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ABSTRACT

Subgroup and stratification analyses have been widely applied in genetic 
association studies to compare the effects of different factors or control for the 
effects of the confounding variables associated with a disease. However, studies 
have not systematically provided application standards and computing methods for 
stratification analyses. Based on the Mantel-Haenszel and Inverse-Variant approaches 
and two practical computing methods described in previous studies, we propose a 
standard stratification method for meta-analyses that contains two sequential steps: 
factorial stratification analysis and confounder-controlling stratification analysis. 
Examples of genetic association meta-analyses are used to illustrate these points. The 
standard stratification analysis method identifies interacting effects on investigated 
factors and controls for confounding variables, and this method effectively reveals 
the real effects of these factors and confounding variables on a disease in an overall 
study population. We also discuss important issues concerning stratification for meta-
analyses, such as conceptual confusion between subgroup and stratification analyses, 
and incorrect calculations previously used for factorial stratification analyses. This 
standard stratification method will have extensive applications in future research for 
increasing studies on the complicated relationships between genetics and disease.
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INTRODUCTION

Meta-analysis is a powerful and effective tool 
in evidence-based medicine (EBM) for synthesizing 
results from multiple case-controlled studies into a 
single numerical estimate to provide more objective 
and quantitative evidence. This method has been widely 
applied over the past two decades to solve clinical 
problems in numerous genetic association studies [1–4]. 
Meta-analyses are convenient for large-scale, multi-
centre and multivariate investigations between genetic 
polymorphisms and disease development. In meta-
analyses, subgroup analysis and stratification analysis 

are frequently used to compare the sizes of the effects of 
variants of an intervention or to control for confounding 
factors to clarify the real effects of the intervention. These 
two methods are quite different methodologically. 

Subgroup analysis

In the meta-analysis approach, subgroups are based 
on a characteristic of the included studies. In addition to 
exploring the source of heterogeneity between studies, 
subgroup analyses are conducted to determine whether 
differences occur among studies with two or more different 
levels of a characteristic, and the characteristics are then 
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compared. In this method, a study is considered a unit, and 
studies with the same features are considered a subset. For 
example, such analyses may be performed to determine 
whether a genetic polymorphism has different effects 
among different ethnicities. Then, all the included studies 
are divided into several groups, such as Asian, Caucasian 
and African. Odds ratios (ORs) with confidence intervals 
(CIs) are calculated within the different groups and then 
compared across the groups. The study by Borenstein M 
discusses the detailed application standards, computing 
methods and results interpretation of this method [5]. 

Stratification analysis

The term “stratification” means that the study 
population is divided into several strata according to 
characteristics that may influence the clinical indexes. 
Stratified data are generally sorted as in Table 1. In a 
case-controlled study, stratification analysis (also called 
stratified analysis [6] or risk stratification analysis [7] when 
the confounding factor is a risk factor for the disease) is a 
method of controlling the confounding factors and revealing 
the true relationship between exposure and disease by 
calculating the sizes of the effects within the stratum, 
with a Mantel-Haenszel approach used to combine them. 
This method is also called M-H stratified analysis, and its 
application in a single case-controlled study is defined and 
described thoroughly by Mantel N [6] and Hill A [8].

As above, stratification is different from subgroups 
in two aspects: (a) in a single study, grouped indicators 
are generally interventions that must be pre-set, whereas 
stratified indicators are often considered potential 
confounding variables; (b) in a meta-analysis, an included 
study is considered a unit and assigned to one group in a 
subgroup analysis, whereas in a stratification analysis, an 
included study is divided into several parts, and studies 
with identical characteristics will form the same strata. 
This difference is shown in a schematic (Figure 1). One of 
the purposes of distinguishing subgroup and stratification 
analyses is to emphasize that only stratified data can be 
used for stratification analysis in a meta-analysis.

Two methods of calculating the ORs for stratified 
data are found in published meta-analyses: (a) with the 
first method, the unexposed group in a stratum is regarded 
as a reference and compared with the exposed group in the 
same stratum, the unexposed group in another stratum and 
the exposed group in the other stratum [9–11]; (b) with the 
second method, the ORs are calculated within the same 

stratum and then compared [12–14]. This difference can 
be easily understood visually (Table 2).

Although stratification analyses have been widely 
used by many investigators to study the association of 
genes with disease in meta-analyses [9–15], studies have 
not previously provided a systematic description of the 
application standards, computing methods and results 
interpretation, which we intend to classify in this work. 
Referring to the M-H stratified analysis used in single 
case-controlled studies and the two practical methods of 
calculating ORs mentioned above, this study provides a 
standard method of performing stratification analyses for 
use in meta-analyses. To illustrate this point in detail, we 
use three examples of meta-analyses related to genetic 
associations in the development of cancer or Alzheimer’s 
disease (AD).

