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A nonlinear dynamical system is proposed and qualitatively analyzed to study the dynamics of HIV/AIDS in the workplace. The
disease-free equilibrium point of the model is shown to be locally asymptotically stable if the basic reproductive number,R

0
, is less

than unity and the model is shown to exhibit a unique endemic equilibrium when the basic reproductive number is greater than
unity. It is shown that, in the absence of recruitment of infectives, the disease is eradicated whenR

0
< 1, whiles the disease is shown

to persist in the presence of recruitment of infected persons.The basicmodel is extended to include control efforts aimed at reducing
infection, irresponsibility, and nonproductivity at the workplace. This leads to an optimal control problem which is qualitatively
analyzed using Pontryagin’s Maximum Principle (PMP). Numerical simulation of the resulting optimal control problem is carried
out to gain quantitative insights into the implications of the model. The simulation reveals that a multifaceted approach to the fight
against the disease is more effective than single control strategies.

1. Introduction

HIV/AIDS is one of the diseases that have claimed and
continue to claim the lives of millions of people worldwide.
Over the past three decades alone, HIV/AIDS has claimed
the lives of more than 25 million people, most of whom
were from Sub-Saharan Africa where 1 in every 20 adults
is living with HIV. In 2011 alone, for example, about 34
million people, globally, were living with HIV/AIDS, about
23.5 million of them were from Sub-Saharan Africa and
about 1.7 million people died from the disease globally [1].
The disease places so many burdens not only on families
as some bread winners are lost but also on governments
who have to spend millions of dollars in the purchase of
antiretroviral drugs and on other intervention schemes. In
2011, for example, there was a total global expenditure of
aboutUS$16.8 billion in the fight againstHIV/AIDS [1]. In his
address of state of the nation this year, the president of Ghana
spoke of the government’s commitment to providing about
5 million Dollars to local pharmaceutical companies to help
in the production of antiretroviral drugs in the country. It is

these effects of the disease that call for continuous research
into the prevention and control of the disease.

Mathematical models have played amajor role in increas-
ing our understanding of the dynamics of infectious diseases.
Several models have been proposed to study the effects of
some factors on the transmission dynamics of these infectious
diseases including HIV/AIDS and to provide guidelines as
to how the spread can be controlled. Among these models
include those of Anderson et al. [2] who presented a prelimi-
nary study of the transmission dynamics ofHIVby proposing
amodel to study the effects of various factors on the transmis-
sion of the disease, Stilianakis et al. [3]. who proposed and
gave a detailed analysis of a dynamical model that describes
the pathogenesis of HIV, and Tripathi et al. [4] who proposed
a model to study the effects of screening of unaware infective
on the transmission dynamics of HIV/AIDS. Several other
models proposed to study dynamics of HIV/AIDS can be
found in ([5–13], and the references therein).

“HIV/AIDS is a major threat to the world of work:
it is affecting the most productive segment of the labour
force and reducing earnings, and it is imposing huge costs
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Figure 1: Flowchart of model (1).

on enterprises in all sectors through declining productivity,
increasing labour costs and loss of skills and experience. In
addition, HIV/AIDS is affecting fundamental rights at work,
particularlywith respect to discrimination and stigmatization
aimed at workers and people living with and affected by
HIV/AIDS. The epidemic and its impact strike hardest at
vulnerable groups including women and children, thereby
increasing existing gender inequalities and exacerbating the
problem of child labour” [14]. Due to the effects of HIV/AIDS
on firms, the International Labour Organization sees the field
of work as amajor stakeholder in the fight against the disease.
The ILO envisages a world that sees HIV as a workplace
issue like any other disease/sickness. It envisages a world
of work that makes efforts to prevent discrimination in any
form against people with HIV and also makes efforts to
provide healthy work environments through social dialogue,
prevention, and care and support for people with HIV.
Dixon et al. [15] studied the impact of HIV/AIDS on Africa’s
economic development while [16] studied the impact of
AIDs on developing economies. Not much research has been
done in the study of epidemic models that consider the
effect of HIV/AIDS on productivity and how the workplace
can contribute to the fight against the disease. Okosun
et al. [17] presented a dynamical model that studied the
impact of susceptibles and infectives with different levels of
productivity on the spread of HIV/AIDS at the workplace.
They sought to determine the optimal levels of education,
antiretroviral therapy that is required to optimally reduce
the spread of the disease and increase productivity. In this
paper, we present an extension of the model of Okosun et
al. [17] to include susceptibles and infectives with different
behaviors towards sex and with varying levels of productivity.
Thus, we consider a dynamical system that incorporates
the effects Careful-Productive Susceptibles, Careful-Non-
Productive Susceptibles, Careless-Productive Susceptibles,
Careless-Non-Productive Susceptibles, and similar groups

of infectives on the transmission dynamics of HIV/AIDS
at the workplace. We study the optimal levels of various
intervention strategies needed to optimally reduce the spread
of the disease and increase productivity. To do this, wemodify
our basic model to include various intervention strategies
to obtain an optimal control problem which is analyzed
qualitatively using the Pontryagin’s Maximum principle. The
resulting optimal control problem is also solved numerically
to gain more insights into the implications of the interven-
tions. The remainder of the paper is organized as follows.
In Section 2, we present the mathematical model describing
the dynamics of the disease and some basic properties of
the model are also presented. The equilibrium states of the
model and some implications are discussed in Section 3. In
Section 4, we present a modification of the basic model into
an optimal control problem and, finally, we present the results
of the numerical simulations of the resulting optimal control
problem in Section 5.

