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Abstract

Tsetse flies transmit trypanosomes that cause nagana in cattle, and sleeping sickness in
humans. Therefore, optimising visual baits to control tsetse is an important priority. Tsetse
are intercepted at visual baits due to their initial attraction to the bait, and their subsequent
contact with it due to landing or accidental collision. Attraction is proposed to be driven in
part by a chromatic mechanism to which a UV-blue photoreceptor contributes positively,
and a UV and a green photoreceptor contribute negatively. Landing responses are elicited
by stimuli with low luminance, but many studies also find apparently strong landing
responses when stimuli have high UV reflectivity, which would imply that UV wavelengths
contribute negatively to attraction at a distance, but positively to landing responses at close
range. The strength of landing responses is often judged using the number of tsetse sam-
pled at a cloth panel expressed as a proportion of the combined catch of the cloth panel
and a flanking net that samples circling flies. | modelled these data from two previously pub-
lished field studies, using calculated fly photoreceptor excitations as predictors. | found that
the proportion of tsetse caught on the cloth panel increased with an index representing the
chromatic mechanism driving attraction, as would be expected if the same mechanism
underlay both long- and close-range attraction. However, the proportion of tsetse caught
on the cloth panel also increased with excitation of the UV-sensitive R7p photoreceptor, in
an apparently separate but interacting behavioural mechanism. This R7p-driven effect
resembles the fly open-space response which is believed to underlie their dispersal
towards areas of open sky. As such, the proportion of tsetse that contact a cloth panel likely
reflects a combination of deliberate landings by potentially host-seeking tsetse, and acci-
dental collisions by those seeking to disperse, with a separate visual mechanism underly-
ing each behaviour.

Author Summary

Tsetse flies transmit trypanosomes that cause sleeping sickness. Visual baits to attract and
kill tsetse are an important method of vector control, and the rational improvement of
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these baits depends on a mechanistic understanding of tsetse behaviour. Visual baits are
often panels of insecticide-treated cloth which tsetse must contact to become dosed with
insecticide. However, most of the tsetse that are attracted to approach visual baits circle
them rather than landing. Colour is one factor that might be important in eliciting landing
responses, and thus bait optimisation. Visually-driven tsetse behaviour can be understood
by investigating how a fly’s five types of photoreceptor respond to differently coloured
baits, and determining how each of these photoreceptors contributes to behaviour. I
applied this approach to data recorded in two previous field studies. I found that tsetse
contacted visual baits due to two behavioural mechanisms: a comparison between the
responses of several photoreceptors that underlies attraction and landing, and a UV pho-
toreceptor-driven mechanism that likely drives dispersal towards open sky and causes
tsetse to collide with visual baits accidentally. If the mechanistic basis of tsetse behaviour is
understood, it may be possible to design baits that exploit these mechanisms and optimise
tsetse control.

Introduction

Tsetse flies (Glossina spp.) occur in sub-Saharan Africa and transmit the trypanosomes that
cause nagana in cattle, and sleeping sickness (human African trypanosomiasis, HAT) in
humans [1]. Riverine tsetse (Palpalis species group) are responsible for most cases of HAT [2].
In contrast to savannah tsetse (Morsitans species group) which respond strongly to odour cues,
riverine flies characteristically respond weakly [3]. Effective odour cues for attracting riverine
tsetse may yet be identified [4], but at present odourless, insecticide-treated cloth panels are
advocated for the cost-effective control of these flies [2,5,6]. Understanding the visually-guided
behaviours that draw tsetse to such baits can contribute to current efforts to optimise the cost
and efficiency of control operations, and one factor that has received much attention is the role
of colour [7,8,9,10].

Studies to understand tsetse attraction to baits have often employed grids of electrocuting
wires which can enclose simple panels of coloured cloth bait material (e-cloths), or of fine net
(e-nets). E-cloths sample tsetse that land on the cloth bait, whilst e-nets are difficult for tsetse
to detect and sample those flies that accidentally collide with them [11,12,13]. This allows tsetse
to be sampled not only when they contact a particular bait but also when circling nearby, allow-
ing sophisticated investigation of their behaviour (e.g. [14]). As a result, it is recognised that
tsetse are intercepted at baits as a function both of their initial attraction to approach the bait
from a distance, and their propensity to land on the bait (or enter a trap) once close (e.g. [15]).
A variety of interacting olfactory and visual cues can contribute to these behavioural processes
(for reviews, [16,17]), but among them reflected light wavelength cues are both important, and
relevant to the optimisation of the visual baits currently advocated for riverine tsetse control.

