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Background: In the context of head-and-neck squamous cell carcinoma (HNSCC), dendritic cells (DCs) 
assume pivotal responsibilities, acting as architects of antigen presentation and conductors of immune 
checkpoint modulation. In this study, we aimed to identify hub genes associated with DCs in HNSCC and 
explore their prognostic significance and implications for immunotherapy.
Methods: Integrated clinical datasets from The Cancer Genome Atlas (TCGA)-HNSCC and GSE65858 
cohorts underwent meticulous analysis. Employing weighted gene co-expression network analysis (WGCNA), we 
delineated candidate genes pertinent to DCs. Through the application of random survival forest and least absolute 
shrinkage and selection operator (LASSO) Cox’s regression, we derived key genes of significance. Lisa (epigenetic 
Landscape In Silico deletion Analysis and the second descendent of MARGE) highlighted transcription factors, 
with Dual-luciferase assays confirming their regulatory role. Furthermore, immunotherapeutic sensitivity was 
assessed utilizing the Tumor Immune Dysfunction and Exclusion online tool.
Results: This study illuminated the functional intricacies of HNSCC DC subsets to tailor innovative 
therapeutic strategies. We leveraged clinical data from the TCGA-HNSCC and GSE65858 cohorts. We 
subjected the data to advanced analysis, including WGCNA, which revealed 222 DC-related candidate 
genes. Following this, a discerning approach utilizing random survival forest analysis and LASSO Cox’s 
regression unveiled seven genes associated with the prognostic impact of DCs, notably ACP2 and CPVL, 
associated with poor overall survival. Differential gene expression analysis between ACP2+ and ACP2− DC 
cells revealed 208 differential expressed genes. Lisa analysis identified the top five significant transcription 
factors as STAT1, SPI1, SMAD1, CEBPB, and IRF1. The correlation between STAT1 and ACP2 was 
confirmed through quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Dual-
luciferase assays in HEK293T cells. Additionally, TP53 and FAT1 mutations were more common in high-risk 
DC subgroups. Importantly, the sensitivity to immunotherapy differed among the risk clusters. The low-risk 
cohorts were anticipated to exhibit favorable responses to immunotherapy, marked by heightened expressions 
of immune system-related markers. In contrast, the high-risk group displayed augmented proportions of 
immunosuppressive cells, suggesting a less conducive environment for immunotherapeutic interventions.
Conclusions: Our research may yield a robust DC-based prognostic system for HNSCC; this will aid 
personalized treatment and improve clinical outcomes as the battle against this challenging cancer continues
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Introduction

In the challenging landscape of oncology, head-and-neck 
squamous cell carcinoma (HNSCC) remains an enigma, 
and innovative solutions are required (1-3). Despite recent 
therapeutic advances, many patients continue to live with 
unfavorable prognoses (4). The nuanced dynamics of the 
tumor immune microenvironment (TIME) emerge as a 
pivotal determinant in the progression of HNSCC (5,6). 
Dendritic cells (DCs) serve as sentinels of the immune 
system and orchestrate the responses to malignant cells 
(7,8). This emphasizes the multifaceted roles played by DCs 
within the HNSCC TIME; manipulation of such cells may 
revolutionize therapeutic paradigms (9).

DC antigen presentation and the effects of DCs on 
immune checkpoint modulation are of major significance 

in HNSCC (10). Elucidating the functional nuances of DC 
subsets would help tailor therapies to shift the immune 
equilibrium in the desired direction (11). Recent DC-
based vaccines comprising patient-derived DCs enriched 
with tumor-specific antigens (12-14) elicit potent anti-
tumor responses while minimizing adverse effects (15). 
This research frontier provides a beacon of hope in the 
challenging battle against this formidable cancer (16,17).

In recent years, gene expression signatures associated 
with cancer (including HNSCC) prognoses have been used 
to predict patient outcomes (18,19). Such signatures identify 
high-risk patient subgroups that require personalized 
therapeutic strategies. The prognostic implications aside, 
exploration of the molecular mechanisms underlying 
the role of DCs in HNSCC progression would facilitate 
therapeutic interventions (20,21). However, no reliably 
prognostic gene signatures for HNSCC are yet available, 
and we have only a limited comprehension of the genetic 
principles governing DC behavior. 

