (Nadler et al., 2001), while TRPM4 and TRPM8 possess
coiled-coil domains and binding motifs for different regulatory
molecules (Fleig and Penner, 2004). The structures of all the
TRPM channels discussed in this review have been recently
described (Huang et al., 2020). Thus, the TRPM subfamily is a
highly versatile subgroup of TRP channels, due to the particular
structures and biophysical properties (Fleig and Penner, 2004).
TRPM features have been summarized in Table 1 and extensively
reviewed (Fleig and Penner, 2004; Huang et al., 2020).

TRPM4
TRPM4 is activated by intracellular Ca2+ increases
(Venkatachalam and Montell, 2007), but, unlike other members
of the TRP family, TRPM4 (along with TRPM5) is only
permeable to monovalent ions. Despite that, TRPM4 regulates
Ca2+ signals in different cell types, such as fibroblasts (Cáceres
et al., 2015), mastocytes (Shimizu et al., 2009), dendritic cells

(Barbet et al., 2008), and lymphocytes (Launay et al., 2004).
TRPM4 expression has been described in hypothalamus
(Teruyama et al., 2011), hippocampal CA1 area (Menigoz
et al., 2016), preBötzinger nucleus (Picardo et al., 2019), and
medial prefrontal cortex (Riquelme et al., 2018). Interestingly,
TRPM4 increases Rac1 activity in MEF cells (Cáceres et al.,
2015). Even though, the Ca2+-permeable ion channels regulated
by TRPM4 that could explain changes in Ca2+ oscillations
have not been identified yet, functional association between
NMDA receptors and TRPM4 in postsynaptic dendrites of CA1
hippocampal neurons has been shown (Menigoz et al., 2016).
Indeed, TRPM4 activity-mediated postsynaptic depolarization
allows proper lifting of Mg2+ block from the NMDA receptor,
leading to an increased Ca2+ entry and initiation of LTP
(Menigoz et al., 2016). Moreover, glutamatergic excitotoxicity is
decreased in TRPM4−/− mice, further suggesting a functional
interaction between NMDA and TRPM4 (Schattling et al., 2012).
Interestingly, Ca2+ entry mediated by NMDA receptors, and
subsequent CaMKII-dependent Tiam1 phosphorylation, induces
dendritic/spine development (Tolias et al., 2005). Thus, interplay
between TRPM4 and NMDA receptors might be important in
Rac1-dependent neuronal plasticity. Other possible mechanisms
for Rac1 regulation by TRPM4 could be the regulation of local
changes in membrane potential. For instance, voltage-gated Na+
channel Nav1.5 has been proposed to promote Rac1 activity by
producing membrane potential depolarization in breast cancer
cells (Yang et al., 2020). Nav1.5-induced membrane potential
depolarization causes Rac1 activation by promoting local
redistribution of phosphatidylserine, an anionic phospholipid to
which Rac1 binds, and known to be important for its activation
(Finkielstein et al., 2006; Yang et al., 2020). Interestingly, TRPM4
facilitates cellular depolarization in bone marrow-derived mast
cells (BMMC) (Vennekens et al., 2007), HeLa (Simon et al., 2010),
and HEK293 cells (Fliegert et al., 2007). Thus, local changes in
membrane potential mediated by TRPM4 might induce local
phospholipid redistribution and Rac1 activation (Figure 3).