The role of colour cues in enticing tsetse to approach a stationary visual bait is relatively
well understood, and the phthalogen blue dye for cotton fabrics produces a particularly attrac-
tive colour (e.g. [9]). Field studies monitoring combined tsetse catches at coloured e-cloths and
flanking e-nets (sampling tsetse landing on the coloured cloth, and those circling it), have
found positive contributions of blue wavelengths, and negative contributions of green/yellow/
red and UV wavelengths, to the tsetse catch [8,9]. The same trends were also found in studies
of tsetse catches in three-dimensional traps of various designs, although these catches would
have resulted both from attraction into the vicinity of the traps, and trap entry responses [7,8].
The above insights were gained by direct analysis of visual bait reflectance spectra, but it is the
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responses of photoreceptors to these spectra that guide a fly’s behaviour. Across the majority of
ommatidia in the fly compound eye, excluding the male fovea and the polarisation-sensitive
dorsal marginal area, there are five classes of photoreceptor with varying spectral sensitivities
(Fig 1) [18,19,20]. Recently, the datasets produced during the above tsetse field studies have
been reanalysed using the calculated excitations of fly photoreceptors as predictors of attrac-
tion. The result of this reanalysis was that fly photoreceptors R7y (UV-blue) and R8p (blue)
contribute positively, whilst R7p (shorter wavelength UV) and R8y (green) contribute nega-
tively [10]. Perhaps because photoreceptors R7y and R8p provide somewhat redundant infor-
mation, the attraction of tsetse to approach a visual bait, and the special attractiveness of
phthalogen blue cotton, could be parsimoniously explained by a simple opponent mechanism
involving the calculated excitations (E) of three of these photoreceptors as follows: +Eg;, ~Egs,
_ER7p [ 1 0] .

Videographic observations demonstrate that when tsetse alight on a black cloth target, they
very rarely do so after having made a direct approach to it. Instead, the initial approach is fol-
lowed by local circling or alighting on the ground before the fly eventually lands on the target
[13]. This accords with data gained using combinations of e-cloth and flanking e-net, where
the e-net sample of circling flies often exceeds the e-cloth sample of those that land directly
[5,6,9]. Furthermore, intricate studies using e-nets reveal that only some of the flies attracted to
a bait ultimately land at all, the others departing after having circled it [14,15]. Since the insecti-
cide-treated cloth panels used for tsetse control can only be effective if tsetse make contact with
them, insecticide-treated flanking nets are advocated to intercept and kill circling flies by
inducing accidental collisions [5,6,21]. However, the cues that induce tsetse to alight remain an
interesting and little understood area of investigation. Where field studies have employed com-
binations of e-cloth and flanking e-net, the catch of the e-cloth expressed as a proportion of the
combined catch of the e-cloth and e-net (henceforth, P o) is used to provide a measurement
of tsetse preference for direct landing over circling (see Fig 2). As such, this measurement is
commonly referred to as the landing score’. Py, is positively influenced by a bait’s reflectance

Sensitivity

300 350 400 450 500 550 600

Wavelength (nm)

Fig 1. Fly photoreceptor sensitivity functions. Flies possess five classes of photoreceptor over the
majority of the ommatidia in their compound eyes [18]. The typical spectral sensitivity functions of each
photoreceptor class have been thoroughly characterised in Musca and Calliphora, and are shown here using
data obtained from [18]. These functions were used by the author to calculate photoreceptor excitation by e-
cloth reflectance spectra in a previous study [10]. This figure was produced by the author, and originally
published in [10].

doi:10.1371/journal.pntd.0004121.g001

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004121  October 16,2015 3/18



@' PLOS NEGLECTED
NZJ : TROPICAL DISEASES Photoreceptor Responses and Tsetse Landing Behaviour

e-cloth e-net

(b)

Fig 2. Measurement and interpretation of tsetse catch distribution between e-cloths and flanking e-
nets. Arrows provide a schematic illustration of tsetse flight paths. (a) Tsetse attracted into the vicinity of an e-
cloth may sometimes fly directly towards it and make contact. (b) More often, tsetse do not approach the e-
cloth directly, but instead circle in its vicinity or alight nearby. Some of these flies make accidental contact with
the e-net because it is difficult for them to detect. The tsetse catch of the e-cloth plus that of the e-net is known
as the combined catch and is taken to indicate overall attraction to approach the visual bait. The proportion of
the combined catch that was intercepted at the e-cloth is termed P o1, in this study. This measurement
indicates the prevalence of direct contact with the e-cloth over circling behaviour. For this reason, this
measurement is often referred to as the ‘landing score’.

doi:10.1371/journal.pntd.0004121.9002

of UV wavelengths, or low overall luminance, and the former observation has lead to the asser-
tion that UV wavelengths are important cues for eliciting landing [8,15,22,23] (but see also
[9]). Hence, a number of studies have investigated dual-colour baits, incorporating panels of
colour that strongly stimulate tsetse to approach, and others that provide the putative landing
cues (e.g. [22,24]).

The idea that landing responses are positively influenced by UV wavelengths appears to be
at odds with the negative contribution of these wavelengths to the chromatic mechanism of
attraction to the vicinity of the bait [7,8,9,10]. This would imply that a visual cue that is unat-
tractive at long-range is attractive at close-range, and that entirely different behavioural mecha-
nisms underlie visual attraction, broadly defined, at these different ranges. In this study I aim
to shed light on this apparently paradoxical aspect of tsetse behaviour by providing a mechanis-
tic explanation for Py, measurements based upon calculated excitation values for fly photore-
ceptors (c.f. [25,26,27,28]).

Methods
Catch distribution data

The distribution of tsetse catches between e-cloth and flanking e-net was analysed for two field
datasets [8,9], out of the four recently analysed to determine a photoreceptor-based model of
tsetse attraction [10]. These datasets were selected because they were obtained using simple,
two-dimensional e-cloths of various colours, with adjacent two-dimensional e-nets, both ori-
ented vertically (for a simplified schematic representation, see Fig 2).