In this study, we comprehensively investigated potential 
drug targets within the DC gene signature to address the 
gaps identified above. Employing a multi-omics approach 
and advanced computational analyses, novel molecules and 
signaling networks that serve as prospective therapeutic 
targets for HNSCC were revealed. The establishment of 
a robust DC gene signature model via high-throughput 
genomic profiling enables precise patient stratification. 
Ultimately, by unraveling the molecular mechanisms and 
genetic drivers associated with DCs, we contribute to 
the development of precision medicine to enhance the 
prognostic assessment and treatment outcomes of HNSCC 
patients. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-2360/rc).

Methods

Acquisition of clinical and gene expression information 

In January 2023, we used the Genomic Data Commons 
(GDC) portal to acquire clinical and gene expression data 
from a The Cancer Genome Atlas (TCGA)-HNSCC 
cohort comprising 500 individuals. At that time, we also 
obtained clinical and transcriptomic data from 270 HNSCC 
cases in the GSE65858 cohort from the Gene Expression 
Omnibus database. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Highlight box

Key findings
•	 This study reveals the pivotal role of dendritic cells (DCs) in 

head-and-neck squamous cell carcinoma (HNSCC). Analyzing 
clinical datasets identifies 222 DC-related genes, pinpointing 
seven prognostic genes, including ACP2 and CPVL. Differential 
gene expression unveils 208 genes distinguishing ACP2+ and 
ACP2− DC cells. Notable findings include top transcription factors 
(e.g., STAT1) and genomic associations like TP53 and FAT1 
mutations. Confirmed STAT1 and ACP2 correlation, along with 
insights into immunotherapeutic sensitivity, hints at a robust DC-
based prognostic system, laying the groundwork for personalized 
therapeutic strategies.

What is known and what is new?
•	 DCs play crucial roles in antigen presentation and immune 

modulation in HNSCC.
•	 This study innovatively identifies 222 DC-related genes, seven 

key prognostic genes, and provides insights into differential 
gene expression, transcription factors, and genomic associations, 
enhancing our understanding of DCs in HNSCC. These findings 
introduce potential prognostic markers and guide personalized 
therapeutic approaches.

What is the implication, and what should change now?
•	 This research transforms HNSCC understanding, emphasizing 

integration of identified prognostic markers (e.g., ACP2, CPVL) 
for precise clinical approaches. Targeting transcription factors, 
notably STAT1, offers therapeutic potential. Recognizing 
immunotherapeutic sensitivity variations underscores the urgency 
of personalized treatment strategies. Immediate changes in clinical 
practices are urged to usher in precision medicine, promising 
improved outcomes in HNSCC.

https://tcr.amegroups.com/article/view/10.21037/tcr-23-2360/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-2360/rc
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The abundance of DCs and the application of weighted 
gene co-expression network analysis (WGCNA)

Quantification of DC abundance in the TCGA-HNSCC as 
well as GSE65858 cohorts was performed using the “xCells” 
package of R software (22). We acquired five different DC 
abundance scores for each cohort. We used the “WGCNA” 
package of R software to define co-expression networks and 
to obtain multiple estimates of DC abundance and stromal 
scores (23).

Random survival forest analysis, least absolute shrinkage 
and selection operator (LASSO) Cox’s regression model, 
and survival analysis

We employed random survival  forest  analys is  to 
identi fy  s ignif icantly prognostic  genes using the 
“randomForestSRC” and “randomSurvivalForest” packages 
of R software (24). The LASSO Cox’s regression method 
was utilized to construct a prognostic model for hub genes 
associated with DCs, employing the “glmnet” package 
within the R software (25). The optimal cutoff values of the 
LASSO risk scores in terms of overall survival (OS) were 
determined for both the TCGA-HNSCC and GSE65858 
cohorts using the “max stat” approach with an abseps 
threshold of 0.01. Subsequently, Kaplan-Meier analyses 
were conducted using the “survival” packages of R software.

