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Abstract
Image registration is a key component of computer assistance in image guided surgery,

and it is a challenging topic in endoscopic environments. In this study, we present a method

for image registration named Homographic Patch Feature Transform (HPFT) to match gas-

troscopic images. HPFT can be used for tracking lesions and augmenting reality applica-

tions during gastroscopy. Furthermore, an overall evaluation scheme is proposed to

validate the precision, robustness and uniformity of the registration results, which provides

a standard for rejection of false matching pairs from corresponding results. Finally, HPFT is

applied for processing in vivo gastroscopic data. The experimental results show that HPFT

has stable performance in gastroscopic applications.

1. Introduction
Registration of endoscopic images plays an increasingly important role in endoscopic surgeries
[1]. For example, the registration technique can be applied to real 3D depth recovery [2], lesion
tracking [3, 4], endoscopic image mosaicking [5], and other augmented reality view generation
[6]. Registration techniques can also be utilized to guide interventions in minimally invasive
surgery (MIS), such as reducing post-surgical trauma and reducing recovery time for patients
[7]. Moreover, image registration is widely used in biopsy monitoring [8], follow-up examina-
tion [9] and therapy planning [10].

Many researchers have focused on medical image registration in the past few decades. Miko-
lajczyk [11] evaluated the performance of different image registration detectors in the com-
puter vision field. Oliveira [12] made comments on the main contributions, advantages and
drawbacks of classical and novel medical image registration methods. Despite the development
of a wide range of registration methods, most of the current registration methods are applicable
only in static scenes (e.g., sinus surgery and skull surgery) or scenes with periodic deformations
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[13]. In static scenes, the transformation between endoscopic images is caused by the motion
of the camera, which may be considered global rigid motion. The motion is estimated by reli-
able corresponding features [14]. For periodic deformation scenes, several methods have been
proposed to estimate the periodic parameters of the motion, which were used as motion com-
pensation to extend the registration method from a static scene to a periodic deformation
scene [15]. Although deformable registration methods have been developed in recent years
[16], their direct application to free-form tissue deformation remains an unsolved problem due
to complicated motion and changing visual appearances [17, 18].

Additionally, there are also some difficulties and under-determined problems in gastro-
scopic image registration. First, gastric inflation and endoscopic interaction can lead to serious
deformation of the stomach, which is usually problematic for the subsequent registration pro-
cedure in which the features of interest will change dramatically or disappear from the endo-
scope view [19]. Second, the effects of specular reflection, the shadow appearances and the
paucity of reliable salient features lead to difficulties in detecting accurate features for image
registration. Several studies have focused on endoscopic image registration and tracking by
optical flow [20], which may result in an incorrect registration because of non-normalized
lighting conditions. Some other studies attempted to utilize an illumination invariance feature
detector in endoscopic images [21], but the detected sparse features were not suitable for real
clinical practice. Third, endoscopists may operate the endoscope with a large twisting angle,
which leads to content discontinuity in successive image sequences and makes registration
even more difficult. Some researchers attempted to solve this problem by marking anatomical
landmarks (e.g., skin markers, screw markers, dental adapters, etc.) or by introducing extrinsic
features, rigidly positioned with respect to the patient [22]. However, these are not automatic
methods and are not widely used.

Although gastroscopic image registration is challenging, it is one of the key links for com-
puter aided diagnosis (CAD). For example, with accurate and robust matching results, lesion
tracking can be developed during surgery [23], which is very helpful for intraoperative localiza-
tion and navigation. Furthermore, the narrow field of view (FOV) of a gastroscope always lim-
its gastroscopist operations. With accurate and density matched points, researchers can
reconstruct gastric internal surfaces in a 3D view and panoramic view, which can provide a suf-
ficient FOV for gastroscopists [2, 24].

The goal of this study is to develop a new registration method (named Homographic Patch
Feature Transform (HPFT)) that can detect features in gastroscopic image sequences with
robustness, precision and uniformity. Considering the smooth surface of the stomach, we
assume that the points in a local patch of the gastric internal surface share a common plane in
the real world. With this homographic hypothesis, these patches can be detected using HPFT.
Moreover, if the local patches are not under the condition of homographic theory, a patch-split
scheme can be performed to detect further homographic relationships in an iterative way.
Lastly, an overall evaluation scheme is proposed to validate the precision, uniformity and
robustness of HPFT by comparison with other registration methods.