2. Formulation of the Model

In this section, we develop a deterministic model that
describes the dynamics of HIV/AIDS in a homogeneously
mixed workplace of population size 𝑁. The population is
subdivided into nine (9) mutually-exclusive compartments,
namely, Careful Productive Susceptibles, 𝑆

1𝑝
; Careful Non-

Productive Susceptibles, 𝑆
1𝑛
; Careless-Productive Suscepti-

bles, 𝑆
2𝑝
; Careless-Non-Productive Susceptibles, 𝑆

2𝑛
; Careful-

Productive Infectives, 𝐼
1𝑝
; Careful-Non-Productive Infec-

tives, 𝐼
1𝑛
; Careless-Productive Infectives, 𝐼

2𝑝
; Careless-Non-

Productive Infectives, 𝐼
2𝑛
; and AIDS patients, 𝐴, so that we

have𝑁 = 𝑆
1𝑝

+ 𝑆
1𝑛

+ 𝑆
2𝑝

+ 𝑆
2𝑛

+ 𝐼
1𝑝

+ 𝐼
1𝑛

+ 𝐼
2𝑝

+ 𝐼
2𝑛

+ 𝐴. The
schematic diagram of the model is shown in Figure 1.

Our model assumes that there is a constant recruitment
rate,𝑄, into the population with 𝜋
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being the fractions of the respective subpopulations recruited
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into the population. Susceptible individuals acquire HIV
through contact with infected ones with force of infection
given by 𝜆 = 𝛽𝑐[𝐼

1𝑝
+ 𝐼
1𝑛

+ 𝜏(𝐼
2𝑝

+ 𝐼
2𝑛
)]/𝑁, where

𝛽 is the probability of infection per contact and 𝑐 is the
average number of sexual partners per unit time and 𝜏 is
a modification parameter due to irresponsibility, which we
assume is a factor that increases the chance of an infective
transmitting the disease as they may tend to have a negative
attitude towards protected sex. Newly infected susceptibles
are assumed to be irresponsible and nonproductive as they
are often unaware of their HIV status in the early stages
and their productivity will reduce due to the infection.
This is because, in the asymptomatic phase of the infection,
infectives will often experience occasional fevers and general
feeling of tiredness and non-feeling-well among others which
can negatively impact the productivity. Due to the admin-
istration of highly active antiretroviral therapy (HAART),
the responsible and irresponsible nonproductive infectives
become responsible and irresponsible productives at the
rates 𝜎

1
and 𝜎

2
, respectively. Responsible and irresponsible

nonproductive susceptibles become productive at the rates 𝜌
1

and 𝜌
2
, respectively. Careful-Productive Infectives, Careful-

Non-Productive Infectives, Careless-Productive Infectives,
and Careful-Non-Productive Infectives develop AIDS at the
rates 𝛿

1
, 𝛿
2
, 𝛿
3
, and 𝛿

4
, respectively.There is a positive change

in behavior leading to Careless individuals (Productive Sus-
ceptibles, Nonproductive Susceptibles, Productive Infectives,
and Nonproductive Infectives) becoming careful individuals
(Respectively, Productive Susceptibles, Nonproductive Sus-
ceptibles, Productive Infectives, and Nonproductive Infec-
tives) at rates 𝛼

𝑝
, 𝛼
𝑛
,𝜃
𝑝
, and 𝜃

𝑛
, respectively.There is a natural

death rate of 𝜇 for all individuals in all subgroups and𝜓 is the
disease-induced death rate.

Putting the above formulations and assumption leads to
the following set of ordinary differential equations represent-
ing the model describing the dynamics of HIV/AIDS at the
workplace:

d𝑆
1𝑝

d𝑡
= (1 −

7

∑
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𝑘
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By using 𝑠
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/𝑁, 𝑖
2𝑛

= 𝐼
2𝑛
/𝑁, and

𝑎 = 𝐴/𝑁 and keeping 𝑆
1𝑝

= 𝑠
1𝑝
, . . ., 𝐼

1𝑝
= 𝑖
1𝑝
, . . ., 𝐴 = 𝑎 for

convenience, we have
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1
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2
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3
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∗
+ 𝑘
3
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4
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8
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(2)

where

𝜆
∗
= 𝛽𝑐 [𝐼

1𝑝
+ 𝐼
1𝑛

+ 𝜏 (𝐼
2𝑝

+ 𝐼
2𝑛
)] ,

𝑘
1
= 𝜌
1
+ 𝜇, 𝑘

2
= 𝛼
𝑝
+ 𝜇, 𝑘

3
= 𝛼
𝑛
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2
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𝑘
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= 𝛿
1
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= 𝜎
1
+ 𝛿
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3
+ 𝜇,

𝑘
7
= 𝜎
2
+ 𝜃
𝑛
+ 𝛿
4
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(3)

In the next section, some basic facts about model (2) are
presented.

2.1. Basic Properties of theModel. We show in this section that
model (2) is reasonable bothmathematically and biologically.
This is achieved via the following theorems.

The model is epidemiologically feasible if the following
theorem is true.

Theorem 1. Let 𝑋(𝑡) = (𝑆
1𝑝
(𝑡), 𝑆
1𝑛
(𝑡), 𝑆
2𝑝
(𝑡), 𝑆
2𝑛
(𝑡), 𝐼
1𝑝
(𝑡),

𝐼
1𝑛
(𝑡), 𝐼
2𝑝
(𝑡), 𝐼
2𝑛
(𝑡), . . . , 𝐴(𝑡)). If the initial values of the model
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are nonnegative (i.e., 𝑥(0) > 0), then solutions of model (2)
remain positive for all time 𝑡 > 0.

In particular, lim
𝑡→∞

Sup𝑁(𝑡) ≤ 𝑄/𝜇.