Differential gene expression analysis 

Differential expression analysis of messenger RNAs was 
executed utilizing the “EdgeR” package within the R 
software (26). 

Gene set enrichment analysis (GSEA)

We built a GSEA algorithm using the “clusterProfiler” 
package of R software.  This revealed normalized 
enrichment scores and their statistical significance across 
various gene sets, including the ontology and Hallmark 
gene sets, together with Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway terms (27).

Somatic mutation analysis

In March 2023, we utilized cBioPortal to obtain the top 
200 somatic mutations with the highest frequency in the 
TCGA-HNSCC cohort. We employed the Chi-squared 

test to assess significant mutation enrichment among the 
different prognostic groups.

Single-cell sequencing analysis

We leveraged the Tumor Immune Single-cell Hub 2 database 
(http://tisch.comp-genomics.org/) (28) to conduct an analysis 
of single-cell sequencing data from GSE150430 cohorts.

Prediction of responses to immunotherapy 

Predictions of responses to immunotherapy within the 
TCGA-HNSCC and GSE65858 cohorts were derived 
using the TIDE (Tumor immune dysfunction and exclusion) 
available at http://tide.dfci.harvard.edu/.

Calculation of “xCell” scores

We used the “xCell” package of R software to compute 
immune, stromal, and microenvironment scores and to 
characterize 64 distinct cell subtypes in both the TCGA-
HNSCC and GSE65858 cohorts.

ESTIMATE algorithm

To evaluate the immune system and microenvironment 
scores, we employed the ESTIMATE algorithm, a 
computational  method implemented through the 
ESTIMATE R package.

Transcriptional regulators prediction

Lisa (epigenetic Landscape In Silico deletion Analysis and 
the second descendent of MARGE) was used to predict the 
transcriptional regulators of differentially expressed or co-
expressed gene sets (29).

Laboratory experiments

For a comprehensive understanding of laboratory experiments, 
please refer to the Appendix 1 for detailed protocols regarding 
cell culture, quantitative real-time polymerase chain reaction 
(qRT-PCR), and Luciferase assay procedures.

Statistical analysis

All data analyses and figure generation were performed 
using R software (version 4.0.1). Results were considered 

http://tide.dfci.harvard.edu/
https://cdn.amegroups.cn/static/public/TCR-23-2360-Supplementary.pdf
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statistically significant at a P value of less than 0.05.

Results

Identification of DC-related gene candidates by WGCNA

In both the TCGA-HNSCC and GSE65858 cohorts, 
we identified the top 10,000 genes based on their median 
absolute deviations and used them to construct the 
WGCNA network. In the TCGA-HNSCC cohort, we 
removed three evident outliers as determined by hierarchical 
clustering. In the GSE65858 cohort, no outlier was 
detected. In constructing a scale-free topology network, 
a soft thresholding power of 9 was applied to the TCGA-
HNSCC cohort (yielding a scale-free R2 of 0.93, a slope 
of −1.85, and a truncated R2 of 1) (Figure S1A,S1B) and of 
5 for the GSE65858 cohort (resulting in a scale-free R2 of 

0.95, a slope of −2.07, and a truncated R2 of 0.98) (Figure 
S1C,S1D). In the TCGA-HNSCC cohort, 10 co-expression 
gene modules were clustered (Figure 1A,1B, table available 
at https://cdn.amegroups.cn/static/public/tcr-23-2360-
1.xlsx). In the GSE65858 cohort, 10 co-expression gene 
modules were clustered (Figure 1C,1D, table available at 
https://cdn.amegroups.cn/static/public/tcr-23-2360-2.xlsx). 
Specifically, in the TCGA-HNSCC cohort, the yellow 
module, consisting of 345 genes, exhibited the strongest 
positive correlation with DC abundance, as detailed in 
Figure 2A and further elaborated in Figure S2A. Meanwhile, 
in the GSE65858 cohort, the blue module, comprising 
1,676 genes, demonstrated the most pronounced positive 
correlation with DC abundance, as evidenced in Figure 2B 
and further detailed in Figure S2B.