TRPM4 participates on damage caused by ischemic stroke
(Leiva-Salcedo et al., 2017; Chen et al., 2019) and spinal cord
injury (Gerzanich et al., 2009). Importantly, TRPM4 inhibition
and silencing improves outcome of both spine cord injury
(Gerzanich et al., 2009) and ischemic stroke (Loh et al., 2014;
Chen et al., 2019). TRPM4 induces cellular swelling leading to
neuronal cell death as a consequence of excessive Na+ influx
mediated by these channels (Gerzanich et al., 2009; Simon et al.,
2010; Leiva-Salcedo et al., 2017). Interestingly, Rac1 participates
in NADPH oxidase assembly (Acevedo and González-Billault,
2018). Moreover, increased activity of Rac1 induces ROS
production by promoting the activation of the NADPH catalytic
subunit, Nox2 (Stankiewicz and Linseman, 2014). This enzyme
has been proposed as a potential ischemic stroke therapeutic
target (Zhang et al., 2016). Consistently, Rac1 downregulation,
similar to TRPM4 inhibition, leads to a protective effect in the
hippocampal CA1 region and cortex in ischemia/stroke models
(Raz et al., 2010) and after permanent middle cerebral artery
occlusion (Karabiyik et al., 2018). Given that TRPM4 activity
might lead to an increase in Rac1 activity, we hypothesize that an
additional mechanism by which this channel could collaborate
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with brain and vascular tissue-damaging, alongside oncotic cell
death induction, is by promoting an increase in Nox2-dependent
ROS production via Rac1 activation (Figure 3). Although this
mechanism is only inferred, the suggested evidence makes it
an interesting possible new approach to understanding TRPM4-
mediated GTPase regulation’s role in brain neuropathologies.

TRPM7
TRPM7 is a member of the TRP family that permeates both Ca2+

and Mg2+. In addition, this channel has an active kinase domain
in their carboxyl-terminal domain (Sun et al., 2015). TRPM7 is
widely expressed in the human and mouse brain, with reports in
animal models showing equivalent levels in neurons, astrocytes
and microglia (Ratnam et al., 2018). TRPM7 localizes in the
growth cone of hippocampal neurons, restricting the elongation
of primary axons (Turlova et al., 2016). Interestingly, TRPM7
associates with several elements of cytoskeletal structures.
For instance, mass spectrometry-based analyses revealed the
interaction of TRPM7 with actin and α-actinin-1 (Turlova et al.,
2016). Moreover, analysis of the TRPM7-associated interactome
in neuroblastoma cells (Figure 2) identified proteins which
were mainly related to the actin cytoskeleton, such as Myosin
IIA, Drebrin and the Myosin phosphatase Rho-interacting
protein (p116RIP) (Middelbeek et al., 2016). p116RIP is a
modulator of the RhoA/ROCK axis (Koga and Ikebe, 2005), a
key pathway that promotes invasion and metastasis of tumor cells
(O’Connor and Chen, 2013). This suggests a role for TRPM7
in aggressive phenotypes in neuroblastoma cells via p116RIP-
mediated RhoA/ROCK regulation and subsequent changes in
cytoskeleton dynamics. Also, a functional coupling between
TRPM7 and RhoA activation dependent on the TRPM7 kinase
activity on hepatocellular carcinoma has been shown (Voringer
et al., 2020). These data support a TRPM7-mediated RhoA
activation involvement in diverse processes such as the inhibition
of axonal growth cone and the migratory phenotype of brain
tumor cells like neuroblastoma (Figure 3).

Several reports suggest that TRPM7 is a key mediator of
neuronal death after ischemia/reperfusion episodes. TRPM7
knock-down in CA1 protected neurons from ischemia-induced
cell death as well as maintained neuronal morphology and
function (Sun et al., 2009). Moreover, TRPM7 blockage by
carvacrol prevented brain damage in a mouse hypoxia-ischemia
brain injury model (Chen et al., 2015). TRPM7 silencing leads
to a decreased activity of RhoA (Su et al., 2011). This might
be important in the context of ischemic damage since RhoA
is upregulated in the brains of human stroke patients (Brabeck
et al., 2003). The RhoA/ROCK pathway is key to determining
neuronal cell death following ischemia/reperfusion events (Shin
et al., 2008). This suggests that one of the mechanisms by
which TRPM7 might be producing its pathological effect
after ischemia/reperfusion is through the activation of RhoA.
However, further studies into this association will help clarify this
suggested relationship and find additional mediators.