Examples for illustration 

The first study used here for illustrative 
purposes was conducted by Nagao M et al. [13], who 
investigated the roles of a prostaglandin endoperoxide 
synthase (PTGS2) polymorphism and nonsteroidal 
anti-inflammatory drug (NSAID) intake in the risk of 
developing cancer. In the second and third meta-analyses, 
we focused on the studies of Li L et al. [14] and Zhang 
MY et al. [15], who investigated the associations of 
cholesterol-24S-hydroxylase (CYP46A1) rs754203 and 
methylenetetrahydrofolate reductase (MTHFR) rs1801133 
polymorphisms with AD according to apolipoprotein E ε4 
(ApoE ε4) status. The original data included in these three 
meta-analyses are displayed in Supplementary Table 1.

In this paper, we focus on the methodological 
aspects of statistical analyses rather than other issues, 
such as the source of the data and quality assessments of 
the studies. We will not discuss these substantive issues. 
Readers who are interested in the details of these three 
meta-analyses can refer to the original papers. 

PTGS2 polymorphism and NSAID use in the risk of 
cancer

This meta-analysis included eight case-controlled 
studies containing a total of 3032 cancer patients and 5712 
controls [13], and all include stratified data. The study 
population can be divided by PTGS2 rs5275 genotype 
carrier status (TC or CC carriers and TT carriers) or 
stratified by NSAID use history (NSAID users and non-

Table 1: Sorting table for stratified data in a case-controlled study

Exposure
Stratum i

Total
Cases Controls

+ ai bi n1i

– ci di n0i

Total m1i m0i ti
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NSAID users), as shown in  Supplementary Table 1. In 
this meta-analysis, the researchers had two goals: (a) to 
determine the relationship between the PTGS2 rs5275 
polymorphism and cancer risk and (b) to investigate the 
effect of NSAID use on preventing cancer.

CYP46A1 or MTHFR polymorphisms by ApoE ε4 
status in the risk of AD

These two meta-analyses included eight and six 
case-controlled studies containing a total of 1700 AD 
patients and 1433 controls [14] and 1063 AD patients 
and 1151 controls [15], respectively. Among all the study 
subjects, CYP46A1 rs754203 (TT, TC or CC carriers, 
T was the major allele) or MTHFR rs1801133 (CC, CT 
or TT carriers, C was the major allele) polymorphisms 
and ApoEε4 carrier status (non-ApoE ε4 carriers and 
ApoE ε4 carriers) were determined by genotyping. The 
stratified data are shown in Supplementary Table 1. The 
researchers of these two meta-analyses investigated (a) the 
associations of CYP46A1 rs754203 or MTHFR rs1801133 

polymorphisms with the risk of developing AD and (b) the 
confounding or interaction effect of ApoE ε4.

It would be difficult for a simple meta-analysis 
to fully utilize the stratified data of the case-controlled 
studies above to interpret the complicated relationship 
between gene-gene or gene-environment effects and 
disease risk. In the following sections, we will introduce 
the computing method and discuss the application of a 
standard stratification analysis to solve these issues in 
meta-analyses.

Methodology of stratification analysis in meta-
analyses

For all selected examples in our paper, ORs with 
corresponding 95% CIs were selected as the effect sizes 
to assess the associations between the single nucleotide 
polymorphisms (SNPs) and the risks of the diseases. 
An OR with a 95% CI greater than 1 indicates that the 
investigated factor increased the risk of the disease, 
and an OR with a 95% CI less than 1 indicates that the 

Figure 1: Schematic of the difference between strata and subgroups in meta-analyses. (A) subgroup analysis; and (B) 
stratification analysis.

Table 2: Two practical variants of stratified analysis in previous genetic association meta-analyses

(A)
Exposure Stratum 1 Stratum 2 … Stratum i

– Reference OR2– … ORi–

+ OR1+ OR2+ … ORi+

(B)

Exposure Stratum 1 Stratum 2 … Stratum i

– Reference Reference … Reference

+ OR1 OR2 … ORi
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investigated factor decreased the risk of the disease. When 
an OR with a 95% CI crosses 1, no significant association 
is indicated between the investigated factor and the disease.

In each meta-analysis, the ORs were calculated 
for stratified data in two sequential steps for a standard 
stratification analysis (Figure 2): 

I. In the first step, the computing method for ORs 
refers to the first type of variants of stratification analysis 
(Table 2A) found in previous published meta-analyses. 
These ORs reveal the effect of the stratifying indicator 
within the unexposed group (OR2-), the effect of the 
exposure factor within the same stratum (OR1+) and the 

Figure 2: Flow diagram of the process of standard stratification analysis in meta-analysis.