A collective of 222 genes was found to be present in 
both modules. Through Gene Ontology enrichment 
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Figure 1 WGCNA analysis in TCGA-HNSCC as well as GSE65858. Cluster dendrograms presenting similar expression pattern genes 
were grouped into WGCNA gene modules in TCGA-HNSCC (A) as well as GSE65858 (B). Eigengene adjacency heatmaps presenting the 
relationships among each gene module eigengenes in TCGA-HNSCC (C) and GSE65858 (D). WGCNA, weighted gene co-expression 
network analysis; TCGA, The Cancer Genome Atlas; HNSCC, head-and-neck squamous cell carcinoma; ME, module eigengene.
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analysis,  pronounced enrichment was observed in 
the biological process category for leukocyte cell-cell 
adhesion (GO:0007159), in the cellular component 
category for endocytic vesicle (GO:0030139), and in the 
molecular function category for immune receptor activity 
(GO:0140375) (Figure 2C). 

A DC-based prognostic signature of HNSCC

In the TCGA-HNSCC cohort, a random survival forest 
analysis was employed to systematically rank the 222 hub 
gene candidates in terms of OS. The following eight 
genes exhibited variable importance cutoffs that exceeded 
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0.5: FGD3, ACP2, IGJ, INPP5D, CCR7, CPVL, CD27, 
and SPOCK2 (Figures 2D,3A). Utilizing a LASSO Cox’s 
regression model, we identified significant prognostic 
candidates for OS based on gene coefficients, including 
FGD3 =−0.473, ACP2 =0.186, IGJ =−0.043, INPP5D 
=−0.035, CCR7 =−0.214, CPVL =0.339, and SPOCK2 
=−0.056 as illustrated in Figure 3B,3C. Based on the 
aforementioned coefficients, we deduced the presence 
of seven DC candidate genes associated with HNSCC 
prognosis. Among these, ACP2 and CPVL were linked to 
unfavorable OS, while FGD3, IGJ, INPP5D, CCR7, and 
SPOCK2 were associated with favorable OS. To further 
validate these findings, we conducted additional single-
gene studies on GSE65858 cohort. Remarkably, our 
analysis confirmed that nearly all identified genes exhibited 
prognostic directions consistent with those observed in 
the TCGA-HNSCC cohort and possessed statistical 
significance (Figure S3).

In both the TCGA-HNSCC (Figure 3D) and GSE65858 
(Figure 3E) cohorts, we categorized all patients into high- 
and low-risk groups using the optimal risk score cutoff 
values determined by the LASSO Cox model. We then 
derived Spearman correlations between each of the seven 
candidate genes and DC abundance in both the TCGA-
HNSCC (Figure S4A) and GSE65858 (Figure S4B) 
cohorts, each gene exhibited a positive correlation with 
overall DC cell and its subpopulation scores. Notably, 
within the DC cell subpopulations, aDC and pDC showed 
a higher correlation with these genes compared to other 
subpopulation scores.

The analysis of single-cell sequences in GSE150430 
cohort (Figures 4,5A,5B) revealed that the two candidates 
associated with unfavorable OS, ACP2 and CPVL, exhibited 
heightened expression primarily in DCs and Mono/Macro 
cells. In contrast, the five candidates linked to favorable OS, 
namely FGD3, IGJ, INPP5D, CCR7, and SPOCK2, were 
predominantly enriched in B cells, CD4Tconv, Tprolif, 
CD8Tex, Treg, and Tprolif. Notably, the unfavorable OS 
candidates co-expressed prominently in DCs, while the 
five favorable OS candidates co-expressed significantly 
in subpopulations of T and B cells. Furthermore, in 
GSE150430, both ACP2 and CPVL demonstrated 
heightened expression specifically in DCs (table available at 
https://cdn.amegroups.cn/static/public/tcr-23-2360-3.xlsx).