Mg2+ permeability of TRPM7 is a particularity among
the TRP family. A misbalance in the homeostasis of this
ion has been involved in several pathological processes in
the brain (Sun et al., 2015). TRPM7-mediated increases of

Mg2+ intracellular concentration promotes endothelial cell
proliferation and enhances the endothelial barrier integrity of
the brain. This is due to induced cytoskeletal reorganization
and expression of tight junction proteins such as VE-cadherin,
occludin, and zonula occludens-1 (ZO-1) (Zhu et al., 2019).
Interestingly, TRPM7 achieves this through the activation of
S1P1, which in turn activates Rac1 (Zhu et al., 2019). This
suggests that the TRPM7-mediated Mg2+ influx might play an
important role in cerebral vasculature pathologies by regulating
the S1P1-Rac1 pathway.

TRPM8
TRPM8 is a non-selective cation channel, which preferably
permeates Ca2+ (McKemy et al., 2002). TRPM8 has a polymodal
gating and is activated by cold and different cooling compounds,
such as menthol and icilin (McKemy et al., 2002). Several
single nucleotide polymorphisms (SNPs) related to the TRPM8
gene are associated with either the risk (Ling et al., 2019)
or protection (Gavva et al., 2019) from migraines. Although
the exact mechanisms are unknown, a possible mechanism
for TRPM8-mediated risk of migraine headaches might be
related to this channel’s role in vasoconstriction regulation,
which has been related to migraine development (Jacobs and
Dussor, 2016). Interestingly, TRPM8 activation by menthol
promoted vasodilation by inhibiting Ca2+ signaling–mediated
RhoA/ROCK activation in mesenteric arteries (Figure 3) (Sun
et al., 2014). In this regard, the RhoA/ROCK axis inhibition might
lead to Myosin Light Chain Phosphatase (MLCP) activation
and LIM Kinase 1 inhibition, resulting in an inhibition of the
contraction of mesenteric arteries (Shimokawa et al., 2016).
Furthermore, TRPM8 can function as an ER Ca2+ channel,
regulating mitochondrial function and ROS production, which
activates the RhoA/ROCK pathway (Xiong et al., 2017) (Table 3).
Thus, TRPM8-dependent vascular tone modulation through the
RhoA/ROCK axis regulation might play an important role. These
mechanisms might not only be relevant in the development of
migraines but also the progress of other cerebral vasogenic events
such as reversible vasoconstriction syndromes.

Recent reports have associated alterations in TRPM8
expression with brain-related cancers. Moreover, TRPM8 was
significantly overexpressed in glioblastoma tissue samples
compared to normal tissue and its expression correlated
with worse prognosis and survival in glioblastoma patients
(Zeng et al., 2019). Also, TRPM8 was highly expressed in
glioblastoma cell lines and its expression correlated with higher
invasive and proliferative capacities (Zeng et al., 2019). In this
context, TRPM8-mediated regulation of RhoA/ROCK might
be responsible for the pro-tumoral effect of TRPM8, as the
RhoA/ROCK pathway has been involved in the proliferation
and migration of glioblastoma cells (Fortin Ensign et al., 2013).
These data support a role for TRPM8 in diverse aspects of brain
pathophysiology, including some that are more particular to this
channel. Thus, more studies into the exact proteins mediating
TRPM8-mediated RhoA/ROCK activation might be interesting
to elucidate its precise role.
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TRPML1
The Mucolipin-TRP (TRPML) subfamily are monovalent and
divalent cation channels with predominant Ca2+ permeability
(Peng et al., 2020) (see Table 1), although other permeabilities
has been described to be important in their function (Dong
et al., 2008). Contrary to other TRP subfamilies, these
channels are particularly located in endolysosomal vesicles
(Manzoni et al., 2004). Consistently, TRPML channels are
associated with cellular processes such as vesicle trafficking and
endolysosomal-dependent degradation pathways (Cheng et al.,
2010). Structurally, these channels have full-length subunits of
about 600 amino acids, thus being the smaller members of
TRP channel subfamily. As to the other TRP channels, these
channels have six transmembrane segments with pore-forming
regions located between segments S5 and S6. In addition,
amino- and carboxyl-terminal regions have cytoplasmatic
orientation (Hellmich and Gaudet, 2014). Moreover, these
channels have canonical EF-hand domains at their carboxyl-
terminal domain, which allows direct Ca2+-dependent activity
modulation (Hellmich and Gaudet, 2014). TRPML activity is
positively modulated by PIP2 binding, which drives to channel
activation (Dong et al., 2010). Interestingly, the resolved structure
of TRPML1 indicates that its unique PIP2-binding site is
distinct to the reported in others TRP channels (Fine et al.,
2018) (Table 1).