2.1.1.PositiveInvariantRegionof theModel. Let,𝑋(𝑡) = (𝑆
1𝑝
(𝑡),

𝑆
1𝑛
(𝑡), 𝑆
2𝑝
(𝑡), 𝑆
2𝑛
(𝑡), 𝐼
1𝑝
(𝑡), 𝐼
1𝑛
(𝑡), 𝐼
2𝑝
(𝑡), 𝐼
2𝑛
(𝑡), . . . , 𝐴(𝑡)). We

shall analyze model (2) in the domain

D = {𝑋 ∈ R9
+
:

9

∑

𝑘=1

𝑋
𝑘
(𝑡) ≤

𝑄

𝜇

} . (4)

The region, D, can be shown to be positively invariant (i.e.,
solutions inD will always remain inD).

Theorem 2. The regionD is positively invariant for model (2)
with initial conditions in R9

+
.

Proof. Let

𝑁 = 𝑆
1𝑝

+ 𝑆
1𝑛

+ 𝑆
2𝑝

+ 𝑆
2𝑛

+ 𝐼
1𝑝

+ 𝐼
1𝑛

+ 𝐼
2𝑝

+ 𝐼
2𝑛

+ 𝐴. (5)

Then, adding all equations of model (2) we have

d𝑁
d𝑡

= 𝑄 − 𝜇(𝑆
1𝑝

+ 𝑆
1𝑛

+ 𝑆
2𝑝

+ 𝑆
2𝑛

+ 𝐼
1𝑝

+ 𝐼
1𝑛

+ 𝐼
2𝑝

+ 𝐼
2𝑛

+ 𝐴) − 𝜓𝐴 = 𝑄 − 𝜇𝑁 − 𝜓𝐴.

(6)

Thus, d𝑁/d𝑡 ≤ 𝑄 − 𝜇𝑁.
A standard comparison theorem [18] can be used to prove

that𝑁(𝑡) ≤ 𝑁(0)𝑒
−𝜇𝑡

+ (𝑄/𝜇)(1 − 𝑒
−𝜇𝑡

).
In particular, if 𝑁(0) ≤ 𝑄/𝜇, then 𝑁(𝑡) ≤ 𝑄/𝜇 as

required.
This shows that the region D is positively invariant

and that the dynamics of the model can be sufficiently
studied in D inside which the model is considered to be
epidemiologically and mathematically well posed [19]. This
means that all solutions of themodel starting inDwill remain
inD for all time, 𝑡 > 0.

3. Equilibrium Points of the Model

The model exhibits two equilibrium points, namely, the
disease-free equilibrium point, 𝐸

0
, and the endemic equilib-

rium point, 𝐸∗.

3.1. The Disease-Free Equilibrium. The disease-free equilib-
rium point exists in the absence of the disease and is given
by

𝐸
0
= (𝑆
0

1𝑝
, 𝑆
0

1𝑛
, 𝑆
0

2𝑝
, 𝑆
0

2𝑛
, 0, 0, 0, 0, 0) , (7)

where

𝑆
0

1𝑝
=

(1 − 𝜋
1
− 𝜋
2
− 𝜋
3
) 𝑄

𝜇

+
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1
𝑘
2
𝑘
3
𝜋
1
+ 𝛼
𝑝
𝑘
1
𝑘
3
𝜋
2
+ [𝜌
1
𝛼
𝑛
𝑘
2
+ 𝜌
2
𝛼
𝑝
𝑘
1
] 𝜋
3
}

𝜇𝑘
1
𝑘
2
𝑘
3

,

𝑆
0

1𝑛
=
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3
𝜋
1
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𝜋
3
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1
𝑘
3

,

𝑆
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2
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2
𝜋
3
]

𝑘
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𝑘
3

,

𝑆
0

2𝑛
=

𝜋
3
𝑄

𝑘
3

.

(8)

3.1.1. Basic ReproductionNumber. Weuse the next generation
matrix method of [20] to calculate the basic reproduction
number, R

0
. The transmission and transition matrices are,

respectively, given by

𝐹 =

[
[
[

[

0 0 0 0

0 0 0 0

0 0 0 0

𝛽𝑐𝑆
0

𝛽𝑐𝑆
0

𝜏𝛽𝑐𝑆
0

𝜏𝛽𝑐𝑆
0

]
]
]

]

, (9)

with 𝑆
0
= 𝑆
0

1𝑝
+ 𝑆
0

1𝑛
+ 𝑆
0

2𝑝
+ 𝑆
0

2𝑛
and

𝑉 =

[
[
[

[

𝑘
4

−𝜎
1

−𝜃
𝑝

0

0 𝑘
5

0 −𝜃
𝑛

0 0 𝑘
6

−𝜎
2

0 0 0 𝑘
7

]
]
]

]

. (10)

van den Driessche and Watmough [20] defined the basic
reproduction number, R

0
, as the largest eigenvalue of the

matrix 𝐹𝑉
−1.

Consider

R
0
=

𝛽𝑐𝑄 (𝑘
5
𝜎
2
𝜃
𝑝
+ 𝑘
6
𝜃
𝑛
(𝑘
4
+ 𝜎
1
) + 𝜏𝑘

4
𝑘
5
(𝜎
2
+ 𝑘
6
))

𝜇𝑘
4
𝑘
5
𝑘
6
𝑘
7

.

(11)

Using theorem (2) of [20], the following theorem is estab-
lished.

Theorem 3. The disease-free equilibrium point, 𝐸
0
, of model

(2) is locally asymptotically stable if R
0

< 1 and unstable if
R
0
> 1.

The basic reproduction ratio is a threshold quantity that
measures the average number of secondary infections caused
by a single infected individual introduced into a completely
susceptible population over its duration of infectivity [19, 21].
Epidemiologically, Theorem 3 implies that a small influx of
infectives will not lead to an epidemic ifR

0
< 1.The theorem

also implies that HIV/AIDs can be eradicated when R
0
< 1

provided that the initial population sizes arewithin the region
of attraction of the disease-free equilibrium point.
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3.1.2. Sensitivity Analysis ofModel Parameters. In this section,
the relative effects of the parameters that determine R

0
are

presented. We use the normalized forward sensitivity index
defined as follows.