Data for catches of G. fuscipes fuscipes at small e-cloths (0.25 m x 0.25 m) with equal-sized
flanking e-nets were obtained from [9]. In total 37 cotton or polyester e-cloths of different col-
ours were tested in 15 separate experiments. Each experiment investigated tsetse catches at five
differently coloured e-cloths, one of which was always a phthalogen blue-dyed cotton standard.
Phthalogen blue is often reported to be extremely attractive to tsetse, but the dye can only be
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applied to cotton fabrics [9]. The original study reported the proportion of the combined catch
taken from the e-cloth (there termed the landing score), and absolute numbers of flies in the
combined catch, for each e-cloth in each experiment. The number of landing flies was calcu-
lated from these data, rounding to the nearest whole number.

Data for catches of G. palpalis palpalis at large e-cloths (1.0 m x 1.0 m) with flanking e-nets
(0.5 m x 1.0 m) were obtained from [8]. In total, 27 e-cloths of different colours were tested in
10 separate experiments. Where the type of fabric comprising the e-cloths was stated, it was
reported to be cotton [8]. Each experiment investigated tsetse catches at four differently col-
oured e-cloths, one of which was always a phthalogen blue standard. The original study
reported the percentage of the combined catch taken from the cloth panel (there termed the
landing score) for each e-cloth in each experiment, although the absolute numbers of tsetse in
the combined catch was stated only for the phthalogen blue standards.

Calculated photoreceptor excitations

Fly photoreceptor excitation values elicited by each coloured e-cloth in the above tsetse field
studies were calculated during a previous study [10]. That study made freely available in its
supplementary materials the calculated excitation values and the materials required to calculate
them, and completely described the calculation procedure (dx.doi.org/10.1371/journal.pntd.
0003360) [10]. A brief recap of those methods is provided here for convenience.

Methods with which to calculate photoreceptor excitation from spectra of illumination,
stimulus reflectance, background reflectance, and photoreceptor sensitivity are now well estab-
lished and widely employed (e.g. [25,29]). For each fly photoreceptor type the effective quan-
tum catch (P) of reflected light from a given e-cloth was calculated according to:

P=R / I,(1)S(2)D(4)d.

310

Where I(A) is the spectral reflectance function for the e-cloth; S(A) is the spectral sensitivity
function of the photoreceptor in question; and D(A) is the illuminant function. R is the range
sensitivity factor which adjusts photoreceptor sensitivity such that background stimulation
would elicit a half maximal response in each receptor class, and was calculated by:

R=1/ / 1(A)S(2)D(2)d)

310

Where Ig(1) is the spectral reflectance function of the assumed background.
Quantum catches were non-linearised to represent the transduction process in each photo-
receptor, providing excitation (E) by:

E=P/(P+1)

Calculated photoreceptor excitations have values between 0.0 and 1.0, and through the above
procedures the adapting background elicits a half-maximal response of 0.5 units in each photo-
receptor [10,29].

The reflectance spectrum of a typical green leaf was used as the background reflectance
spectrum, and the illuminant used was the D65 standard expressed as relative quanta (these
are provided in S5 table). Both functions were obtained from [29], and were linearly interpo-
lated to achieve 2 nm wavelength resolution. E-cloth reflectance spectra were obtained from
the supplementary materials of [9], and linearly interpolated for 2 nm wavelength resolution,
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or extracted from figures in [8] using Datathief software [30] (the latter are provided in S5
table, whilst the former are freely available online at dx.doi.org/10.1371/journal.pntd.0001661).
Photoreceptor sensitivity functions were those typical of Musca and Calliphora extracted from
[18] using Datathief (see Fig 1). Although sensitivity functions have been recorded for G. mor-
sitans morsitans, the flies used lacked carotenoid screening pigments due to dietary deficiency
[19]. Carotenoid pigments were, however, extracted from the retinae of G. p. palpalis raised on
a different diet [19]. The extent of visual screening in wild tsetse is thus unknown and would
presumably vary with diet, but the underlying organisation of photoreceptors in tsetse aligns
with that for Musca and Calliphora [18,19,31].

The approach taken in this study was to seek statistical explanations for landing scores
based upon individual photoreceptor excitation values, and/or indices representing the com-
bined responses of two or more photoreceptor types (c.f. [25,26,27,28]). One such combination
was an opponent index representing the chromatic mechanism proposed to underlie attraction,
calculated as follows: + Egz, ~Egg, ~Er7p [10]. This index was previously shown to predict com-
bined e-cloth plus e-net catches in the G. f. fuscipes and G. p. palpalis datasets analysed here
[10]. In order to aid in data interpretation, the opponent index was also calculated for leaves in
the adapting background (+ 0.5-0.5-0.5 = -0.5).

Statistical analyses

The two tsetse catch datasets each included a number of separate experiments in which sub-
sets of e-cloths were compared, and these were often clustered around similar values of the
opponent index. Therefore, I used Generalized Estimating Equations (GEEs) to try to model
the clustering of data within experiments [32,33], without including ‘experiment’ as a factor in
the analysis because this might have masked the overall relationship with opponent index or
other predictors. The original experiments used latin squares designs to block out variation
due to bait location and day, but the experiments themselves were separated in time. Thus, it
was reasonable to expect that tsetse catches within each experiment would be related, but no
particular structure was expected to the relatedness within experiment. As such, an exchange-
able working correlation matrix was appropriate.