In the authors’ opinion, HPFT offers three main contributions. First, the problem of corre-
sponding gastroscopic images being presented densely can be solved with HPFT, which is very
important for clinical practice (e.g., MIS, non-invasion biopsy, and virtual gastroscopy). Sec-
ond, this method can be directly applied to currently implemented gastroscopy devices without
any extra instruments (e.g., position sensors and feature markers). Third, HPFT can be applied
to other abdominal or thoracic soft tissue organs (e.g., heart, lung, and liver), which also have
smooth surfaces.
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2. Methods

2.1 Method Overview
The processing flow of HPFT is shown in Fig 1. The inputs are sequences of real gastroscopic
images. The large distortion of the radial and tangential lens in the endoscope needs to be recti-
fied with a camera calibration method before acquisition of the gastroscopy sequences, and the
reflection region should be detected before registration.

To obtain the initial feature set and generate local patches, the gastroscopic images are pro-
cessed by a suitable point feature-based method. In this study, some widely used feature detec-
tors are evaluated, and the Scale Invariance Feature Transform (SIFT) local descriptor is
adopted due to its excellent performance in illumination and scale changes [25]. Subsequently,
the epipolar constraint is calculated, and then the initial matching pairs are clustered into small
groups by the Delaunay Triangulation method. Each triangle represents a local patch on the
gastric internal surface.

We hypothesized that the gastric internal surface is composed of many small homographic
patches, and an iterative matching detection algorithm is proposed to detect triangular patches
and verify whether they meet the homographic theory or not. If yes, these patches are marked
as matching patches. Otherwise, they are split into smaller patches by their internal circle cen-
ters and are then verified with the homographic hypothesis in the next loop.

2.2 Pre-processing and Initial Feature Detection of Gastroscopic Images
To obtain a sufficient field of view during examination, gastroscopes are always equipped
with fisheye cameras. Unfortunately, the generated gastroscopic images differ from their
actual appearance due to serious distortion, as described in reference [26]. In this study,
Zhang’s camera calibration method [27] is employed and improved [2] to correct the dis-
torted images.

The method starts with establishing initial correspondences between gastroscopic image
sequences. Because the endoscope can move flexibly in the stomach and acquire images at any
viewpoint, the adopted descriptor should be robust with respect to rotation and scale. Some
commonly used point feature methods (SIFT, FAST, SURF, and STAR) are estimated, and an
estimation framework named Forward-Backward error (FB error) [28] is applied to select the
most suitable detection method. During the estimation, the selected registration methods are
applied to the first frame of the native gastroscopic images, and the detected features are
matched from the first frame to the last frame. Afterwards, the features are detected and
matched from the last frame to the first frame in reverse. Finally, a feature’s location will be the
same as its initial location in the first frame if it was detected and matched accurately. Other-
wise, the FB error is calculated as the deviation between the initial location and the tracked
location.

We processed the estimation and showed the results in [23], proving that SIFT has higher
accuracy than other methods. Thus, we adopt SIFT as the initial registration method to detect
initial point features for further detection. To accelerate performance, we simplify the original
SIFT vector to a 32 element vector and implement it in the GPU architecture.

2.3 Homographic Registration
The initial matching pairs are clustered into small groups using Delaunay triangulation, and
each matching triangle contains three matching pairs. Luong and Faugeras [29] suggested that
if two sets of the image points, m and m’, are the projections of a 3D plane in space, the match-
ing relationship can be represented as a homographic transformation and can be conducted
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as:

m0 ¼ rHm ð1Þ

Where ρ represents an arbitrary non-zero scalar, and H is a 3�3 matrix.
The registration approach assumes that the area of the triangular patch is small enough to

be consistent with the homographic theory, in which the H matrix has only six unknowns [30].
Under the homographic assumption, H can be estimated by three vertices of the patches. Once,
H is determined, every point in the patch of an image should be wrapped and aligned in the
corresponding patch of the other image. Normalized cross correlation (NCC) contributes to
validation of the homographic assumptions.