TRPML1 (also called Mucolipin-1) is an intracellular TRP
channel located predominantly in endolysosomal membranes
(Lee J.H. et al., 2015). Loss-of-function mutations reported in
the TRPML1-encoding gene have been linked to a lysosomal
storage disorder known as Mucolipidosis type IV (MLIV). This
pathology is one of the first described neurological diseases
caused by mutations in TRP channels (Bargal et al., 2000). MLIV
is characterized by an early neurodevelopmental delay and a late
neurodegenerative phenotype that leads to intellectual disability,
delayed psychomotor abilities and retinal abnormalities (as
described in OMIM #252650). Although the pathophysiological
signs are well known, the cellular mechanisms involved in this
disease remain unclear. TRPML1 modulates several aspects of
membrane trafficking, particularly participating in trafficking
of late endosome vesicles, and controlling the size (Cao et al.,
2017), function and biogenesis of lysosomes (Wang et al., 2015).
Moreover, TRPML1 regulates lysosome fusion with secretory
vesicles, increasing exocytosis (Park et al., 2016). Interestingly,
not only a disturbance in membrane trafficking but also lipid
accumulation and loss of cell viability have been described as
hallmarks of MLIV disorder (Wang et al., 2013), suggesting
that TRPML1 loss-of-function might contribute in all these
pathological alterations. However, detailed mechanisms by which
TRPML1 regulates these processes are poorly understood.
Rho GTPases are signaling nodes that coordinate membrane
trafficking and lipid homeostasis (reviewed in Ridley, 2001;
Olayioye et al., 2019). TRPML1 interactome reports (Figure 2)
might reveal the mechanisms related to the coordination of
cellular processes that lead to the neuropathological phenotype
observed in MLIV (Krogsaeter et al., 2019). TRPML1 interacts
and colocalizes with Rho GTPases, such as Rac1, Rac2, Cdc42

and RhoG (Spooner et al., 2013). Therefore, these data strongly
suggest that TRPML1 might regulate the activity of Rho
GTPases and, in this manner, control membrane trafficking
(Figure 3). Thus, regulating TRPML1 activity might be an
effective therapeutic approach for the treatment of other
neurological disorders where low TRPML1 activity has been
reported, such as ALS (Tedeschi et al., 2019), Parkinson
disease (Tsunemi et al., 2019), Alzheimer’s Disease (Zhang
et al., 2017), and Niemann-Pick disease (Shen et al., 2012).
Nevertheless, further studies are needed to determine the specific
role of TRPML1-dependent Rho GTPases modulation in these
neuropathological conditions and the proteins involved in
this relationship.

OUTSTANDING QUESTIONS AND
FUTURE DIRECTIONS

Despite extensive evidence on the role of the canonical Rho
proteins (RhoA/Rac1/Cdc42) in different neuronal processes and
their possible modulation by TRP channels activity presented in
this work, little is known about other Rho GTPase members.
A limited number of studies have shown the participation of
RhoF/RhoD (RhoF/Rif, RhoD) (Zanata et al., 2002; Fan et al.,
2015) and atypical Rho GTPases (Aspenström et al., 2007)
such as Rnd (Rnd1, Rnd2, and Rnd3/RhoE) (Ishikawa et al.,
2003, 2006; Heng et al., 2008; Pacary et al., 2013), RhoU/RhoV
(Wrch1, Chp/Wrch2) (Alan et al., 2018) and RhoBTB (RhoBTB3
and RhoBTB2) (Ramos et al., 2002) in neuronal processes.
However, these proteins play an important role in developmental
synaptogenic stage (Ishikawa et al., 2003), growth cone turning
and collapse (Zanata et al., 2002), neurite formation (Tian
et al., 2017) and retraction (Fan et al., 2015), axon guidance
(Alan et al., 2018), cortical neuron migration (Heng et al.,
2008; Tian et al., 2017), and neurogenesis (Pacary et al., 2013).
Although no studies indicating that TRP channels regulate these
Rho GTPase subfamilies, it has been reported that NFAT1c
increases RND1 transcription (Suehiro et al., 2014) and rapid
activation and translocation of NFAT to the nucleus is promoted
by TRPV1 activity in sensory neurons (Kim and Usachev,
2009). Conversely, Rif has been established as a regulator of
cytoskeletal rearrangements mediated by semaphorins (Tian
et al., 2017). TRPC5 acts downstream of semaphorin signaling
to cause neuronal growth cone morphology (Kaczmarek et al.,
2012). These antecedents suggest that both TRP channels
and atypical Rho GTPase activity could be involved in the
different processes mentioned above. However, more studies
need to be performed.