Because P, is calculated from a known total number of flies in each combined catch, it is
appropriate to analyse these measurements using a binary logistic model which correctly mod-
els the variance of such proportions [34]. This was possible for the G. f. fuscipes dataset where
the total numbers of flies in each combined catch were directly reported. For these data a bino-
mial distribution—logit link GEE model was employed. However, in the G. p. palpalis dataset
absolute combined catches were reported only for the phthalogen blue cloth, with percentage
catches for each of the other cloths within an experiment. The stated percentage catches were
often not achievable by dividing any absolute catch integer value by that stated for the stan-
dard, presumably because the percentage catches were calculated from detransformed means
as in other previous studies [9]. Hence, the numbers of flies in each combined catch could not
be determined with certainty, and I decided instead to analyse Py, values directly, after logit
transformation [34], using a normal distribution—identity link GEE model. Such approaches
incorrectly assume equal variances across measured proportions, which can reduce their statis-
tical power to detect differences [34]. Nevertheless, the distribution of the residuals from the
normal—identity GEE analyses reported in the main text did not differ markedly from a nor-
mal distribution (as determined by Kolmogorov-Smirnov tests and visualisation of Q-Q plots),
or demonstrate a strongly marked pattern when plotted against values for the linear predictor.

The goodness of fit of GEE models was assessed using the quasi-likelihood under indepen-
dence model criterion (QIC), and a version of this statistic that corrects for model complexity
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and small sample size (QICC) [35,36]. QIC is a modification to Akaike’s information criterion
(AIC) for use with GEE models [35], and lower values for such criteria indicate improved fit to
the data. With respect to AIC, models within 2 units of the best model are sometimes consid-
ered to be competitive [37]. All analyses were conducted using SPSS version 22.0 (IBM Corp.,
Armonk NY, USA).

Results

Can catch distribution be explained by the mechanism proposed to
underlie attraction?

The chromatic mechanism proposed to underlie tsetse attraction can be approximated by a
simple opponent index, and the combined catch of an e-cloth and flanking e-net was previ-
ously shown to have a positive relationship with this index (see Fig 7 of [10]). Fig 3 shows the
relationship between this same opponent index and P, (the proportion of the combined
catch that was caught on the e-cloth), which represents the propensity of tsetse to directly con-
tact the cloth panel in preference to first, or only, circling around it (see Fig 2). In contrast to
combined catches, Py, did not have a simple, positive relationship with opponent index. GEE
models containing a quadratic term had lower QIC and QICC versus simpler linear models for
all datasets (Table 1; Fig 3). However, whilst the fit of the quadratic model was substantially
better than that of the linear model for G. f. fuscipes, the two models were competitive for G. p.
palpalis (for which the linear model described a negative relationship between Py, and oppo-
nent index).

The green vertical line in each panel of Fig 3 shows the opponent index value calculated for
leaves in the adapting background, to which each photoreceptor responds with a half-maximal
response of 0.5 units of excitation [10,29]. The fitted quadratic relationships suggest that P o,
tended to increase with opponent index for visual baits that were more attractive than their
background, although this trend was much more marked for G.f. fuscipes than for G. p. palpalis.
Such a trend might be expected if the mechanism implicated in initial attraction also underlay
landing responses (Fig 3, to the right of the green lines). However, inconsistent with this expla-
nation, the fitted quadratic relationships also tended to increase as visual baits became increas-
ingly less attractive than their background, although in this respect the trend was more marked
for G.p. palpalis than G. f. fuscipes (Fig 3, to the left of the green lines). These quadratic relation-
ships between P, and opponent index were not considered to be biologically meaningful in
themselves, but were hypothesised to be evidence that a second behavioural mechanism inter-
acts with opponent index in determining tsetse catch distribution.

The interaction of two behavioural mechanisms explains catch
distribution

I next conducted GEE analyses to model P, based upon the opponent index describing
visual attraction, excitation values of photoreceptors that may drive a second behavioural
mechanism, and the interaction between these two mechanisms (Tables 2 and 3). With the
exception of the model containing photoreceptor R8p excitation for the female G. f. fuscipes
dataset, all of these models resulted in reductions in QIC and QICC over the linear relation-
ships with opponent index alone presented in table 1. Of these models, that which used the
shorter wavelength UV photoreceptor R7p’s response consistently fitted each dataset better
than models using excitation values for any other photoreceptor type, and in the R7p models
the effects of all predictors were significant (Tables 2 and 3; Fig 4). Judged by differences in
QIC >2, no other model was deemed competitive with the R7p model, although for the G. p.
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Fig 3. Pcioth Was non-linearly related to an opponent index describing the mechanism of visual
attraction. P o1, values are plotted for male (filled circles) and female (open circles) G. f. fuscipes (A) and G.
p. palpalis (B). Data for G. f. fuscipes come from a field study in which e-cloths and e-nets were both 0.25 m x
0.25m [9], and those for G. p. palpalis from a field study in which e-cloths were 1.0 m x 1.0 m, and flanking e-
nets 0.5 m x 1.0 m[8]. The x-axes of both plots display a calculated photoreceptor opponent index that
approximates the previously reported mechanism of tsetse attraction to approach a visual bait, and with
which combined catches of e-cloth and e-net were positively related in both field studies (this trend is
illustrated by the horizontal arrow below panel B) [10]. The plotted relationships are detransformed logits
obtained from the statistical analyses in Table 1. Vertical green lines indicate an opponent index calculated
for the assumed background of green leaves.