Definition 4. Let R
0

= 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
). Then the normal-

ized forward sensitivity index ofR
0
relative to 𝑥

𝑖
is given by

Υ
R0
𝑥𝑖

= (𝜕R
0
/𝜕𝑥
𝑖
) × (𝑥

𝑖
/R
0
).

Thus, ΥR0
𝛽

= Υ
R0
𝑄

= 1. Due to the complex nature of
the resulting expressions, the numerical sensitivity indexes
of the remaining parameters are presented in Table 2. These
indexes are evaluated using the parameter values in Table 1.
Quite a number of these parameter values are used mainly
for the simulation purposes to illustrate the kind of response
expected for the given parameter values and may not be
correct epidemiologically.

The sensitivity indexes reflect the percentage change in
the dependent variable (in this case R

0
) as a result of a

percentage change in the independent variable. Thus, a 10%
increase (or decrease) in the transmission probability,𝛽, leads
to a 10% increase (or decrease) in the basic reproduction
number, while a 10% increase (or decrease) in the rate of
progression of the Productive Infectives into AIDS leads
to 4.6% decrease (or increase) in the basic reproduction
number. It is observed from Table 2 that the most sensitive
parameter is 𝜇 followed by 𝑄, 𝛽, and 𝑐, which are equally
sensitive. Thus, these parameters should be those that can be
used to control the spread of the disease.

3.2. The Endemic Equilibrium. In the presence of the infec-
tion, the system exhibits the endemic equilibrium point, 𝐸∗,
given by

𝐸
∗
= (𝑆
∗

1𝑝
, 𝑆
∗

1𝑛
, 𝑆
∗

2𝑝
, 𝑆
∗

2𝑛
, 𝐼
∗

1𝑝
, 𝐼
∗

1𝑛
, 𝐼
∗

2𝑝
, 𝐼
∗

2𝑛
, 𝐴
∗
) , (12)

where

𝑆
∗

1𝑝

=

(1 − ∑
7

𝑘=1
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𝑘
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𝜆
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+ 𝜇
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2
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∗
+ 𝑘
3
) 𝜋
1
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1
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1
𝛼
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2
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3
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,

𝑆
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3
) 𝜋
1
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1
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∗
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)

,

𝑆
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∗
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3
) 𝜋
2
+ 𝜌
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3
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2
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3
)

,

𝑆
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3
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𝜋
6
𝑘
5
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2
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)
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4
𝑘
5
𝑘
6
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,

𝐼
∗

1𝑛
=

𝑄 [𝜋
5
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𝑛
[𝜇𝜋
7
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4
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5
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𝑘
5
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,

𝐼
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2𝑝
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7
(𝜆 + 𝜇) 𝜋

6
+ 𝜎
2
[𝜇𝜋
7
+ 𝜆 (1 − 𝜋

4
− 𝜋
5
− 𝜋
6
)]]

𝑘
6
(𝜆 + 𝜇)

,

𝐼
∗

2𝑛
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7
+ 𝜆
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4
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6
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𝑘
7
(𝜆
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,

𝐴
∗
=

𝛿
1
𝐼
∗

1𝑝
+ 𝛿
2
𝐼
∗

2𝑝
+ 𝛿
3
𝐼
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𝐼
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(13)
After some algebraic manipulations, it can be shown that 𝜆

∗

satisfies the fourth order polynomial

𝑃 (𝜆
∗
) = 𝑘
4
𝑘
5
𝑘
6
𝑘
7
𝜆
2

∗
+ Γ
1
𝜆
∗
+ Γ
0
= 0, (14)

where
Γ
1
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4
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5
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6
𝑘
7
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0
(1 − 𝜋

4
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6
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5
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Γ
0
= − 𝛽𝑐𝑄𝜇 [𝑘

7
𝜋
4
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5
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7
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1
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6
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7
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(15)

When there is no recruitment of infectives (i.e., 𝜋
4
, . . . , 𝜋

7
=

0), we have Γ
0
= 0, Γ

1
= 𝜇𝑘
4
𝑘
5
𝑘
6
𝑘
7
(1 − R

0
) and, hence, the

polynomial has two roots, namely, 𝜆
∗
= 0which corresponds

to the disease-free equilibrium and the other being 𝜆
∗

=

𝜇(R
0
− 1) which is positive if and only if R

0
> 1. Thus,

in the absence of recruitment of infectives, the endemic
equilibrium point exists only when R

0
> 1 and is given by

(𝑆
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Table 1: Model parameter descriptions and values used for simulations.

Parameter Parameter description Value Reference
𝑄 Rate of recruitment 100 People (Year)−1

𝜋 Fraction of subpopulations recruited 0.04
𝛼
𝑝

Rate at which Careless-Productive Susceptibles become Careful 0.4 (Year)−1

𝛼
𝑛

Rate at which Careless-Non-Productive Susceptibles become Careful 0.3 (Year)−1

𝜃
𝑝

Rate at which Careless-Productive Infectives become Careful 0.6 (Year)−1

𝜃
𝑛

Rate at which Careless-Non-Productive Infectives become Careful 0.5 (Year)−1

𝜌
1

Rate at which Careful-Non-Productive Susceptibles become Productive. 0.6 (Year)−1

𝜌
2

Rate at which Careless-Non-Productive Susceptibles become Productive. 0.4 (Year)−1

𝜎
1

Rate at which Careful-Productive Infectives lose their Productivity. 0.4 (Year)−1

𝜎
2

Rate at which Careless-Productive Infectives lose their Productivity 0.6 (Year)−1

𝛽 Contact rate between susceptibles and infectives 0.344 (People)−1 [4]
𝜏 Modification parameter due to careless behavior towards sex 1.2
𝛿
1

Rate of progression of Productive Infectives into AIDs 0.100 (Year)−1 [4]
𝛿
2

Rate of progression of Nonproductive Infective into AIDs 0.100 (Year)−1 [4]
𝛿
3

Rate of progression of Productive Infective into AIDs 0.100 (Year)−1 [4]
𝛿
4

Rate of progression of Productive Infective into AIDs 0.100 (Year)−1 [4]
𝜇 Natural Death rate 0.020 (Year)−1 [4]
𝜓 AIDs related death rate 1.000 (Year)−1 [4]

Table 2: Sensitivity indexes ofR
0
.