Regarding the discussion raised in this review, the TRP
family of ion channels and Rho GTPases are functionally
linked to each other due to; (1) mutual cellular functions
whose deregulation leads to neuropathological phenomena
and (2) Rho GTPases activity modulation by TRP channels.
However, spatiotemporal features of TRP channel activity,
and how these features could regulate Rho GTPase are
still not clear.
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TRP-associated interactome suggests that these channels
associate with different Rho GTPases-related proteins (Shin et al.,
2011) (Figure 2). This allows us to hypothesize a potential
role for TRP channels as transduction hubs, implying local
recruitment of Rho GTPases modulators and spatially delimited
Rho GTPases activation/inhibition in subcellular structures.
Moreover, Rho GTPases are mainly activated by Ca2+ signaling
in neurons (Saneyoshi and Hayashi, 2012). Ca2+-sensitive
proteins such as the Ca2+/CaM complex play an essential role
in Rho GTPase activity modulation (Buchanan et al., 2000;
Vidal-Quadras et al., 2011). Differential TRP-CaM binding
affinities could lead to subtle changes in the local activity of
Ca2+/CaM-dependent proteins, such as CaMKs activation and
subsequent Rho GTPases modulation (Wayman et al., 2011;
Bossuyt and Bers, 2013). Conversely, TRP channels interaction
with downstream targets of Rho GTPases suggests that these
channels can be regulated by these proteins. Accordingly,
Rho GTPases participate in the regulation of TRP channels
trafficking and activity (Bezzerides et al., 2004; Puntambekar
et al., 2005). Thus, TRP channels can regulate Rho GTPases
and viceversa, suggesting a regulatory feedback loop between
these proteins.

However, our research demonstrates that the relationship
between TRP ion channels and Rho GTPases is not always
positive (Figure 3). For instance, TRPM8 activation
induces RhoA inhibition, while other members like
TRPM7 and TRPC5 promote the activity of this Rho
GTPase. We reasoned that multiple aspects contribute
to establishing the relation between the respective TRP
channel and Rho GTPase. Interactome and subcellular
localization of both proteins and the biophysics properties
of the channel might explain these differences. As we
reviewed, most of the TRP channels that regulate Rac1
in neuronal context are localized in the same subcellular
compartments (Figure 3).

Nevertheless, the proposed mechanisms for the regulation of
Rac1 are different, which might be due to each TRP channel’s
differential interacting partners (Figure 2). A combination of
complementary approaches to obtain a more global picture
of the TRP channels-Rho GTPases network is needed to
address this. The following section proposes some strategies to
understand better the relationship between TRP ion channels
and Rho GTPases.

Signaling mechanisms, such as those proposed above,
often involve transient PPIs among regulatory components,
which might represent a challenge for their identification
due to the limited interaction time or low affinity of each
interacting partners (Westermarck et al., 2013). Multiple
proteomic approaches have emerged as alternatives to overcome
these limitations (Bludau and Aebersold, 2020). These novel
approaches could provide new possibilities to identify TRP/Rho
GTPases PPIs pathways and give hints of the microdomains
where these complexes localize.