Oncotarget12129www.impactjournals.com/oncotarget

effect of both the stratifying indicator and exposure factor 
(OR2+). We call this “factorial stratification analysis”. 
Appropriate effect models are selected to calculate the 
pooled ORs based on the heterogeneity test. Heterogeneity 
is evaluated according to the χ2-based Q (Cochran’s Q 
test) and I2 statistic tests [16]. If I2 < 50%, then the fixed-
effect model (the Mantel-Haenszel method) [6] is applied. 
Otherwise, we select the random-effects model (the Der 
Simonian-Laird method) [17]. This model selection 
criterion has long been used in meta-analyses.

II. In the second step, the computing method for 
ORs refers to the second type of variants of stratification 
analysis (Table 2B) found in previous published meta-
analyses. The weaker effect between two factors 
mentioned above is investigated first, and then the 
stronger one is investigated (OR1+ vs. OR2-). The true 
role of the weaker factor is more difficult to detect 
under the confounding influence of the stronger one. 
Figure 2 describes the following sub-steps to control for 
the confounding influence of the stratified moderator 
effect. We call this “confounder-controlling stratification 
analysis”. 

(I) When working within strata, the process of 
effect model selection is the same as that of normal meta-
analysis and factorial stratification analysis mentioned 
above. Proper effect models are used to pool the stratified 
data of every included study within each stratum. Because 
this sub-step is similar to the subgroup analysis, we call 
this “subgroup-type stratification analysis”. 

(II) Traditional subgroup-typed stratification 
analysis without combining the sizes of effects across 
strata can show only the investigated effect in a particular 
subpopulation, which may not reveal the real effect 
among all study populations. In addition, although 
observed effects may be different across strata due to the 
confounding factors, their true values may be consistent. 
To solve this problem, we use the test of homogeneity 
across strata to determine whether to combine the effects of 
different strata. The variation across strata is then assessed. 
The χ2- based Q test is also conducted for this evaluation. 

(III) If the P value of the χ2 statistic ≥0.1, no 
significant variation is indicated as shown in the test of 
homogeneity. An overall estimation is determined for the 
effect of the investigated factor. The fixed-effect model 
(the Inverse-Variance method) is used to combine the 
effect size with the upper and lower CIs of each strata 
because the fixed-effect model assumes a common true 
effect size (fixed-effect) or different but countable true 
effect sizes (fixed-effects) across strata [5, 6, 18].

(IV) Then, the adjusted OR by stratification, or the 
combined OR, is compared with the crude OR calculated 
from the overall study populations in a simple meta-
analysis without stratification. Any change in significance 
between these values indicates that the stratified moderator 
is a confounding variable.

(V) If the P value of the χ2 statistic <0.1, significant 
variation across strata is indicated. In this case, we do 
not use a random-effects model to combine the ORs 
from different strata. The random-effects model assumes 
that true effect sizes are distributed across strata and 
that the number of strata is countless [5, 17, 18]. So, 
using a random-effect model to combine these ORs is 
inappropriate. Therefore, we do not combine these ORs, 
but we use them and OR2+ to report the unilateral effect 
of the investigated factor in each stratum as well as the 
interacting effect between this factor and the stratified 
moderator on diseases, respectively.

A factorial stratification analysis can be used to 
determine whether exposure or confounding factors have 
a multilevel perspective, especially the simple effect of a 
confounding factor in a study population, which cannot 
be provided by the subgroup-typed calculation method. 
In confounder-controlling stratification analysis, we can 
control for the confounding variable via stratification, 
determine the real effects of exposure factors, or discover 
whether interactions occur between exposure and 
confounding factors. This interaction is referred to as a 
gene-gene or gene-environment interaction. In a standard 
stratification analysis, these two sub-types of stratification 
methods are included as the first step and the second step.

All analyses were performed using STATA version 
14.0 software (STATA Corporation, College Station, 
TX, USA) with the metan command [19]. The above 
algorithms of Cochran’s Q test and the fixed-effect and 
random-effects models refer to the Cochrane Handbook 
for Systematic Reviews of Interventions: Version 5.1.0 [20] 
and the method of genetic association meta-analysis by 
Thakkinstian M et al. [21]. The code of command line in 
Stata is displayed in the Supplementary Material.