doi:10.1371/journal.pntd.0004121.9003

palpalis dataset QICC differences <2 provided some support for the alternative models other
than that using R8p excitation. Removing the interaction term from any R7p model reduced its
fit to the data. Elaborating any R7p model with an additional photoreceptor excitation value
and its interaction term also reduced its fit to the data (S1 and S2 tables).
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Table 1. GEE models evaluating the relationship between opponent index and P 1.

Dataset Model G. f. fuscipes
Linear Quadratic
Males
Intercept B -0.576 -0.201
Wald X2, 42.758 2.309
(p) (<0.001) (0.129)
Opp. Index B 1.216 3.652
Wald X2, 23.955 28.666
(p) (<0.001) (<0.001)
Opp. index? B 2.965
Wald X2, 20.993
) (<0.001)
QIC 32066.345 28572.492
Qicc 32042.821 28554.126
Females
Intercept B -0.875 -0.533
Wald X2, 57.165 11.556
(p) (<0.001) (0.001)
Opp. Index B 0.818 3.085
Wald X2, 9.731 13.494
(p) (0.002) (<0.001)
Opp. index? B 2.780
Wald X2, 9.139
(9] (0.003)
QIC 53417.982 49664.141
Qicc 53382.620 49629.109

Significant effects (p<0.05), and the lowest (best fitting) QIC and QICC values, are highlighted using bold font.

doi:10.1371/journal.pntd.0004121.t001

G. p. palpalis

Linear

-1.885
105.699
(<0.001)
-1.470
5.080
(0.024)

24.512
18.947

-2.091
218.304
(<0.001)
-2.009
14.097
(<0.001)

20.424
16.066

Quadratic

-0.873
11.206
(0.001)
4.775
8.436
(0.004)
6.507
9.875
(0.002)
24.131
16.845

-1.100
19.063
(<0.001)

4.203
5.300
(0.021)
6.550
9.996
(0.002)
19.843
14.128

To further support the adequacy of the opponent index/R7p model, I also computed sums
of, and differences between, the excitation values of every possible combination of photorecep-
tor pairs and used these in GEE models that also contained opponent index and an interaction
term (S3 table). Alongside opponent index, summed excitation values of photoreceptor pairs

(representing an additional achromatic mechanism) generally fitted the data better than com-

puted differences between the excitation values of photoreceptor pairs (representing an addi-
tional chromatic mechanism). In the G. f. fuscipes datasets, the model including summed R7p
and R7y excitations alongside opponent index was the only one for which there was a substan-
tial improvement in QIC or QICC over the opponent index/R7p model, but this was evident
only for males and not for females (S3 table). In the G. p. palpalis datasets, many summed pho-

toreceptor models provided largely equivalent QIC or QICC values (i.e. within 2 units) to the
opponent index/R7p model, but among these reductions were only evident in QICC, and only

for models in which R7p excitation was part of the photoreceptor sum (S3 table).

In order to rule out the potentially simpler possibility that P4, might result entirely from a
single achromatic or chromatic mechanism, I examined GEE models containing every possible
combination of between one and five photoreceptor types to predict P oy, (S4 table). These mod-
els fitted the data substantially less well than the above models with two interacting mechanisms,
indicating that they did not provide a better explanation for tsetse behaviour. Thus, overall,
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Table 2. GEE models explaining G. f. fuscipes catch distribution based upon attraction opponent index, and an interacting mechanism driven by
one of the five photoreceptor types individually.

R[#] R7p R7y R1-6 R8p R8y
Males
Intercept B 0.306 0.314 -0.068 -0.305 0.011
Wald X21 1.320 0.416 0.041 1.124 0.002
(p) (0.251) (0.519) (0.839) (0.289) (0.967)
Opp. Index B 3.927 3.957 2.953 2.212 3.052
Wald X2, 10.458 6.291 7.341 5.487 16.524
(p) (0.001) (0.012) (0.007) (0.019) (<0.001)
R[#] B -1.582 -1.248 -0.746 -0.367 -1.190
Wald X2, 9.042 3.667 2.817 1.120 6.000
(p) (0.003) (0.056) (0.093) (0.290) (0.014)
Interaction B -4.284 -3.677 -2.459 -1.338 -3.279
Wald X2, 10.975 3.790 3.583 1.634 9.228
(p) (0.001) (0.052) (0.058) (0.201) (0.002)
QIC 27724.357 28887.066 29664.800 30664.424 28838.041
QicC 27700.435 28863.876 29644.809 30643.027 28820.388
Females
Intercept B 0.175 0.401 -0.307 -0.552 -0.175
Wald X2, 0.284 0.445 0.584 2.135 0.353
(p) (0.594) (0.505) (0.445) (0.144) (0.552)
Opp. Index B 3.641 3.440 2.017 1.319 2.242
Wald X2, 8.463 3.220 2.537 1.340 7.233
(p) (0.004) (0.073) (0.111) (0.247) (0.007)
R[#] B -1.996 -1.886 -0.903 -0.470 -1.681
Wald X2, 7.954 4.360 1.978 0.702 5.962
(p) (0.005) (0.037) (0.160) (0.402) (0.015)
Interaction B -4.770 -3.764 -1.819 -0.710 -3.092
Wald X2, 9.095 2.169 1.067 0.219 4.920
(p) (0.003) (0.141) (0.302) (0.640) (0.027)
QiC 47265.969 50577.830 52790.299 53833.444 51761.238
QicC 47225.233 50538.370 52751.289 53793.631 51722.320