Rho GTPases regulation by GEF/GAP/GDI is far more
complex than a single GEF or GAP regulating only one Rho
GTPase. Promiscuous activity has been reported for GEFs
and GAPs, modulating more than one Rho GTPase (Bagci

et al., 2020), increasing the complexity of the TRP-dependent
modulation of these proteins. Proteomic studies may allow
identification of GEFs/GAPs and GDIs implicated in Rho
GTPases regulation by TRP channels. Complementing these
approaches with assays for describing spatiotemporal dynamics
will grant a more accurate characterization of the mechanisms
involved in the TRP-dependent regulation of Rho GTPases and
their role in neuropathological disorders. This will ultimately
contribute to the designing of potential new interventions based
on the TRP modulation of Rho GTPases. For instance, diverse
strategies have been designed to monitor Rho GTPases activity
through different means, such as biochemical approaches (Ren
et al., 1999) and Förster Resonance Energy Transfer (FRET)-
based sensors. The latter provides the possibility of performing
in vivo tracking of GTPase activity (Kraynov et al., 2000;
Pertz et al., 2006) and several authors have reviewed and
corroborated its usefulness (Pertz, 2010; Schaefer et al., 2014).
Recently, novel techniques to manipulate Rho GTPases have been
designed. For instance, light-inducible sensors which promote
RhoA (Wagner and Glotzer, 2016; Oakes et al., 2017) and
Rac1 (Wu et al., 2009) translocation to the plasma membrane
and subsequent activation. These tools might provide local and
temporal inducible activation of Rho GTPases. Importantly, the
application of these tools to the structures of TRP channels might
also serve to define the role of these channels in the local and
temporal regulation of Rho GTPases.

Another critical issue to study Rho GTPases regulation by
TRP channels is the identification of Ca2+ as an intermediary
in these pathways. Since local and broad Ca2+ waves have
a differential effect on the modulation of Rho GTPases, the
establishment of the spatiotemporal features of Ca2+ dynamics is
necessary to strengthen what we know about these mechanisms.
In this regard, fluorescent Ca2+ indicators derived from organic
compounds provide information about the time-scale properties
of Ca2+ waves but lack in providing accurate spatial information
(Russell, 2011). Accordingly, genetically-encoded Ca2+ sensors
provide an opportunity to study the time-scale and spatial
distribution of Ca2+ signals, since they have been designed to
monitor Ca2+ signals from intracellular organelles accurately
(Bassett and Monteith, 2017). This approach has been used
on neuronal models (Chen et al., 2012; O’Donnell et al.,
2016), and even in the whole brain of living animals (Scott
et al., 2018). These approaches, combined with biosensors
to track the activity of Rho GTPases and its regulators,
could provide novel and valuable information about the
mechanisms involved in TRP channels-mediated regulation
of Rho GTPases in physiological and pathophysiological
brain conditions.

CONCLUDING REMARKS

The study of neurological and neuropsychiatric diseases has
been linked to tumoral growth, cell death and loss of cellular
structures, such as dendritic spines and axonal processes. In
this context, ion channels are essential in cell physiology,
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as the loss- or gain-of-function of these proteins trigger
structural abnormalities and neuropathological conditions.
TRP channels have emerged as novel candidates for the
treatment of numerous CNS-affecting diseases. Thus, further
knowledge of the mechanisms by which TRP channels exert
their effects on cellular physiology constitutes an outstanding
question. Herein, we exposed evidence and shared arguments
and ideas that support general mechanisms by which TRP
channels might modulate Rho GTPases in the brain. Although
the evidence is strong enough to suggest several pathways,
further studies are required to confirm the functional nature of
these interactions. Future approaches considering quantitative
proteomic analysis of TRP channels and Rho GTPases will
reveal common partners that could mediate their functional
relationship. Moreover, studies incorporating simultaneous
analysis of localization, interaction, dynamic activity of
Rho GTPases, TRP channels, and or GEFs/GAPs/GDIs will
be required to determine the spatiotemporal features of
these mechanisms. This new evidence would contribute
to designing novel strategies based on the fine-tuning
of transduction mechanisms involved in TRP-modulated
processes, providing new therapeutic alternatives to overcome
neuropathological conditions.
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