Application and results interpretation

PTGS2 polymorphism and NSAID use in the risk of 
cancer

In the original publication, the researchers calculated 
four pooled ORs using a subgroup-type stratification 
analysis: (a) the minor allele carriers compared with the 
carriers of the homozygous major allele PTGS2 rs5275 
among NSAID users (TC + CC vs. TT: OR = 1.008,  
P = 0.916); (b) the minor allele carriers compared with the 
carriers of the homozygous major allele PTGS2 rs5275 
among non-NSAID users (TC + CC vs. TT: OR = 0.934, 
P = 0.264); (c) the NSAID users compared with the non-
NSAID users among the homozygous major allele carriers 
of PTGS2 rs5275 (NSAID users vs. non-NSAID users: 
OR = 0.841, P = 0.01); and (d) the NSAID users compared 
with the non-NSAID users among the minor allele carriers 
of PTGS2 rs5275 (NSAID users vs. non-NSAID users: OR 
= 0.769, P < 0.001). The data are shown in Supplementary 
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Table 2. Based on these statistical results, they concluded 
that NSAID use decreased the risk of cancer among both 
TC or CC carriers and TT carriers, whereas the PTGS2 
rs5275 polymorphism did not show any significant effect 
on cancer development among NSAID users or non-
NSAID users [13]. Although confounding factors were 
controlled within a stratum, these results were limited 
due to the two following issues: (a) the effect of either the 
PTGS2 rs5275 polymorphism or NSAID use in the overall 
study population was not explored in this study; and (b) 
repeated pairwise comparisons increased the potential rate 
of type I errors in the meta-analysis, which may lead to 
false-positive results.

In our work, we performed a standard stratification 
analysis to investigate the relationship of the PTGS2 
polymorphism and NSAID use with the risk of cancer 
following the steps below. First, since the effects of both 
the PTGS2 polymorphism and NSAID use were unclear 
before our analysis, a factorial stratification analysis was 
used to observe the effect sizes. As shown in Table 3, 
the unilateral effect of the PTGS2 rs5275 polymorphism 
did not significantly change the risk of developing 
cancer (OR = 0.934, P = 0.264), although the unilateral 
effect of NSAID use decreased this risk significantly  
(OR = 0.769, P < 0.001), supporting the conclusion in 
the study by Nago M et al. [13]. When both of the above 
effects occurred, the ORs did not show a significant 
difference from that of the unilateral effect of NSAID 
use (OR = 0.76, P < 0.001). These ORs implied that 
only NSAID use may have a protective role in cancer 
development and the PTGS2 rs5275 polymorphism was 
not significantly associated with this risk. 

As shown by the earlier analysis, the effect of the 
PTGS2 rs5275 polymorphism was much weaker than 
that of NSAID use. We chose to study the effect of the 
PTGS2 rs5275 polymorphism. In the following analysis 
of the effect of the PTGS2 rs5275 polymorphism in 
the overall study population rather than that of NSAID 
use status, it was necessary to control for the potential 
confounding effect of NSAID use. As shown in Table 3,  
in a confounder-controlling stratification analysis, the  

χ2-based Q test showed no significant difference across strata  
(χ2 = 0.62, P = 0.432). The combined OR demonstrated 
that the PTGS2 rs5275 polymorphism was not associated 
with cancer risk in the overall study population (OR = 
0.961, 95% CI = 0.872–1.051). Similarly, to investigate the 
effect of NSAID use on the risk of cancer, we can calculate 
the crude pooled OR (OR = 0.807, 95% CI = 0.732–0.890, 
P < 0.001, not shown in the tables) because the PTGS2 
rs5275 polymorphism did not have an influence on this 
risk. In summary, in the standard stratification analysis, (a) 
the real effects of both the PTGS2 rs5275 polymorphism 
and NSAID use on cancer risk were determined in the 
overall population after controlling for confounding 
variables, and (b) a standard computing process could 
mitigate increases in type I errors that may be caused by 
repeated pairwise comparisons.

The CYP46A1 and MTHFR polymorphisms in the 
risk of AD according to ApoE ε4 status

Many genetic association analyses demonstrated 
that ApoE ε4 represents the most important genetic risk 
factor for AD [22]. Therefore, when Li L et al. [14] and 
Zhang MY et al. [15] investigated the association between 
the CYP46A1 and MTHFR polymorphisms and AD, the 
effect of the ApoE ε4 allele was considered because 
different ApoE ε4 allele distributions between exposed and 
unexposed groups may represent a confounding variable.

In the second example, researchers calculated 
the pooled ORs of homozygous mutant genotype CC 
compared with the TC or TT genotypes of CYP46A1 
rs754203 among ApoE ε4 carriers and non-ApoE ε4 
carriers [14]. In the third example, researchers conducted 
a meta-analysis to investigate the association between 
the MTHFR rs1801133 polymorphism and the risk 
of AD according to ApoE ε4 status [15]. However, 
they calculated only the pooled OR among non-ApoE 
ε4 carriers to exclude the influence of this risk allele 
on the disease. In contrast, we complemented the 
pooled OR in ApoE ε4 carriers. The data are shown in 
Supplementary Table 3. Both the CYP46A1 rs754203 (OR 

Table 3: Meta-analysis stratified by NSAID use status to determine the association between the PTGS2 rs5275 
polymorphism and the risk of cancer