We explored differential gene expression between the 
ACP2+ DC cells and ACP2− DC cells. This analysis led to 
the identification of 208 differentially expressed genes, 
meeting stringent criteria: |log2 fold change (FC)| ≥0.3 

and false discovery rate (FDR) ≤0.05. Among these, 176 
genes exhibited upregulation in the ACP2+ DC cells, while 
32 genes displayed upregulation in the ACP2− DC cells 
(Figure 6A). Based on the Lisa analysis, top 5 significant 
transcription factors (STAT1, SPI1, SMAD1, CEBPB, and 
IRF1) were identified (Figure 6B). 

The association between STAT1 and ACP2 (the most 
crucial candidate among the three noteworthy prognostic 
DC candidates) has captured our attention. To confirm 
the correlation between STAT1 and ACP2 in cell line, 
we conducted qRT-PCR and dual-luciferase assays in 
HEK293T cells. The qRT-PCR analysis demonstrated 
elevated mRNA levels of both STAT1 and ACP2 following 
STAT1 overexpression in HEK293T cells (Figure 6C). 
Furthermore, the dual-luciferase assay revealed that the 
transcriptional activity of the ACP2 gene promoter could be 
enhanced by the binding of STAT1 protein to the promoter 
of the ACP2 gene in HEK293T cells (Figure 6D).

Consistent with expectations, an elevated risk score was 
correlated with unfavorable OS in the TCGA-HNSCC 
cohort (Figure 7A,7B). In the high-risk group, ACP2 and 
CPVL levels exhibited an increase, while in the low-risk 
group, FGD3, IGJ, INPP5D, CCR7, and SPOCK2 levels 
showed elevated expression (Figure 7C).

Differential gene expression, immune characteristics, and 
enrichment pathways among the LASSO risk clusters

Using the TCGA-HNSCC cohort, we explored differential 
gene expression between the low- and high-risk groups. 
This analysis led to the identification of 274 differentially 
expressed genes, meeting stringent criteria: |log2FC| 
≥1 and FDR ≤0.05. Among these, 175 genes exhibited 
upregulation in the high-risk group, while 99 genes 
displayed upregulation in the low-risk group (Figure 7D, 
table available at https://cdn.amegroups.cn/static/public/
tcr-23-2360-4.xlsx).

The xCell immune characteristics of the various 
LASSO risk clusters differed in both the TCGA-HNSCC 
and GSE65858 cohorts.  The immune system and 
microenvironment scores, assessed using the ESTIMATE 
algorithm, exhibited elevated values in the low-risk groups 
as opposed to the high-risk groups in both the TCGA-
HNSCC cohort (Figure S5A) and the GSE65858 cohort 
(Figure S5B). This observation suggests a potentially more 
favorable immune landscape and microenvironment in the 
low-risk groups across both cohorts. However, of the 64 
xCell subtypes, 34 were significantly elevated or reduced 
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https://cdn.amegroups.cn/static/public/tcr-23-2360-4.xlsx
https://cdn.amegroups.cn/static/public/TCR-23-2360-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-2360-Supplementary.pdf


Translational Cancer Research, Vol 13, No 7 July 2024 3627

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(7):3620-3636 | https://dx.doi.org/10.21037/tcr-23-2360

NPC_GSE150430

Celltype (major-lineage)
B 
CD4Tconv 
CD8T 
DC 
Malignant 
Mono/Macro 
Plasma 
Tprolif 
Treg 
pDC

CPVL ACP2

SPOCK2 INPP5D FGD3

2.5

2.0

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

0.0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

CCR7 JCHAIN

Figure 4 Single cell sequencing analysis for prioritized candidates in GSE150430. UMAP plots visualized the expression of prioritized 
candidates in indicated cell types of GSE150430 (IGJ is the previous HGNC symbols for JCHAIN). NPC, nasopharyngeal carcinoma; DC, 
dendritic cell; pDC, plasmacytoid dendritic cell; UMAP, Uniform Manifold Approximation and Projection; IGJ, immunoglobulin J chain; 
HGNC, Human Genome Organisation Gene Nomenclature Committee; JCHAIN, Joining Chain of Multimeric IgA and IgM.