Considering (v1, v2, v3) as the coordinates of the vertex of the patch, all interior points of
the triangle can be represented in barycentric coordinates. Once a point in the reference

Fig 1. HPFT workflow.

doi:10.1371/journal.pone.0153202.g001
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triangle is given by (s, t), an interior point’s coordinate in the patch can be presented as:

pðs; tÞ ¼ sv1 þ tv2 þ ð1� s� tÞv3 ð2Þ

Where 0<s<1, 0< t<1, s + t<1.
The intensity value of the point (s, t) is described as I(s, t). The validation of the homo-

graphic hypothesis for each matching patch is defined as the NCC of the intensity:

DifH ¼

ð1
s¼0

ð1
t¼0

Iðs; tÞIðrΗðs; tÞÞ

ð1
s¼0

Iðs; tÞ
ð1
t¼0

IðrΗðs; tÞÞ
ð3Þ

The value of DifH represents a similarity of two matching patches. The closer the value is to
1, the higher the similarity of the two matching patches and the more reasonable the homo-
graphic assumption of the matched patches. In contrast, if the DifH is far away from 1, the inte-
rior pixels of the triangular patches cannot be matched. The most common case is that the
matching triangle is not small enough, so the corresponding gastric internal surface cannot be
considered a plane in the real 3D space.

2.4 Iterative Registration
For clarity, we name the matching image pair the reference image and the target image. The
iterative process can be described as follows:

Step 1. The features and matching pairs are detected between the reference image and the
target image, and the matching results are recorded in the matching points set.

Step 2. The matching points are clustered into triangular patches, and the patches are
matched by the method described in section 2.3. The matching patches are recorded in the
matching patches set.

Step 3. Patches that cannot be matched in Step 2 are selected, and their internal circle cen-
ter points in the reference image are marked. Subsequently, the center points are matched with
the points on the line determined by the epipolar line and the corresponding triangular region
in the target image (Fig 2). The estimation of the matching pairs is described as the Euclidean

Fig 2. The search line (from a to b in the left image) determined by epipolar constraint and homographic constraint.

doi:10.1371/journal.pone.0153202.g002
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distance of the points’ SIFT feature:

Vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX32
i¼1

ðei � e
0
i
Þ2

s
ð4Þ

Where ei and ei’ represent two normalized vector elements of a matching pair’s SIFT descriptor
in the reference image and target image, respectively.

Step 4. During the process of matching a pixel in the reference image with the points on
the line segment in the target image, the alterative matching results are considered a vector:
[V1, V2, V3 . . . Vi] (i represents the total point number on the line segment). The most reliable
matching pair should meet two conditions:

1. If Vmin/Vsecond-min>0.8, there is no real matching pair due to the uncertainty of the match-
ing process.

2. Suppose Ɛ is a global parameter for evaluating Vmin, and only when Vmin<Ɛ will the corre-
sponding possible matching pair be considered a real matching pair.

ðV1;V2;V3; . . .ViÞmin < ε ð5Þ

The Ɛ can avoid misjudging a corresponding pair when there is no matching pair.
Step 5. The internal circle center points of un-matched patches in the target image are

selected and matched to the reference image reversely, which is a symmetrical operation of
Step 3 and Step 4.

Step 6. The matching points are recorded in the matching pairs set. Step 2 is repeated until
no new matching points and no new matching patches are detected.

3. Matching Evaluation

3.1 Evaluation Overview
The registration results include the matching points and matching patches. It is difficult to
evaluate the matching results due to the absence of a gold criterion in an endoscopic environ-
ment. Some studies undertake evaluations by human assessments; for example, a feature
matching method used in MIS was also proposed in [31], and the matching results were evalu-
ated by clinical experts. Thus, the clinical experts’ interventions ensured that the final assess-
ments were in accordance with real clinical requirements, which is of great significance to
endoscopists and real clinic practice. However, human assessments are not suitable for large
amounts of test data. In this study, HPFT is aimed at applications in future image guided tech-
nologies (gastroscopic image mosaicking and gastric depth recovery) in which precision, uni-
formity and robustness are very important factors. Consequently, an overall matching
evaluation scheme to assess the precision, uniformity and robustness of the registration find-
ings is presented.

3.2 Precision Estimation
Precision estimation primarily evaluates inaccurate detections in the registration results. The
main problem for precision estimation is related to the lack of ground truth data. Here, we use
a Kullback-Leibler divergence (DKL) method to evaluate the matching FB trajectory error.