Parameter Parameter description Sensitivity index
𝑄 Rate of recruitment +1.000
𝛽 Contact rate between Susceptibles and Infectives +1.000
𝑐 Average number of sexual partners of an infective per unit time +1.000
𝛿
1

Rate of progression of Productive Infectives into AIDs −0.460
𝛿
2

Rate of progression of Nonproductive Infective into AIDs −0.015
𝛿
3

Rate of progression of Productive Infective into AIDs −0.033
𝛿
4

Rate of progression of Productive Infective into AIDs −0.082
𝜇 Natural Death rate −1.138
𝜎
1

Rate at which Careful-Productive Infectives lose their Productivity +0.000
𝜎
2

Rate at which Careless-Productive Infectives lose their Productivity −0.350
𝜏 Modification parameter due to careless behavior towards sex +0.312
𝜃
𝑛

Rate at which Careless-Non-Productive Infectives become Careful +0.180
𝜃
𝑝

Rate at which Careless-Productive Infectives become Careful −0.102

𝐼
∗1

1𝑛
=

𝑄𝜃
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5
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1
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𝑘
7
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1

R
0
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R
0

) ,

𝐴
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𝑄
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(

𝛿
1
(𝑘
5
𝜎
2
𝜃
𝑝
+ 𝑘
6
𝜎
1
𝜃
𝑛
)

𝑘
4
𝑘
5
𝑘
6
𝑘
7

+

𝛿
2
𝜃
𝑛

𝑘
5
𝑘
7

+

𝛿
3
𝜎
2

𝑘
6
𝑘
7

+

𝛿
4

𝑘
7

)(1 −

1

R
0

) .

(16)

Thus, the following theorem is established.

Theorem 5. In the absence of recruitment of infectives:

(a) ifR
0
< 1, model (2) has exactly one equilibrium point

which is the disease-free equilibrium;
(b) if R

0
> 1, model (2) has two equilibria, namely, the

disease-free equilibrium (8) and the endemic equilib-
rium point (16), coexisting.

By Theorem 5, a necessary and sufficient condition for
eradication of the disease in the absence of recruitment of
infectives is that the basic reproduction number, R

0
, be less

than unity.

Theorem 6. In the presence of recruitment of infectives, model
(2) has a unique positive equilibrium irrespective of the sign
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Figure 2: Continued.



8 Computational and Mathematical Methods in Medicine

Time
0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14
I 2
p

u1 = u2 = u3 = u4 = 0

u1 0, u2 0, u3 0, u4 0≠ ≠ ≠ ≠

(g)

Time
0 2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

I 2
n

u1 = u2 = u3 = u4 = 0

u1 0, u2 0, u3 0, u4 0≠ ≠ ≠ ≠

(h)

Figure 2: Simulations of Basic model (2) and the Optimal Control Problem (17) showing the effect of implementing all the intervention
strategies on the dynamics of HIV/AIDS transmission.

of Γ
1
. Thus, in the presence of recruitment of infectives, the

model does not exhibit backward bifurcation.

Since all model parameters are nonnegative, then clearly
Γ
0
< 0 and, hence, the discriminant of the quadratic equation,

Δ = Γ
2

1
− 4𝑘
4
𝑘
5
𝑘
6
𝑘
7
Γ
0
, is positive. By the Descartes rule

of signs, the polynomial has two real roots of opposite
signs. Hence, the model has a unique endemic (positive)
equilibrium irrespective of the sign of Γ

1
.

4. Extended Model with Controls

In this section, an optimal control problem is formulated
by incorporating four intervention strategies into our basic
model (2). The following interventions are incorporated into
the basic model:

(i) 𝑢
1
is the control effort aimed at reducing the infection

of susceptible individuals;

(ii) 𝑢
2
is the control effort aimed at treating infected

individuals;

(iii) 𝑢
3
is the control effort aimed at changing behavior.

That is, 𝑢
3
is the control effort aimed at making

Careless Susceptibles (both Productive and Nonpro-
ductive) and Infectives (both Productive andNonpro-
ductive) Careful;

(iv) 𝑢
4
is the control effort aimed at reducing nonproduc-

tivity at the workplace.

Thus, the basic model becomes

d𝑆
1𝑝
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= (1 −

7
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Figure 3: Continued.
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Figure 3: Simulations of the Optimal Control Problem (17) showing the effect of control Strategy 2 on the dynamics of HIV/AIDS
transmission.