in the TCGA-HNSCC cohort and 23 in the GSE65858 
cohort. Twenty-one cell subtypes, including DC populations 
(DC, aDC, cDC, and pDC; Figure S3A,S3B), B cell 
populations (B cells, plasma cells, class-switched memory B 
cells, memory B cells, and pro-B cells), T cell populations 
(CD4 Tem cells, CD4 memory T cells, CD4-naive T cells, 
CD8 T cells, CD8 Tcm cells, CD8 Tem and Tgd cells, and 
Tregs), basophils, mast cells, pre-adipocytes, and smooth 
muscle cells, overlapped in all significant subtypes of the 
TCGA-HNSCC as well as GSE65858 cohorts (all P<0.01). 

Only smooth muscle cell abundance was elevated in the 
high-risk groups (Tables S1,S2).

After risk clustering stratification, we analyzed somatic 
mutations in the high- as well as low-risk groups. Among 
the top 200 somatic mutations, we identified 17 with levels 
that differed significantly between these groups. TP53 and 
FAT1 mutations were significantly more common in the 
high-risk groups (Figure 7E).

Additionally, the GSEA was employed to elucidate 
the functional significance between high- and low-risk 
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groups. Specifically, we utilized the Hallmark and KEGG 
datasets to explore the enrichment of gene sets related 
to biological pathways and hallmark processes. Notably, 
the high-risk group exhibited significant enrichment 
of the terms KEGG_RIBOSOME and HALLMARK_
EPITHELIAL_MESENCHYMAL_TRANSITION, and 
the low-risk group exhibited significant enrichment of the 
terms KEGG_PRIMARY_IMMUNODEFICIENCY 
and  HALLMARK_ALLOGRAFT_REJECTION  
(Figure 8A,8B).

Immunotherapy sensitivity in LASSO risk stratification 
groups

We next explored the predicted efficacies of established 
immunotherapies in the high- as well  as low-risk 
groups. TIDE predicted markedly better responses to 
immunotherapy in the low-risk than high-risk groups in both 
the TCGA-HNSCC and GSE65858 cohorts (Figure 9A,9B). 

Also, we found notable elevations of four TIDE 
immunotherapy markers (CD8, CD274, IFNG, and 
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Figure 6 The role of STAT1 in the ACP2 expression regulation. (A) Additionally, the volcano plot highlights significant differentially 
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HEK293T cells, with statistical significance denoted as ***P<0.0001. DC, dendritic cell; FDR, false discovery rate; qRT-PCR, quantitative 
reverse transcription polymerase chain reaction.

Merck18) in the low-risk group and two markers (MDSC 
and CAF) in the high-risk group (Figure 10A,10B).

Discussion

Our study unveils the critical role of DCs in HNSCC. 
Through rigorous analysis of clinical datasets, it identifies 
222 DC-related candidate genes and pinpoints seven key 
prognostic genes, including ACP2 and CPVL. Differential 
gene expression analysis reveals 208 genes distinguishing 
ACP2+ and ACP2− DC cells. Notable findings include top 
transcription factors like STAT1 and genomic associations 
such as TP53  and FAT1  mutations. The confirmed 
correlation between STAT1 and ACP2, along with insights 

into immunotherapeutic sensitivity variations among 
risk clusters, hints at the potential for a robust DC-based 
prognostic system. This research lays the groundwork for 
personalized therapeutic strategies, promising improved 
outcomes in the challenging landscape of HNSCC.