Significant effects (p<0.05), and the lowest (best fitting) QIC and QICC values, are highlighted using bold font. The model containing R7p excitation
appeared to provide the best fit to the data.

doi:10.1371/journal.pntd.0004121.t002

these analyses support the assertion that P, can be predicted by the colour opponent model
that was proposed to underlie initial attraction, and an additional, interacting achromatic mech-
anism reliant on excitation from photoreceptor R7p (Fig 4). However, the additional contribu-
tion of other photoreceptors to that achromatic mechanism should not be ruled out.

Discussion

In this study I reanalysed tsetse catch distribution across coloured e-cloths and flanking e-nets
based upon a chromatic mechanism recently proposed to explain tsetse attraction to approach
visual baits. I found that P, increased as cloth panels became more attractive by an index
describing this mechanism, as expected if the same chromatic mechanism of attraction under-
lay both the approach to a bait, and subsequent landing upon it. However, I also found that
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Table 3. GEE models explaining G. p. palpalis catch distribution based upon attraction opponent index, and an interacting mechanism driven by
one of the five photoreceptor types individually.

R[#] R7p R7y R1-6 R8p R8y
Males
Intercept B 0.148 -0.282 0.105 -0.435 -0.022
Wald X21 0.201 1.161 0.067 1.672 0.002
(p) (0.654) (0.281) (0.795) (0.196) (0.961)
Opp. Index B 5.951 4.636 6.714 4.297 5.852
Wald X2, 104.809 10.570 13.642 5.631 13.657
(p) (<0.001) (0.001) (<0.001) (0.018) (<0.001)
R[#] B -3.465 -2.276 -2.783 -2.041 -3.092
Wald X2, 15.432 22.605 19.147 16.283 13.270
(p) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
Interaction B -10.676 -8.089 -10.753 -7.652 -10.495
Wald X2, 89.160 18.744 20.090 10.619 20.276
() (<0.001) (<0.001) (<0.001) (0.001) (<0.001)
QIC 15.525 19.896 18.417 21.162 19.991
QiCcC 14.688 16.370 16.579 17.670 17.041
Females
Intercept B 0.021 -0.890 -0.363 -0.947 -0.551
Wald X2, 0.006 12.913 0.753 8.998 1.148
(p) (0.936) (<0.001) (0.386) (0.003) (0.284)
Opp. Index B 5.174 3.796 6.468 3.784 5.529
Wald X2, 50.618 10.873 13.017 5.061 8.039
(p) (<0.001) (0.001) (<0.001) (0.024) (0.005)
R[#] B -3.664 -1.588 -2.169 -1.485 -1.987
Wald X2, 42.200 16.531 13.101 12.352 5.234
() (<0.001) (<0.001) (<0.001) (<0.001) (0.022)
Interaction B -10.429 -7.540 -10.833 -7.566 -10.000
Wald X21 107.792 31.449 24.757 14.454 15.200
(p) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
QIC 11.465 15.835 14.359 16.812 16.654
QICC 12.279 13.730 13.395 14.596 14.255

Significant effects (p<0.05), and the lowest (best fitting) QIC and QICC values, are highlighted using bold font. The model containing R7p excitation
appeared to provide the best fit to the data.

doi:10.1371/journal.pntd.0004121.t003

P ot increased as excitation of the UV-sensitive photoreceptor R7p increased, indicating that
tsetse are also driven to contact cloth panels as a result of a separate but interacting achromatic
mechanism.

It seems intuitive that tsetse should more readily alight upon cloth panels that are more
attractive by the chromatic mechanism implicated in their initial attraction to approach them.
However, the involvement of a second, achromatic mechanism in causing tsetse to directly
contact such cloth panels is less easy to explain. Flies are well-known to display an innate
attraction to UV light and in Drosophila the R7 photoreceptors are important in driving this
response [38,39]. This behaviour is often called the ‘open space response’, and is presumed to
guide flies towards areas of open sky. This is because the sky is strongly radiant in UV wave-
lengths, whilst many features of the terrestrial environment are characterised by strong UV
absorption (e.g. see [40]). Earlier tsetse work has already suggested that UV wavelengths may
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A. Male G. f. fuscipes B. Female G. f. fuscipes

Fig 4. P.io1n plotted as a function of opponent index describing attraction, and an interacting photoreceptor R7p-driven mechanism. P ., values
are those from Fig 3, plotted separately for male and female G. f. fuscipes (A and B), and for male and female G. p. palpalis (C and D). The overall trend
across datasets was for an increase in P o1, With increases in the opponent index that explains overall attraction; and an increase in P, With increases in
the strength of the photoreceptor R7p response. Plotted grids represent the regression planes statistically tested in Tables 2 and 3, and are the
detransformed logits obtained from those linear relationships.