Gene 
local

No. of 
studies

Steps for 
standard 

stratification 
analysis

Genetic 
comparison

Non-NSAID user NSAID user

I2 Model OR 95% CI P I2 Model OR 95% CI P

PTGS2 8 I TT NA 1 
(reference) NA 48.60% F 0.769 0.665–0.889 <0.001

rs5275 TC + CC 0.00% F 0.934 0.828–1.053 0.264 45.70% F 0.76  0.662–0.873 <0.001

II TT NA 1 
(reference) NA NA 1 

(reference) NA

TC + CC 0.00% F 0.934 0.828–1.053 0.264 49.80% F 1.008 0.872–1.165 0.916

Combined Result: χ2 = 0.62, P = 0.432, OR (95% CI) = 0.961 (0.872–1.051)

Note: OR: odds ratio; CI: confidence interval; F: fixed-effect model; NA: not available; I: factorial stratification analysis; II: confounder-controlling stratification analysis; PTGS2: 
prostaglandin endoperoxide synthase 2; NSAID: nonsteroidal anti-inflammatory drug.
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= 1.528, P = 0.018) and MTHFR rs1801133 (OR = 1.557,  
P = 0.009) polymorphisms showed significant associations 
with the risk of AD among non-ApoE ε4 carriers, but 
not among ApoE ε4 carriers (P = 0.284 and P = 0.086). 
However, the results of these two meta-analyses were 
still limited due to the following issues: (a) in the study 
of the CYP46A1 rs754203 polymorphism, the researchers 
assumed that the negative results in the ApoE ε4 carrier 
group were caused by stronger effects of the ApoE ε4 
allele compared to those of the above polymorphisms [14], 
although they failed to quantitatively demonstrate this 
conclusion; and (b) in the study of the MTHFR rs1801133 
polymorphism, the researchers performed a meta-analysis 
of non-ApoE ε4 carriers but not ApoE ε4 carriers [15]; 
thus, an unconventionally negative result, which could 
easily occur, would be difficult to explain. Different 
effects of these two polymorphisms observed in different 
populations with and without ApoE ε4 alleles implied 
that ApoE ε4 carrier status was a possible confounding 
factor; however, these studies failed to control for this 
confounding and reveal the real effects of these two 
polymorphisms in the overall population.

In our study, a standard stratification analysis was 
conducted to solve the above issues in these two meta-
analyses. For the CYP46A1 rs754203 polymorphism, the 
statistical results of the factorial stratification analysis 
are shown in Table 4. As the data show, the CYP46A1 
rs754203 polymorphism was significantly associated with 
AD among the non-ApoE ε4 carriers (OR = 1.528, P = 
0.018). Additionally, positive ApoE ε4 status increased 
the risk of developing AD (OR = 5.184, P < 0.001), and 
the OR was 3.39-times greater than that of the CYP46A1 
rs754203 polymorphism. With the combined effect of the 
CYP46A1 rs754203 polymorphism and positive ApoE ε4 

status, the OR increased compared with that for ApoE 
ε4 only, indicating a significantly increased AD risk 
(OR = 7.725, P < 0.001). For the MTHFR rs1801133 
polymorphism, data from the factorial stratification 
analysis are also shown in Table 4. The statistical 
results show that the MTHFR rs1801133 polymorphism 
significantly increased the AD risk (OR = 1.557,  
P = 0.009) and also verified that ApoE ε4 was a significant 
risk factor for AD (OR = 3.678, P = 0.001). The OR for 
the effect of ApoE ε4 on the increasing the AD risk was 
2.36-times greater than that for the effect of the MTHFR 
rs1801133 polymorphism. With the combined effect of the 
MTHFR rs1801133 polymorphism and positive ApoE ε4 
status, the OR increased from that for the effect of ApoE 
ε4 alone, indicating a significantly increased AD risk (OR 
= 6.29, P < 0.001). Compared with the subgroup-typed 
stratification analysis conducted in the original meta-
analyses, the factorial stratification analysis provided 
insight into the role of ApoE ε4 and its combined effect 
with the CYP46A1 rs754203 or MTHFR rs1801133 
polymorphism on the risk of AD.