The intricate interplay among DCs, T cells, and B cells 
in terms of tumor antigen presentation is pivotal in terms 
of cancer prognosis (11,30-32). DCs capture and present 
tumor-specific antigens, thereby activating T cells, including 
the potent cytotoxic T cells that eliminate tumor cells (33). 
Concurrently, B cells are stimulated to produce antibodies 
that play vital roles in antigen neutralization (34). These 
strongly coordinated collaborations greatly influence cancer 
outcomes. When such delicate interactions are disrupted 
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or become unbalanced, tumors elude immune system 
detection, and prognosis deteriorates (35). It is essential 
to understand and promote the intricate interplay among 

DCs, T cells, and B cells to enhance prognosis. Effective 
tumor antigen presentation and immune cell activation 
increase patient survival and treatment success (36). The 
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Figure 8 GSEA analysis results for DEGs in low and high-risk groups in TCGA-HNSCC cohort. Dot plots depict the normalized 
enrichment score of significant Hallmark (A) and KEGG (B) pathways identified by the GSEA algorithm between low and high-risk clusters 
in the TCGA-HNSCC cohort. GSEA, gene set enrichment analysis; DEGs, differentially expressed genes; TCGA, The Cancer Genome 
Atlas; HNSCC, head and neck squamous cell carcinoma; KEGG, Kyoto Encyclopedia of Genes and Genomes.

immune characteristics of the LASSO CAF risk groups in 
both the TCGA-HNSCC and GSE65858 cohorts revealed 
intriguing patterns. The low-risk groups exhibited higher 
immune system and tumor microenvironment scores, 
suggesting that the immune milieu was favorable, which 
was substantiated by the significant involvements of various 
immune cells (DCs, B cells, and T cells) in both cohorts. 
The immune signatures were similar. Critically, the low-
risk groups were anticipated to exhibit a more favorable 
response to immunotherapy, as evidenced by heightened 
levels of markers associated with immunotherapeutic 
efficacy. In contrast, the high-risk clusters displayed 
increased proportions of immunosuppressive cells of 
various types. Such findings underscore the clinical need 
to stratify patients based on risk profiles and strongly 
suggest that individuals at low risk may benefit more from 

immunotherapy. The development of personalized treatment 
strategies tailored to individual risk profiles is essential. 
Our study has predominantly focused on identifying and 
analyzing the correlations among DCs, T cells, and B cells in 
the context of HNSCC. The universal significance of DCs 
in capturing and presenting tumor antigens, orchestrating 
T cell responses, and influencing antibody production is a 
phenomenon observed not only in HNSCC but also across 
diverse cancer types such as breast, lung, and colorectal 
cancers (37-40). Disruptions in these immune interactions 
have been implicated in immune evasion and prognosis in a 
broader oncological spectrum. Our findings, particularly in 
low-risk groups, highlight the potential applicability beyond 
HNSCC, emphasizing the need to stratify patients based 
on risk profiles and tailor personalized treatment strategies 
across a variety of cancer types.
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Rigorous random survival forest analysis revealed eight 
high-potential hub candidates that were strongly associated 
with ACP2 and CPVL expression in the LASSO Cox model 
and were thus associated with poor OS. Notably, single-cell 
database analysis revealed that both genes were prominently 
expressed in DCs. ACP2 (encoding acid phosphatase 2) 
and CPVL (encoding cysteine proteinase inhibitor, clade 
V) exert known functions in cellular processes and protease 
regulation, respectively (41). Although their precise roles 
in head-and-neck cancers and DCs remain unclear, they 
may function within TIMEs. ACP2 action in lysosomes 
may affect DC-mediated antigen presentation and immune 
responses within tumors (42). Likewise, the role of CPVL 
in terms of protease regulation may indirectly affect DC 
activities; proteases are critical in terms of DC migration 
and antigen processing (43). However, no clear connections 
between the activities of these genes and DC functions 
have yet been described in head-and-neck cancer. Further 
research is needed to explore whether and how ACP2 and 
CPVL shape TIMEs and might thus be valuable therapeutic 