doi:10.1371/journal.pntd.0004121.9004

functionally represent skylight, causing highly UV-reflective cloth panels to elicit high P o,
values not by eliciting landing responses, but as a result of accidental collisions by tsetse
attempting to disperse [15,23]. The R7p-driven achromatic mechanism suggested by my analy-
sis appears well aligned with these explanations, which would suggest that tsetse catch distribu-
tions are affected by two distinct behavioural motivations. In further support of this idea, G.
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tachinoides caught on e-cloths tended to have lower fat content than those caught on flanking
e-nets, which was interpreted as an indication that the relatively more starved flies were more
prone to land directly in preference to circling, due to their requirement to be less discriminat-
ing in host seeking [24]. In the same study, female flies caught over the UV-reflective white
portion of a half-blue, half-white e-cloth had higher fat content than those caught over the blue
portion, and their fat content was equivalent to that of flies caught at flanking e-nets of other
target designs in the same experiment [24]. This trend was, however, not evident for males.
Nevertheless, since highly UV-reflective baits are unattractive to host-seeking tsetse [7,8,9,10],
the fact that better-nourished and potentially more discriminating female flies tended to make
contact with them [24], would be consistent with the explanation that these flies were attempt-
ing to disperse rather than land on a perceived host. However, detailed observations of tsetse
behaviour prior to interception on UV- and non-UV-reflective cloth panels, as have been
made of tsetse behaviour prior to alighting on black panels [13], will be required to directly test
this hypothesis and provide persuasive evidence for the above explanation.

A UV effect on P, was not evident in the authors’ original analysis of the G. f. fuscipes
dataset [9], and in this reanalysis the analogous R7p effect was notably weaker than that seen
for G. p. palpalis. A plausible explanation for this difference between datasets is the different
size of the e-cloths in the two studies: those in the G. f. fuscipes study were 1/16™ the size of
those in the G. p. palpalis study. Alighting responses of savannah tsetse increase with the size of
blue or black targets [41,42], whilst the alighting responses of riverine species are relatively little
affected by changes in the size of such a target [5]. A potential explanation for this is the effect
of habitat geometry on tsetse movement and expression of host-seeking behaviour [43]. How-
ever, if some of the tsetse intercepted by UV-reflecting baits are in fact attempting to orient
towards perceived open spaces rather than alighting on perceived hosts, it is plausible that the
larger area of those open spaces enhanced this separate behavioural response, resulting in the
difference between the datasets. However, a number of other explanatory factors cannot be
ruled out. The UV effect was clearly evident in a study of the riverine tsetse G. p. palpalis [8],
but only for a sub-set of UV-reflective baits which also allowed some light to pass through
them in a study of the savannah tsetse G. pallidipes [23]. It is certainly possible that species dif-
ferences in behaviour explain such discrepancies, but it must also be borne in mind that the
highly UV-reflective baits that elicit high Py, values also tend to attract the lowest combined
catches, resulting in greater error around Py, measurements for such baits. This factor has
special relevance to the current analysis, since the binomial—logit GEE model applied to G. f.
fuscipes data correctly modelled the variance of Py, measurements, whilst this was not true of
the normal—linear GEE model that was applied to logit-transformed G. p. palpalis P o4, values
for reasons of data availability. For this reason, some caution should be exercised in evaluating
the trends for G. p. palpalis, although trends in that dataset were strongly evident, and substi-
tuting binary logistic models for linear ones might be expected to reduce statistical power [34].

An additional factor that might cause variation in the UV effect on P .y, is the specific posi-
tioning of a visual bait. This might lead to variability in the effect of colour cues on attraction
and landing as a result of variation in the background they are viewed against, or their spec-
trum of illumination. In possible support of this general notion, a study of G. tachinoides in
Cote d’Ivoire found significant differences in attraction to blue, violet, red, and black e-cloths
between replicates conducted in gallery forest, and those conducted on more open riverbank
habitat [24]. Furthermore, P, was significantly higher for males in the riverbank replicate.
However, whilst this supports the general notion that bait positioning may be an important fac-
tor affecting visual cues and behavioural responses to them, the same study provided no evi-
dence that such factors might affect the UV effect on P oy, specifically. This was because there
were no apparent differences between replicates of an experiment incorporating high- and
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low-UV reflectance white baits in the same two habitats, and the UV effect on Py, was only
evident for females in the combined data from both replicates [24]. An additional way in which
bait positioning may affect Py, is via active avoidance of e-nets, which has been shown to be
greater in shade than full sun [13]. Active avoidance of the e-net would cause an increase in

P oth» as a result of a reduction in combined catch. Finally, other cues which were not quanti-
fied in the original field studies may also influence landing responses. For example, polarotaxis
has been implicated in attraction and landing of tabanid flies on potential hosts and artificial
baits [44,45,46], but the visual baits analysed in this study were not quantified with respect to
reflected polarised light.