As shown in the earlier analysis, the effect of the 
CYP46A1 rs754203 or MTHFR rs1801133 polymorphism 
was much weaker than that of ApoE ε4. We chose to 
study the effects of the CYP46A1 rs754203 and MTHFR 
rs1801133 polymorphisms and control for ApoE ε4 as 
a potential confounding variable in the analyses. We 
examined the variation between the two ORs calculated 
in the following confounder-controlling stratification 
analysis in each polymorphism study based on the χ2-
based Q test. Significant variations were not observed 
between the results (χ2 = 0.18, P = 0.669 and χ2 = 0.01, 
P = 0.910); therefore, the fixed-effect model was used to 
combine these ORs (shown in Table 4). In the study of 

Table 4: Meta-analysis stratified by ApoE ε4 status to determine the association between the CYP46A1 rs754203 or 
MTHFR rs1801133 polymorphism and the risk of Alzheimer’s disease

Gene local No. of 
studies

Steps for 
standard 

stratification 
analysis

Genetic 
comparison

Non-ApoE ε4 carrier ApoE ε4 carrier

I2 Model OR 95% CI P I2 Model OR 95% CI P

CYP46A1 8 I TT + TC NA 1
 (reference) NA 50.80% R 5.184 3.980–6.753 <0.001

rs754203 CC 0.00% F 1.528 1.075–2.172 0.018 23.90% F 7.725 4.598–12.978 <0.001

II TT + TC NA 1
 (reference) NA NA 1

 (reference) NA

CC 0.00% F 1.528 1.075–2.172 0.018 33.50% F 1.33 0.790–2.239 0.284

Combined Result: χ2 = 0.18, P = 0.669, OR (95% CI) = 1.456 (1.019 - 1.893)

MTHFR 6 I CC NA 1 
(reference) NA 75.60% R 3.678 1.733–7.806 0.001

rs1801133 TT 39.50% F 1.557 1.119–2.165 0.009 61.50% R 6.29 2.448–16.159 <0.001

II CC NA 1 
(reference) NA NA 1 

(reference) NA

TT 39.50% F 1.557 1.119–2.165 0.009 12.70% F 1.619 0.935–2.805 0.086

Combined Result: χ2 = 0.01, P = 0.910, OR (95% CI) = 1.572 (1.115–2.028)

Note: OR: odds ratio; CI: confidence interval; F: fixed-effect model; R: random-effect model; NA: not available; I: factorial stratification analysis; II: confounder-controlling stratification analysis; CYP46A1: 
cholesterol-24 S-hydroxylase; ApoE ε4: the ε4 allele of the apolipoprotein E gene; MTHFR: methylenetetrahydrofolate reductase.
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the CYP46A1 rs754203 polymorphism, the combined OR 
with a 95% CI was 1.456 (1.019–1.893), which is slightly 
more pronounced than the crude OR (OR = 1.20, 95% CI 
= 1.040–1.380) [14]. Both results show that the CYP46A1 
rs754203 polymorphism significantly increased the AD 
risk in the overall study population. In the study of the 
MTHFR rs1801133 polymorphism, the combined OR with 
a 95% CI was 1.572 (1.115–2.028), indicating that the 
MTHFR rs1801133 polymorphism also increased the AD 
risk in the overall study population significantly. However, 
the crude OR, which was not calculated in the original 
paper [15] but was complemented by our calculation, did 
not show that the association was statistically significant 
(OR = 1.475, 95% CI = 0.962–2.263, P = 0.069, not shown 
in the tables). Therefore, the ApoE ε4 allele had a strong 
confounding effect on the association. Consequently, it 
would be difficult to show the real effect of the MTHFR 
rs1801133 polymorphism on the AD risk in the overall 
study population rather than among the non-ApoE ε4 
carriers only without confounder-controlling stratification. 

DISCUSSION

In this study, we focus on providing a systematic 
study of stratification analyses. Based on the M-H and 
I-V approaches [6] as well as two practical computational 
methods used in previous stratification analyses  
[10, 13, 14], we propose a standard stratification analysis 
application for meta-analyses that contains two sequential 
steps: factorial stratification analysis (Step I) and 
confounder-controlling stratification analysis (Step II). 
Three examples of previous meta-analyses meeting the 
criterion of stratified data are used for illustration. 

In the first example, because of the unknown effects 
of both the PTGS2 rs5275 polymorphism and NSAID use 
on the risk of cancer, we calculated ORs using the factorial 
stratification analysis, which is an earlier stratified method 
of exploring the unilateral and additive effects of genetic 
and pharmaceutical factors. A confounder-controlling 
stratification analysis was further employed to control for 
the confounding effects of NSAID use during the analysis 
of the effects of the PTGS2 rs5275 polymorphism. The 
combined OR across stratum showed that the PTGS2 
rs5275 polymorphism was not associated with the risk 
of cancer in the overall study population. To analyse the 
effect of NSAID use, we directly calculated the crude OR 
by the fixed-effect model without stratification because 
the PTGS2 rs5275 polymorphism was found to have no 
influence on the risk of cancer.