targets. On the other hand, our study investigated the roles 
of FGD3, JCHAIN (previously known as IGJ), INPP5D, 
CCR7, and SPOCK2, particularly their association with 
favorable OS. Of notable significance are JCHAIN (joining 
chain of multimeric IgA and IgM) and CCR7 (C-C motif 
chemokine receptor 7). JCHAIN is a key peptide in 
immunoglobulin assembly, primarily functions in B cells 
and plasma cells to facilitate the secretion of polymeric 
IgM and IgA, enhancing immune responses at mucosal 
surfaces. Within the tumor immune microenvironment, the 
identified association between JCHAIN and favorable OS 
suggests its potential role in promoting immune responses 
against cancer (44,45). The chemokine receptor CCR7 is 
essential in directing immune cells like T cells and DCs 
to lymph nodes, which is critical for the enhancement of 
immune surveillance and the overall immune response. 
Our findings highlight CCR7’s integral role in predicting 
favorable OS, emphasizing its significance in orchestrating 
immune cell localization and modulating anti-tumor 
immune responses (46). Collectively, these observations 
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underscore the potential of JCHAIN  and CCR7  as 
promising markers for predicting positive outcomes and 
bolstering immune responses in the realm of cancer.

The analysis of differential gene expression in ACP2+ and 
ACP2− DC cells revealed distinct transcriptional profiles, 
showing upregulation of 176 genes in ACP2+ cells and 32 in 
ACP2− cells. Our investigation into the association between 
STAT1 and ACP2, a crucial prognostic DC candidate, was 
validated through qRT-PCR and dual-luciferase assays in 
HEK293T cells, establishing a positive correlation. The 
identified top transcription factors, including STAT1, 
imply a complex regulatory network influencing ACP2 
expression. This discovery not only holds implications for 
targeted therapeutic strategies in HNSCC but also unveils 
a novel axis in DC biology that may influence the tumor 
microenvironment. While recognizing the limitation of the 
experiments being conducted in HEK293T cells rather than 
DCs, further exploration of the functional consequences 
and potential therapeutic targeting of this regulatory 
network is warranted. Such investigations will contribute 
to a more comprehensive understanding of the molecular 
dynamics within the tumor microenvironment, fostering 
advancements in therapeutic interventions for HNSCC.

TP53 and FAT1 are frequently mutated in high-
risk cancer subgroups, and these mutations significantly 
influence the TIME. TP53 is often termed the “guardian 
of the genome”. Mutations that render TP53 dysfunctional 
trigger genomic instability and tumor evasion of immune 
surveillance (47), in turn affecting DC-mediated antigen 
presentation and thus compromising anti-tumor immune 
responses (48). FAT1 mutations have been correlated 
with increased tumor invasiveness and changes in the 
tumor microenvironment (49). Any role of FAT in DC 
interactions remains unclear, but changes in the tumor 
microenvironment could indirectly affect DC function and 
immune responses (50). However, no direct relationship 
between TP53 or FAT1 mutations and the DCs in head-and-
neck cancers has yet been defined; the mutations may affect 
DC recruitment, maturation, and antigen presentation 
and thus patient prognosis. It is essential to understand 
the intricate interplay between genetic alterations and the 
TIME, including DCs. Such findings are poised to facilitate 
the development of targeted therapies aimed at improving 
the clinical outcomes of patients with HNSCC.

Our study has certain limitations. Large biological 
datasets may be affected by data quality and consistency 
issues given the various experimental methods employed 
by different research groups. Additionally, the inherent 

complexities of tumors associated with the many cell types 
and molecular interactions involved render bioinformatics 
analyses difficult; not all relevant biological processes 
may be captured. Also, validation of bioinformatics data 
in experimental or clinical settings can be both resource-
intensive and technically challenging. Any bioinformatics 
data on cancers must be interpreted with caution.

Conclusions

Our study reveals the pivotal role of DCs in HNSCC. 
Analyzing clinical datasets identifies 222 DC-related genes, 
pinpointing seven prognostic genes, including ACP2 and 
CPVL. Differential gene expression unveils 208 genes 
distinguishing ACP2+ and ACP2− DC cells. Notable findings 
include top transcription factors (e.g., STAT1) and genomic 
associations like TP53 and FAT1 mutations. Confirmed 
STAT1 and ACP2 correlation, along with insights into 
immunotherapeutic sensitivity, hints at a robust DC-based 
prognostic system, laying the groundwork for personalized 
therapeutic strategies.
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