Alongside the R7p-driven achromatic mechanism, this study also provides evidence that the
chromatic mechanism guiding tsetse attraction towards a visual bait might also encourage
them to land upon it. This suggests that the same mechanism underlies attraction at both long-
and close-range. By comparison with findings for plant-seeking insects (e.g. [28]) it was argued
that blue-green (R7y-R8y) opponency provides a means to distinguish vegetation from other
objects, such as potential vertebrate hosts [10], which aligns with previous explanations for the
blue preference of tsetse [16]. The additional, negative input of photoreceptor R7p improved
the fit to the data, and was thus implicated in the opponent mechanism underlying attraction
[10]. Given the above interpretation of the functional role of R7p and UV wavelengths, this
input may function to distinguish patches of open sky from vegetation and potential hosts.
However, in light of the analyses presented in this study, it might be debated whether R7p’s
effect on attraction comes about as a result of its input to the proposed chromatic mechanism,
or solely via the interaction of the achromatic mechanism suggested here.

Low luminance black fabrics are also well known to elicit strong tsetse landing responses
(e.g. [15,42]). Such fabrics are characterised by low reflectance at all wavelengths, including the
UV, so these landing responses cannot be explained by the R7p-driven achromatic mechanism
suggested here. The opponent index used to describe attraction in this analysis simply subtracts
the excitation of photoreceptors R7p and R8y from that of R7y, and as a result the value is neg-
ative for all stimuli in this analysis with those closest to zero the most attractive. Because black
fabrics have uniformly low luminance, they elicit low excitation values in all photoreceptors,
and as a result of that also have opponent indices that are relatively close to zero and, therefore,
are predicted to be attractive [10]. With the important caveat that neural computations in a
fly’s brain will differ to a greater or lesser extent from their simplified representation here, the
ability of black fabrics to elicit tsetse landing responses is compatible with the scheme described
in this analysis. However, other explanations must not be ruled out, such as a separate role for
low luminance in attraction, or the involvement of polarotaxis for which dark surfaces are par-
ticularly effective in providing polarised light cues [20,46]. Studies of a range of Glossina species
have reported decreased catches using blue/black combination e-cloths, when the cloth panels
inside the electrocuting grids were covered by an adhesive sheet that absorbed UV wavelengths
[47,48,49]. This resulted from decreased tsetse catch over the black portion of the cloth panel
only. In these studies the UV reflectance of the black cloth was low, meaning that this result is
unlikely to be explained by an effect of the UV manipulation on the R7p mechanism described
in the current analysis. Since the adhesive film absorbed wavelengths below 400 nm [49], it
would have affected not only the repellent R7p response (shorter wavelength UV), but also the
attractive R7y response (UV-blue), and may thus have had complex effects on the mechanism
of attraction. It is also possible that the adhesive sheet affected other visual cues, such as the
polarisation of reflected light [44,45,46].

Intercepting circling tsetse has great potential to augment catches since the majority of the
tsetse attracted into the vicinity of a bait circle around it rather than landing [6,9,14,15]. This
has motivated the use of insecticide-treated flanking nets to intercept circling flies, and these are
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important additions to the small cloth panels currently advocated for riverine tsetse control,
where their small size and the use of modern netting materials make them robust [5,6]. By con-
trast, larger visual baits are employed for savannah tsetse, and large flanking nets to accompany
these have sometimes been suggested to be damage prone [5,6]. However, although flanking net
damage did reduce a bait’s efficacy in field trials, replacement rates were higher for net than
cloth portions but low in both cases (0.2 versus 0.1% monthly replacement rate, respectively)
[50]. Furthermore, savannah tsetse landing responses increase with bait size [41,42,51], such
that large cloths can function just as efficiently as cloth and flanking net combinations of the
same size [42]. Therefore, although some riverine tsetse may mistake highly UV-reflective cloths
for patches of open sky, even if this finding were transferable to savannah tsetse it is unlikely to
mean that UV-reflective cloths can provide a useful substitute for the flanking net. Nevertheless,
the suggestion that UV-reflecting cloths likely catch tsetse attempting to disperse rather than
host-seek does have implications for visual bait optimisation. Short wavelength excitation of
photoreceptor R7p was previously shown to contribute negatively to the chromatic mechanism
of attraction [10], and in the current analysis strong excitation of R7p was implicated as interact-
ing with that mechanism. As such, the attractiveness of visual baits is likely best enhanced by
reducing UV reflectance. The currently preferred phthalogen blue dye has these properties, but
can only be applied to cotton material (e.g. [9]). Modern polyester fabrics offer a number of
advantages in terms of cost and robustness, but the blues currently produced for tsetse control
have broader reflectance peaks than phthalogen blue that extend into the UV (e.g. see reflec-
tance spectra for blues 7 and 8 in [9]). Curtailing reflectance at low wavelengths and enhancing
it in the attractive region using fluorescent dyes, as has been suggested previously [8], may be
the key to optimising these fabrics. In addition, the use of stand-alone insecticide-treated, UV-
reflective cloth panels without flanking nets might potentially provide a useful complement to
the standard baits, if they do indeed attract a different sub-set of the tsetse population.

Supporting Information

S1 Table. GEE models explaining P, for G. f. fuscipes based upon attraction opponent
index, R7p photoreceptor excitation, and the excitation of an additional photoreceptor
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