In information theory, Kullback-Leibler divergence is a measurement of the difference
between two probability distributions. For example, the DKL of Q from P, denoted by DKL(P||
Q), is a measurement of information loss when Q is an approximation to P, and DKL is a non-
symmetric operation. To evaluate the precision of HPFT, the distributions of the matching
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pairs in forward and backward trajectories are considered discrete random variables and
defined as PForward and PBackward, respectively. The distributions are compared by measuring
the Kullback-Leibler divergence:

DKL1ðPBackwardðxÞjjPForwardðxÞÞ ¼
X
x2X

PBackwardðxÞln½
PBackwardðxÞ
PForwardðxÞ

� ð6Þ

DKL2ðPForwardðxÞjjPBackwardðxÞÞ ¼
X
x2X

PForwardðxÞln½
PForwardðxÞ
PBackwardðxÞ

� ð7Þ

The variable x in eqs (6) and (7) denotes the coordinates of the matching pairs. According
to the definition of the forward-backward method, if the matching precision is high, the match-
ing trajectories in the forward process and backward process should be similar, and the DKLs
are small and of the same order.

3.3 Robustness Estimation
In statistical analysis, the covariance matrix can represent the correlation of variables. Zhang,
Hartley and Zisserman et al. [32] found that the covariance matrix can characterize the uncer-
tainty of the fundamental matrix. As a derivation, Baptiste Allain et al. [33] employed this
method to determine the accuracy of tracking the biopsy site under different noise environ-
ments. In the subsequent analysis, the covariance matrix of the matching site is used to esti-
mate the robustness of the registration method.

A pixel in the reference image is denoted as p, and the registration site in the target image is
denoted as p0. In different registration scenes (e.g., different noise and different brightness), p0

may be located in different sites, and the covariance matrix of p0 is defined as:

Covp0 ¼ E½ðp0 � E½p0�Þ � ðp0 � E½p0�TÞ� ð8Þ

If p' can be represented by (x’, y’), the following equation can be derived as:

Covðx0; y0Þ ¼
varx0x0 covx0y0

covx0y0 vary0y0

 !
ð9Þ

According to the well-known large number law in the statistical field, if we assume a large
number of samples of p0 exist, E[p’] can be approximated by the sample mean:

Em½p0ðkÞ� ¼
1

M �
XM
k¼1

p0ðkÞ
ð10Þ

where M is the number of the samples set, p0(k) is the kth sample in the set.
The covariance matrix can be approximated by (11):

Covp0 ¼ ½ 1

ðM � 1Þ� �
XM
k¼1

½ðp0ðkÞ � Em½p0ðkÞ�Þ � ðp0ðkÞ � Em½p0ðkÞ�ÞT � ð11Þ

During the gastroscopy procedure, if the registration algorithm is run M times in each
acquired image, the covariance of p0 can be computed statistically, and it can be considered a
robust registration method in endoscopic surveillance. However, it requires the endoscope to
remain still during the running process. Obviously, this is not practical during an endoscopic
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procedure. To estimate the uncertainty statistically, a series of standard Gaussian noises are
added with different scalars to the original gastroscopy images for M times as a simulation.

4. Experiments and Results
To evaluate the performance of our method in real gastroscopy procedures, the method was
applied to the real gastroscopy image data from Sir Run Run Shaw Hospital in Zhejiang prov-
ince in China, and the matching results were compared with other registration methods. All 60
patients provided written informed consent for evaluation and follow-up using medical rec-
ords. Our research was approved by the Ethics Committee of Sir Run Run Shaw Hospital,
School of Medicine, Zhejiang University. The gastroscopy video was acquired at 25 fps. To
ensure confidentiality, the examination information (e.g., examination date and patient’s
name) was removed from the original gastroscopy images. The processed image sizes were
560�480. Fig 3 shows the workflow for the pyloric sites by the proposed method.

To evaluate the uniformity of the registration results, we selected seven gastroscopy
sequences randomly, and each of them was acquired from an anatomical site (pylorus, cardia,
angularis, antral anterior wall, antral posterior wall, lesser curvature of the gastric body, and
greater curvature of the gastric body). First, HPFT and the other registration methods were
applied to detect features from the first frame of the seven gastric sequences. Then, the features
were matched forward to the last frame and then matched from the last frame to the first
frame. The features’ tracking trajectories were estimated.

4.1 Effectiveness of the Evaluation Scheme
We evaluated the registration result by the proposed evaluation scheme. As a consequence, the
effectiveness of the evaluation scheme was demonstrated. The common method for this entails
applying the evaluation scheme to existing datasets, which have inherent validity for the
matching process. Thus, by comparison with the existing datasets, we could draw a conclusion
on the proposed scheme.