Our main aim in developing this extended model is to
seek optimal levels of the intervention strategies needed to
minimize the number of nonproductive workers and the
cost of implementing the control strategies. We choose a
functional 𝐽 given by

𝐽 = min
𝑢𝑖 , 𝑖∈[1,4]

∫

𝑇

0

[𝑎
1
𝑆
1𝑛

+ 𝑎
2
𝑆
2𝑛

+ 𝑎
3
𝐼
1𝑛

+ 𝑎
4
𝐼
2𝑛

+

1

2

(𝑤
1
𝑢
2

1
+ 𝑤
2
𝑢
2

2
+ 𝑤
3
𝑢
2

3
+ 𝑤
4
𝑢
2

4
)] 𝑑𝑡,

(18)

where the 𝑤
𝑖
s are positive weights which measure relative

costs of implementing the respective intervention strategies
over the period [0, 𝑇], whilst the terms 𝑤

𝑖
𝑢
2

𝑖
/2 measure the

cost of the intervention strategies. We chose a quadratic cost
functional in line with several other literatures on models of
epidemic control [22–25]. Thus, we seek an optimal control
quadruple (𝑢

∗

1
, 𝑢
∗

2
, 𝑢
∗

3
, 𝑢
∗

4
) such that

𝐽 (𝑢
∗

1
, 𝑢
∗

2
, 𝑢
∗

3
, 𝑢
∗

4
) = min {𝐽 (𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
) | 𝑢
𝑖
∈ U} ,

(19)

where U = {(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
) such that 𝑢

𝑖
are measurable with

0 ≤ 𝑢
𝑖
(𝑡) ≤ 1; ∀𝑡 ∈ [0, 𝑇]} is the set of admissible controls.

Pontryagin’s Maximum Principle [26] provides the nec-
essary condition for optimality of the controls. Using this
principle, (17) and (18) are converted into a problem of

minimizing, with respect to the controls 𝑢
𝑖
s, the Hamiltonian

𝐻 given by

𝐻 = 𝑎
1
𝑆
1𝑛

+ 𝑎
2
𝑆
2𝑛

+ 𝑎
3
𝐼
1𝑛

+ 𝑎
4
𝐼
2𝑛

+

1

2

(𝑤
1
𝑢
2

1
+ 𝑤
2
𝑢
2

2
+ 𝑤
3
𝑢
2

3
+ 𝑤
4
𝑢
2

4
)

+ 𝜆
1
[(1 −

7

∑

𝑘=1

𝜋
𝑘
)𝑄 + 𝑢

3
𝛼
𝑝
𝑆
2𝑝

+ 𝑢
4
𝜌
1
𝑆
1𝑛

− (𝜆
∗
(1 − 𝑢

1
) + 𝜇) 𝑆

1𝑝
]

+ 𝜆
2
[𝜋
1
𝑄 + 𝑢

3
𝛼
𝑛
𝑆
2𝑛

− (𝜆
∗
(1 − 𝑢

1
) + 𝑢
4
𝜌
1
+ 𝜇) 𝑆

1𝑛
]

+ 𝜆
3
[𝜋
2
𝑄 + 𝑢

4
𝜌
2
𝑆
2𝑛

− (𝜆
∗
(1 − 𝑢

1
) + 𝑢
3
𝛼
𝑝
+ 𝜇) 𝑆

2𝑝
]

+ 𝜆
4
[𝜋
3
𝑄 − (𝜆

∗
(1 − 𝑢

1
) + 𝑢
3
𝛼
𝑛
+ 𝑢
4
𝜌
2
+ 𝜇) 𝑆

2𝑛
]

+ 𝜆
5
[𝜋
4
𝑄 + 𝑢

3
𝜃
𝑝
𝐼
2𝑝

+ 𝑢
4
𝜎
1
𝐼
1𝑛

− ((1 − 𝑢
2
) 𝛿
1
+ 𝜇) 𝐼

1𝑝
]

+ 𝜆
6
[𝜋
5
𝑄 + 𝑢

3
𝜃
𝑛
𝐼
2𝑛

− (𝑢
4
𝜎
1
+ (1 − 𝑢

2
) 𝛿
2
+ 𝜇) 𝐼

1𝑛
]

+ 𝜆
7
[𝜋
6
𝑄 + 𝑢

4
𝜎
2
𝐼
2𝑛

− (𝑢
3
𝜃
𝑝
+ (1 − 𝑢

2
) 𝛿
3
+ 𝜇) 𝐼

2𝑝
]

+ 𝜆
8
[𝜋
7
𝑄 + 𝜆

∗
(1 − 𝑢

1
) (𝑆
1𝑛

+ 𝑆
2𝑛

+ 𝑆
1𝑝

+ 𝑆
2𝑝
)

− (𝑢
4
𝜎
2
+ 𝑢
3
𝜃
𝑛
+ (1 − 𝑢

2
) 𝛿
4
+ 𝜇) 𝐼

2𝑛
]

+ 𝜆
9
{(1 − 𝑢

2
) [𝛿
1
𝐼
1𝑝

+ 𝛿
2
𝐼
1𝑛

+ 𝛿
3
𝐼
2𝑝

+ 𝛿
4
𝐼
2𝑛
]

− (𝜓 + 𝜇)𝐴} .

(20)
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Figure 4: Continued.
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Figure 4: Simulations of the Optimal Control Problem (17) showing the effect of control Strategy 3 on the dynamics of HIV/AIDS
transmission.

The 𝜆
𝑖
s, (𝑖 = 1, . . . , 9) are the adjoint variables or costate

variables which determine the adjoint system, which together
with the state system (17) describes the optimality system.

Pontryagin’s Maximum principle [26] and the existence
result for optimal control from [27] can be used to obtain the
following proposition.