In the second and third examples, ApoE ε4 
was defined as a risk factor for AD [22]. During 
the investigation of the association of the CYP46A1 
rs754203 and MTHFR rs1801133 polymorphisms with 
the risk of AD, a factorial stratification analysis was 
first used to verify the role of ApoE ε4 in the disease, 
and then the second step was carried out to control for 

the confounding factors. In the study of the CYP46A1 
rs754203 polymorphism, we found that the adjusted OR 
by stratification was slightly higher than the crude OR, 
although both were larger than 1 with P values smaller 
than 0.05, suggesting that the CYP46A1 rs754203 
polymorphism was significantly associated with the 
increased AD risk in the overall population. In the study 
of the MTHFR rs1801133 polymorphism, the adjusted 
OR by stratification suggested that this polymorphism 
increased the risk of AD significantly, but it showed 
no effect on the AD risk by the crude OR. We consider 
our adjusted OR to be more reliable than the crude OR, 
which explains the real relationship between the MTHFR 
rs1801133 polymorphism and the AD risk. This finding 
is reasonable because combining the effect sizes based 
on the heterogeneity in each stratum first and then across 
strata provides better results than using the overall 
heterogeneity among studies in the meta-analysis. The 
difference between these two ORs implied that ApoE 
ε4 status was a strong confounder in this meta-analysis. 
Compared with the results of the unilateral analysis for 
the MTHFR rs1801133 polymorphism in individuals not 
carrying ApoE ε4 alleles in the original meta-analysis, 
the result from using both the ApoE ε4 and non-ApoE ε4 
carriers in our standard stratification analysis had stronger 
statistical power because of the larger sample size. The 
cases mentioned above demonstrate the important role 
of standard stratification analysis in the exploration and 
control of confounding factors in meta-analyses. 

Nomenclature

In the Introduction, the difference between the 
subgroup and stratification concepts was comprehensively 
discussed. One point that we should stress is that 
conceptual confusion between the subgroup and 
stratification concepts occurs in meta-analyses. For 
example, in a study of the association between the 
LIPC rs493258 polymorphism and the risk of macular 
degeneration [23], the terms “stratified analysis” and 
“stratification” were used to describe a subgroup method; 
however, in the original publication of the study on 
the relationship of the VEGF rs157036 polymorphism 
with AD risk, a subgroup analysis of ApoE ε4 status 
was mistaken for a stratified analysis [12]. In the 
publication used in the first case above, the terms 
“subgroup analysis” and “stratified analysis” were used 
to describe the grouping by ethnicity and the types of 
cancers, respectively [13]. As mentioned earlier, one of 
the distinctions between strata and subgroups in meta-
analyses is that the number of studies will be reduced 
within groups after grouping but not within strata after 
stratifying. We know that the number of studies influences 
the results of the heterogeneity assessment. Therefore, 
these two methods must be distinguished, which was 
performed in this work.



Oncotarget12133www.impactjournals.com/oncotarget

Incorrect calculation of factorial stratification 
analysis

Factorial stratification analyses represent the first 
step for calculating ORs for stratified data as mentioned 
in the Introduction, and they have been widely used 
for stratification analysis in some retrospective studies 
[9–11]. In these meta-analyses, a simple but incorrect 
calculation method was employed to combine original 
data. Stratified data from different studies were simply 
added together as in a single case-controlled study 
without considering the heterogeneity between them 
[9, 11]. This method may cause abnormal results or 
erroneous conclusions.

In one of our previous studies, we conducted a 
stratification analysis to investigate the association of the 
CHAT rs3810950 polymorphism with AD risk according 
to ApoE ɛ4 carrier status [10]. First, we synthesized the 
original data as a single case-controlled study and obtained 
an abnormal result in which the CHAT rs3810950 
polymorphism played a protective role against the AD 
risk among non-ApoE ɛ4 carriers (OR = 0.82, P = 0.014, 
shown in Table 5A), which was entirely inconsistent 
with the results showing the destructive role of this 
polymorphism obtained from the meta-analysis based 
on the overall population [10]. After visual inspection of 
the original data, we found significant variance among 
the included studies. Therefore, we determined that 
simply adding study sample numbers together without 
considering the heterogeneity between studies is incorrect. 
A random-effects model (the Der Simonian-Laird method) 
was then used to calculate the effect size. A statistical 
analysis provided a much better result and showed an 
OR of 1.03, which indicated no association between the 
CHAT rs3810950 polymorphism and the AD risk among 
non-ApoE ε4 carriers (OR = 1.03, P = 0.08, shown in 
Table 5B). With the random-effects model, the OR for the 
combined effect of the CHAT rs3810950 polymorphism 
and ApoE ɛ4 alleles was larger than that for the unilateral 
effect of ApoE ɛ4 (OR = 4.87, P = 0.004 vs. OR = 3.46,  
P = 0.001), which is quite reasonable. However, an 

opposite trend (OR = 2.07, P < 0.001 vs. OR = 4.31,  
P < 0.001) was observed by simple calculation, as in a 
single case-controlled study calculation. The forest plot 
from the random-effects model showed that significant 
between-study heterogeneity existed in the genetic 
comparison among non-ApoE ε4 carriers (I2 = 55.6%), 
and two studies with OR values less than 1 had relatively 
larger weights than the other two, which caused the 
combined CI to cross 1 (Figure 3). After employing the 
random-effects model, the weights of these two studies 
significantly decreased; therefore, the bias in the results 
also decreased compared with that of the fixed-effect 
model or by directly adding the samples together as a 
pseudo single case-controlled study.