There are several public matching evaluation datasets; for example, in [34], an available
image database is provided, and the samples in this dataset contain rotation and deformation
that can be used for image classification, recognition and other image processing tasks; how-
ever, this image dataset does not contain endoscopic image cases. In [35], an endoscopic image
dataset is provided, however, the images were used in laparoscopic cases, and they are not suit-
able for a gastroscopy environment.

As a result, we estimated an effective evaluation framework, and we took advantage of the
gastroenterologists’ experiments to make the estimation. First, HPFT was applied to the test
data, and we evaluated the matching results with the proposed evaluation scheme and
employed three experienced gastroenterologists separately. The gastroenterologists provided
credible matching evaluations, from which we computed the recall percentage and accuracy
percentage of our automatic evaluation scheme (Table 1).

As can be seen in Table 1, the recall percentage and precision percentage were both larger
than 0.8, which indicated the proposed matching evaluation rationality. Compared with the
gastroenterologists’ evaluations, the proposed evaluation scheme can run automatically, and in
Section 4.2, we evaluate HPFT matching results using the proposed evaluation scheme.

4.2 Automatic Matching Evaluation
During the experiment, the number of the initial detected features for the test methods was
limited to 200. If the number of the initial features was larger than 200, we randomly selected
200 features as the initial detected set. Moreover, if the initial detected features were located
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Fig 3. Workflow of the registration on the pylorus.HPFT finished after 36 iterations. The blue points
indicate matching points, and the green triangles indicate matching patches.

doi:10.1371/journal.pone.0153202.g003

Table 1. The recall and precision percentages of the pvaluation.

pylorus cardia angularis antral posterior wall gastric body lesser curvature gastric body greater curvature

recall 0.85 0.88 0.81 0.87 0.91 0.90

precision 0.92 0.95 0.87 0.92 0.94 0.88

doi:10.1371/journal.pone.0153202.t001
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freely in the reference images, the features may be missing in the target image due to changes
in the endoscope’s view during gastroscopy. To solve this problem, before the experiment, we
set a region of interest (ROI) in the first frame, ensuring that the ROI appeared in all of the fol-
lowing frames, and also ensured that the initial features in the ROI were detected with all regis-
tration methods. The testing image sequences were encoded with an MPEG2 standard; the
duration was 60.0 s, and the frame number was 1,500. Because the content of adjacent frames
was very similar, we did not need to match all of the frames of the testing image sequences. In
this experiment, only the I and P frames were considered testing frames, and the actual testing
frame number was 500.

Before evaluating the DKL of the feature tracking trajectories, we estimated the FB error of
the feature point trajectories. We considered the distance of FB errors lower than 4 pixels to be
reliable pairs. The matching result’s precision percentage was defined as in (12), and Table 2
shows the FB error curves for the testing sequences.

Precision Percent ValidationðPPVÞ ¼ MatchingNumberðFBerror � 4Þ
InitialFeatureNumbersð200Þ ð12Þ

It can be seen from Table 2 that HPFT was significantly better than the other registration
methods. The second best method was the original SIFT, which was not simplified by the
method proposed in this study. Compared with the original SIFT’s PPV, HPFT had an
improvement of more than 70% in the antral and gastric body, which illustrated that the sur-
face of the anatomical site was flat and that HPFT had good performance in detecting homo-
graphic matching. For an angularis site, the fold and bending made homographic matching
difficult, and the improvement was not significant, which was consistent with results shown in
Table 2.

We found that the least time was required by FAST on average and that it detected as many
matching pairs as HSIFT and SIFT for some anatomical sites. Unfortunately, almost 60% of
the matching pairs were false pairs. In addition, HPFT ran much faster than SIFT (for a
560�480 image, HPFT took 0.3 s, and SIFT took 1.1 s) and the matching results were good.
This indicated that the simplified SIFT had a reasonably faster performance than the original
method, without loss of accuracy.

Although FB error was an easily implemented estimation method, an additional precision
analysis should be utilized to evaluate the FB error estimation’s confidence. As explained in
section 3.1, we applied DKL to HPFT’s feature estimation results, which were evaluated by FB
error. Every feature’s tracking trajectory was considered a random distribution, and the for-
ward distribution and backward distributions were identical if DKL1<0.1, DKL2<0.1 and DKL1

and DKL2 were of the same order.

Table 2. The precision percent validation (PPV).