Proposition 7. The optimal control 4-tuple (𝑢
∗

1
, 𝑢
∗

2
, 𝑢
∗

3
, 𝑢
∗

4
)

minimizes the functional 𝐽 if there exist adjoint variables 𝜆
𝑖
,

𝑖 = 1, . . . , 9 that satisfy the adjoint system given by

d𝜆
1

d𝑡
= 𝛽𝑐 (𝐼

1𝑝
+ 𝐼
1𝑛

+ 𝜏 (𝐼
2𝑝

+ 𝐼
2𝑛
)) (1 − 𝑢

1
) (𝜆
1
− 𝜆
8
)

+ 𝜆
1
𝜇,

d𝜆
2

d𝑡
= −𝑎
1
+ (𝜆
2
− 𝜆
1
) 𝜌
1
𝑢
4
+ 𝜆
2
𝜇 + 𝜆
∗
(𝜆
2
− 𝜆
8
) (1 − 𝑢

1
) ,

d𝜆
3

d𝑡
= (𝜆
3
− 𝜆
1
) 𝛼
𝑝
𝑢
3
+ 𝜆
∗
(1 − 𝑢

1
) (𝜆
3
− 𝜆
8
) + 𝜆
3
𝜇,

d𝜆
4

d𝑡
= −𝑎
2
+ 𝜆
∗
(1 − 𝑢

1
) (𝜆
4
− 𝜆
8
)

+ (𝜆
4
− 𝜆
2
) 𝛼
𝑛
𝑢
3
+ (𝜆
4
− 𝜆
3
) 𝜌
2
𝑢
4
+ 𝜆
4
𝜇,

(21)

d𝜆
5

d𝑡
= 𝜉 + (𝜆

5
− 𝜆
9
) 𝛿
1
(1 − 𝑢

2
) + 𝜆
5
𝜇,

d𝜆
6

d𝑡
= 𝜉 − 𝑎

3
+ (𝜆
6
− 𝜆
5
) 𝜎
1
𝑢
4
+ 𝜆
6
𝜇

+ (𝜆
6
− 𝜆
9
) 𝛿
2
(1 − 𝑢

2
) ,

d𝜆
7

d𝑡
= 𝜏𝜉 + (𝜆

7
− 𝜆
5
) 𝜃
𝑝
𝑢
3
+ 𝜆
7
𝜇 + (𝜆

7
− 𝜆
9
) 𝛿
3
(1 − 𝑢

2
) ,

d𝜆
8

d𝑡
= 𝜏𝜉 − 𝑎

4
+ (𝜆
8
− 𝜆
6
) 𝜃
𝑛
𝑢
3
+ (𝜆
8
− 𝜆
7
) 𝜎
2
𝑢
4
+ 𝜆
8
𝜇

+ (𝜆
8
− 𝜆
9
) 𝛿
4
(1 − 𝑢

2
) ,

d𝜆
9

d𝑡
= 𝜆
9
(𝜓 + 𝜇) .

(22)

With transversality conditions 𝜆
𝑖
(𝑇) = 0, ∀𝑖 = 1, . . . , 9,

where

𝜉 = 𝛽𝑐 [𝜆
1
𝑆
1𝑝

+ 𝜆
2
𝑆
1𝑛

+ 𝜆
3
𝑆
2𝑝

+ 𝜆
4
𝑆
2𝑛

− 𝜆
8
(𝑆
1𝑝

+ 𝑆
1𝑛

+ 𝑆
2𝑝

+ 𝑆
2𝑛
)] (1 − 𝑢

1
) .

(23)

Further more

𝑢
∗

1
(𝑡) = min{1,max{

𝜆
∗
((𝜆
8
− 𝜆
1
) 𝑆
1𝑝

+ (𝜆
8
− 𝜆
2
) 𝑆
1𝑛

+ (𝜆
8
− 𝜆
3
) 𝑆
2𝑝

+ (𝜆
8
− 𝜆
4
) 𝑆
2𝑛
)

𝑤
1

, 0}} ,

𝑢
∗

2
(𝑡) = min{1,max{

(𝜆
9
− 𝜆
5
) 𝛿
1
𝐼
1𝑝

+ (𝜆
9
− 𝜆
6
) 𝛿
2
𝐼
1𝑛

+ (𝜆
9
− 𝜆
8
) 𝛿
4
𝐼
2𝑛

+ (𝜆
9
− 𝜆
7
) 𝛿
3
𝐼
2𝑝

𝑤
2

, 0}} ,
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Figure 5: Continued.
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Figure 5: Simulations of the Optimal Control Problem (17) showing the effect of control Strategy 4 on the dynamics of HIV/AIDS
transmission.

𝑢
∗

3
(𝑡) = min{1,max{

(−𝜆
1
+ 𝜆
3
) 𝑆
2𝑝
𝛼
𝑝
+ (𝜆
4
− 𝜆
2
) 𝑆
2𝑛
𝛼
𝑛
+ (𝜆
7
− 𝜆
5
) 𝜃
𝑝
𝐼
2𝑝

+ (𝜆
8
− 𝜆
6
) 𝜃
𝑛
𝐼
2𝑛

𝑤
3

, 0}} ,

𝑢
∗

4
(𝑡) = min{1,max{

(𝜆
2
− 𝜆
1
) 𝑆
1𝑛
𝜌
1
+ (𝜆
4
− 𝜆
3
) 𝑆
2𝑛
𝜌
2
+ (𝜆
6
− 𝜆
5
) 𝜎
1
𝐼
1𝑝

+ (𝜆
8
− 𝜆
7
) 𝜎
2
𝐼
2𝑝

𝑤
4

, 0}} .

(24)

Proof. We obtain the existence of the optimal controls from
[27, Corollary 4.1] due to the convexity of the integrand of
the functional 𝐽 with respect to the quadruple (𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
),

a prior boundedness of the state solutions, and the Lipschitz
property of the state systemwith respect to the state variables.
Using Pontryagin’sMaximumPrinciple, the adjoint or costate
equations (21) are obtained by differentiating the Hamilto-
nian partially with respect to the state variables.Thus, we have

d𝜆
1

d𝑡
= −

𝜕𝐻

𝜕𝑆
1𝑝

,

d𝜆
2

d𝑡
= −

𝜕𝐻

𝜕𝑆
1𝑛

,

d𝜆
3

d𝑡
= −

𝜕𝐻

𝜕𝑆
2𝑝

,

d𝜆
4

d𝑡
= −

𝜕𝐻

𝜕𝑆
2𝑛

,

d𝜆
5

d𝑡
= −

𝜕𝐻

𝜕𝐼
1𝑝

,

d𝜆
6

d𝑡
= −

𝜕𝐻

𝜕𝐼
1𝑛

,

d𝜆
7

d𝑡
= −

𝜕𝐻

𝜕𝐼
2𝑝

,

d𝜆
8

d𝑡
= −

𝜕𝐻

𝜕𝐼
2𝑛

,

d𝜆
9

d𝑡
= −

𝜕𝐻

𝜕𝐴

,

with 𝜆
𝑖
(𝑇) = 0 for 𝑖 = 1, . . . , 9.