This case suggested that the simple calculation 
method is likely to cause errors when heterogeneity is high 
between studies. Combining stratified data using either a 
fixed-effect or random-effects model provides more stable 
and accurate results because variation between studies is 
considered. In the methodology section of this paper, we 
always used this computing method to calculate the ORs 
for stratified data.

Potential limitations

Although standard stratification analysis has 
advantages for controlling confounders and revealing 
potential interactions between exposure and confounding 
factors, three potential limitations can be recognized in 
meta-analyses. First, the statistical results of standard 
stratification analysis may suggest the existence of a 
potential interaction but cannot quantify its strength. In 
confounder-controlling stratification analysis (Step II), 
the homogeneity test is performed to estimate variants 
across strata. Significant variants indicate a potential 
interacting effect between the stratified moderator and the 
investigated factor. However, effect sizes of strata are not 
combined but reported respectively, or further statistical 
analyses of biological interactions are performed to 
verify the finding. Second, standard stratification 
analysis may not be suitable for data with a large number 

Table 5: Risk of Alzheimer’s disease associated with the CHAT rs3810950 polymorphism by ApoE 4 status
(A)

Gene local Genetic 
Comparison

non-ApoE 4 carriers ApoE 4 carriers

Cases Controls OR 95% CI P Cases Controls OR 95% CI P

CHAT rs3810950 GG + GA 851 1605 1 (reference) NA 862 377 4.31 3.72–4.99 <0.001

AA 292 673 0.82 0.70–0.96 0.014 203 185 2.07 1.67–2.57 <0.001

(B)

Gene local Genetic 
Comparison

No. of 
Studies

non-APOE 4 carriers APOE 4 carriers

I2 OR 95% CI P I2 OR 95% CI P

CHAT rs3810950 GG + GA
4

1 (reference) NA 94.10% 3.46 1.78–6.71 0.001

AA 55.60% 1.03 0.62–1.71 0.08 77.30% 4.87 1.67–14.22 0.004

Note: OR: odds ratio; CI: confidence interval.
          CHAT: Choline acetyltransferase; ApoE ε4: the ε4 allele of the apolipoprotein E gene.
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of concomitant variables. With an increasing number of 
concomitant variables, the number of strata will increase 
and the actual frequencies of cases or controls within 
each stratum will decrease, possibly resulting in failure 
to achieve the necessary conditions of the hypothetical 
test. Finally, standard stratification analysis cannot be 
performed when the stratified data are incomplete. In fact, 
all statistical techniques, including logistic regression 
methods, require complete data to estimate the difference 
between the theoretical frequency and the actual 
frequency (or the expected value and the observed value). 
Data deficiency always causes difficulty in performing 
statistical analyses in meta-analyses and systematic 
reviews; however, researchers can contact the authors of 
original publications to ask for the missing data. Despite 
these restrictions, this method can be effectively used by 
researchers conducting meta-analyses to synthesize data 
from multiple case-control studies or cohort studies to 
determine more accurate estimations and more robust 
conclusions.

With the development of sequencing technology and 
the increasing number of genome-wide association studies 
(GWASs) conducted, an increasing number of issues, 
such as gene-gene or gene-environment effects on disease 
development, will occur. By unifying the superior aspects 
of previous stratification methods, a standard stratification 

analysis will be applicable in controlling for confounding 
variables and exploring the effects of their interactions on 
the development of complicated diseases on a multivariate 
level.

CONCLUSIONS

This paper systematically introduced the 
methodology, computing method and application 
of stratification analyses for meta-analyses. Our 
main contributions include the (a) establishment of 
a computing method and interpretation of the results 
of standard stratification analyses; (b) differentiation 
between stratification and subgroup analyses; and 
(c) discussion and resolution of incorrect computing 
methods for factorial stratification that are frequently 
used in previous studies. The examples here provide a 
good understanding of the methodology for standard 
stratification analyses used for meta-analyses, and 
they also show the important role of this method in 
controlling for confounding variables and identifying 
interacting effects in genetic association studies. More 
extensive multi-centre studies designed to determine 
gene-gene, gene-drug and gene-environment interactions 
are necessary to authenticate this standard stratification 
method in the future.

Figure 3: Forest plots of the meta-analysis of the association between AD risk and the CHAT rs3810950 polymorphism 
among non-ApoE ε4 carriers under the recessive model.
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