HPFT ORIGINAL SIFT FAST SURF STAR

pylorus 0.85 0.63 0.33 0.57 0.51

cardia 0.83 0.65 0.31 0.52 0.47

angularis 0.82 0.78 0.42 0.67 0.53

antral anterior wall 0.62 0.47 0.28 0.53 0.34

antral posterior wall 0.77 0.43 0.37 0.47 0.34

gastric body lesser curvature 0.76 0.59 0.11 0.32 0.27

gastric body greater curvature 0.69 0.57 0.25 0.41 0.43

doi:10.1371/journal.pone.0153202.t002
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In Table 3, the DKL column indicates estimations by DKL on the FB error estimation results;
the ‘FB error’ column indicates estimations by FB error, and it corresponded to the ‘HPFT’ col-
umn in Table 2. The ‘DKL / FB error’ column indicates the similarity of the DKL estimation and
FB error estimation. If the two estimation results were almost identical, the value of ‘DKL / FB
error’ should be close to 1, and the precision estimation of HPFT was considered reliable. Oth-
erwise, the two estimation results were totally different and the precision estimation was sus-
pect. As seen from Table 3, all ‘DKL / FB error’ values of the testing image sequences’, except
for ‘Angularis’, were higher than 0.9, and we considered the precision of HSIFT for these ana-
tomical sites reliable. However, the ‘DKL / FB error’ of ‘Angularis’ was 0.79, indicating that the
precision of HSIFT for ‘Angularis’ was not very high. In the authors’ opinion, this was due to

Table 3. DKL estimation of HPFT for different anatomical sites.

DKL FB ERROR DKL / FB ERROR

pylorus 165 170 0.97

cardia 154 166 0.93

angularis 131 164 0.79

antral anterior wall 118 124 0.95

antral posterior wall 142 154 0.93

gastric body lesser curvature 139 152 0.91

gastric body greater curvature 125 138 0.91

doi:10.1371/journal.pone.0153202.t003

Fig 4. Robustness estimation for different registration methods.RPV>0.7 was considered robust (dashed line).

doi:10.1371/journal.pone.0153202.g004
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the narrow nature of the angularis. When the endoscope acquired images from the angularis,
the content change was larger than expected between frames. In this case, HPFT had a higher
probability of false matching. However, compared with other methods, HPFT was also more
reliable in identifying precision matching pairs for the angularis.

To evaluate the robustness of HPFT, we added a series of Gaussian noise to the gastroscopy
image sequences and evaluated the robustness of the precision estimation results. The most
robust registration method should generate the most identical registration results under differ-
ent Gaussian noise environments, and the consistency can be evaluated by the covariance
matrix, as expressed in eq (11). If the covariance matrix (Covp’) was close to one, the registra-
tion results were not violated by the noise, and we considered Covp’>0.8 a robust registration
result. For different methods, the robustness percent validation (RPV) was defined as:

Robustness Percent ValidationðRPVÞ ¼ MatchingNumberðCov � 0:8Þ
PPV

ð13Þ

RPVs for different registration methods are shown in Fig 4. It can be seen from Fig 4, that
HPFT and SIFT had similar robustness estimation results. The other registration results had
poorer robustness than SIFT and HPFT.

The uniformity of the matching results was assessed by the squared difference of the match-
ing pair coordinates. The statistics of 200 initial feature distributions by different registration
methods are shown in Fig 5.

The squared differences are shown in Table 4.
As seen in Table 4, HPFT and SURF had reasonable uniformity, and FAST and STAR’s fea-

tures were relatively concentrated.

Fig 5. Initial feature distributions of X and Y coordinates. Because the initial test feature number for all
registration methods was 200, obviously, the lower squared difference value corresponded to the more
uniform distribution.

doi:10.1371/journal.pone.0153202.g005
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5. Conclusion
In this study, an iterative method for registration during gastroscopic processes was presented.
A local feature descriptor was used to detect the initial matching pairs. Epipolar geometry and
homographic transformation were considered for further matching based on the initial match-
ing pairs. The final registration results were composed of the independent matching point
pairs and the matching patches. An overall estimation method was proposed to determine the
precision of the registration. Experimental results using real gastroscopic images showed that
the method has promising performance ability.

The gastric internal surface is always covered with mucus, so matching errors will easily
occur from the specular reflection. The integration of other visual cues, such as shading, in
response to soft-tissue deformation can improve the registration results. Another limitation of
this method is that the transformation between patches is always considered to be a homo-
graphic transformation. In the future, non-rigid transformations (e.g., radial basis function ker-
nel) should be considered to exploit more potential matching patches.
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