(25)

Since the Hamiltonian is minimized at the optimal controls,
the optimality conditions 𝜕𝐻/𝜕𝑢

𝑖
= 0 at 𝑢

𝑖
= 𝑢
∗

𝑖
are met.

These optimality conditions can be used to obtain expressions

for 𝑢∗
𝑖
. By standard control arguments involving the bounds

on the controls, (24) is obtained, concluding the proof.

5. Numerical Simulations

5.1. Methodology. The solution of the optimal control prob-
lem is obtained by solving the optimality system which con-
sists of the state and adjoint systems (17) and (21), respectively.
For computational illustration, the values of parameters in
Table 1 were employed and the solution is obtained by using
the following iterative scheme.

Step 1. Make a guess of the controls.

Step 2. Use the values of the controls together with the
initial conditions to solve the state equations, using a forward
numerical scheme.

Step 3. Using the current solution of the state system together
with the transversality conditions, solve the adjoint equations
using a backward numerical scheme. We use a backward
scheme for the costate system because the transversality
conditions are final time conditions.
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Figure 6: Continued.
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Figure 6: Simulations of the Optimal Control Problem (17) showing the effect of control Strategy 5 on the dynamics of HIV/AIDS
transmission.

Step 4. Update the controls using the characterizations in
(24).

Step 5. Repeat Steps 2 to 4 until the values of the unknowns
at the current iteration are very close to those of the previous
iteration [28].

We note here that human resource departments could
only be concerned with reducing nonproductivity or seek to
reduce the effect of HIV or combine both efforts. To compare
the effects of these options, we consider the following combi-
nations of the controls.

Strategy 1: Implementing all controls (i.e., 𝑢
1

̸=

𝑢
2

̸= 𝑢
3

̸= 𝑢
4

̸= 0)
Strategy 2: Implementing the controls aimed at reduc-
ing infection and treating infected individuals (i.e.,
𝑢
1

̸= 𝑢
2

̸= 𝑢
3
, 𝑢
4
= 0)

Strategy 3: Implementing only the control effort
aimed at reducing Nonproductivity (i.e., 𝑢

1
= 𝑢
2

=

𝑢
3
, 𝑢
4

̸= 0)
Strategy 4: Implementing only 𝑢

1
and 𝑢

3

Strategy 5: Implementing only 𝑢
2
.

5.2. Results. In this section, we present the results of the
numerical simulation of our optimal control problem by dis-
cussing the implications implementing the five intervention
schemes above.

We examine the effects of applying the intervention
schemes in each of the strategies. Thus, we aim to determine
the optimal levels of the controls that willminimize the objec-
tive functional 𝐽. To observe the effects of the intervention
strategies, we plot results from simulation of the uncontrolled

model (2) and that from the controlled one (17) together
in Figures 2 to 6. It is observed in Figures 2(a)–2(d), 3(a)–
3(d), 4(a)–4(d), 5(a)–5(d) and 6(a)–6(d) that the number of
susceptives remains higher for the controlled problem than
for the uncontrolled problem. That means that each of the
intervention strategies will lead to saving more people from
being infected. It is also observed in Figures 2(e)–2(h), 3(e)–
3(h), 4(e)–4(h), 5(e)–5(h) and 6(e)–6(h) that implementing
the controls in each strategy will lead to a reduction in the
number of people infected with the disease and also reduces
the number of Nonproductive individuals.

To compare the various strategies, we also plot the
results of all the strategies on same graphs as in Figure 7.
It is observed from the graphs in Figure 7 that the strategy
that involves implementing all the controls leads to higher
susceptible populations and lower infectives populations.
This implies that the fight against HIV/AIDS should be
multifaceted in order to achieve maximum benefits.

6. Conclusion

In this paper, a nonlinear dynamical model has been pro-
posed to study the dynamics of HIV/AIDS in the workplace.
The model assumes that there is no discrimination against
people living with HIV and that, thus, allows for recruitment
of both susceptible and infected individuals by the human
resource department. Disease-free and endemic equilibrium
states are shown to exist for certain parameter values of the
model.

It is shown that the model cannot have a disease-free
equilibrium point when infectives are recruited, which is
in agreement with [29, 30]. A sensitivity analysis of the
basic reproduction number indicates that rate of recruitment,
death rate, transmission probability, and number of sexual
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Figure 7: Continued.
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Figure 7: Simulations of the Optimal Control Problem (17) showing the effect of control Strategy 1 on the dynamics of HIV/AIDS
transmission.

partners of infected persons are themost sensitive parameters
that can be used to control the spread of the disease. Thus,
these parameters are those that should be targeted most by
policymakers in the fight against the disease. Due to the
International Labour Organization’s campaign for no dis-
crimination on the basis of ones’ HIV status at the workplace,
using the recruitment rate might be compromised, but using
the other parameters can still be of immense help.Themodel
is extended to an optimal control problem by incorporating
time-varying controls into the basicmodel and the conditions
for optimality are derived using the Pontryagin’s Maximum
Principle [26]. Finally, numerical simulations of the resulting
control problem are carried out to determine the effectiveness
of various combinations of the controls. It is revealed from
the simulation of the control problem that the strategy that
employs all the control efforts is most effective in the fight
against the disease. Thus, there is the need for a multifaceted
approach in the fight against the spread of HIV/AIDS.
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