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Abstract
Objectives: Due to the limited evaluation of the prognostic value of RNA processing genes 
(RPGs),	which	are	regulators	of	alternative	splicing	events	(ASEs)	that	have	been	shown	
to	be	associated	with	tumour	progression,	this	study	sought	to	determine	whether	colo-
rectal	cancer	(CRC)	could	be	further	stratified	based	on	the	expression	pattern	of	RPGs.
Materials and Methods: The	gene	expression	profiles	of	CRCs	were	collected	from	
TCGA	(training	set)	and	three	external	validation	cohorts,	representing	1060	cases	
totally.	Cox	regression	with	least	absolute	shrinkage	and	selection	operator	(LASSO)	
penalty	was	used	to	develop	an	RNA	processing	gene	index	(RPGI)	risk	score.	Kaplan-
Meier	curves,	multivariate	Cox	regression	and	restricted	mean	survival	(RMS)	analy-
ses	were	harnessed	to	evaluate	the	prognostic	value	of	the	RPGI.
Results: A	 22-gene	 RPGI	 signature	was	 developed,	 and	 its	 risk	 score	 served	 as	 a	
strong independent prognostic factor across all data sets when adjusted for major 
clinical	variables.	Moreover,	ASEs	for	certain	genes,	such	as	FGFR1 and the RAS on-
cogene	 family,	were	 significantly	 correlated	with	RPGI.	Expression	 levels	of	genes	
involved	 in	splicing-	and	 tumour-associated	pathways	were	significantly	correlated	
with	RPGI	 score.	Furthermore,	 a	combination	of	RPGI	with	age	and	 tumour	 stage	
resulted in significantly improved prognostic accuracy.
Conclusions: Our	findings	highlighted	the	prognostic	value	of	RPGs	for	 risk	strati-
fication	of	CRC	patients	and	provide	insights	into	specific	ASEs	associated	with	the	
development	of	CRC.
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1  | INTRODUC TION

Colorectal	cancer	(CRC)	is	the	third	most	prevalent	malignant	tumour,	
accounting	for	9%	of	all	cancer-related	fatalities	worldwide	in	men	and	
8%	in	women.1	Aberrant	gene	expression	profiles	play	an	essential	role	
in	the	progression	of	CRC.2	A	series	of	processes	involved	in	post-tran-
scriptional	RNA	processing	can	mediate	gene	expression,	including	re-
moval	of	introns	through	alternative	RNA	splicing,	as	well	as	5′-cap	and	
3′-end	formation.3	RNA	processing,	a	determinant	factor	 in	translat-
ing	genotype	to	phenotype,	is	pivotal	for	the	DNA	damage	response,	
cancer	development	and	chemo-resistance.4-7 Given that dysregulated 
expression	of	RNA	processing	genes	may	contribute	to	abnormalities	
in	RNA	expression	profiles	in	CRC	patients,	systematic	examination	of	
the	roles	that	RNA	processing	factors	play	in	CRC	is	warranted.

RNA processing factors function in intron removal and regulate al-
ternative	splicing	events	(ASEs)	of	eukaryotic	genes.	Aberrant	selective	
RNA	processing,	especially	alternative	splicing	(AS),	facilitates	cancer	
development	and	progression	via	alterations	in	protein	structure,	non-
sense-mediated	mRNA	decay,	DNA	repair	defects	and	genome	insta-
bility.8,9	In	CRC,	several	RNA	processing	factors,	including	HNRNPLL,	
SRSF1,	SRSF3 and SRSF6,	have	been	shown	to	actively	participate	in	tu-
mour	progression	and	have	demonstrated	prognostic	value,	indicating	
that	genetic	alterations	affecting	RNA	splicing	are	associated	with	CRC	
pathogenesis.10-13	Recently,	Xiong	et	al	analysed	seven	kinds	of	ASEs	
in	CRC	and	linked	a	selection	of	ASEs	to	patient	clinical	outcomes.14 
However,	to	date,	the	prognostic	significance	of	RNA	processing	genes	
serving as regulators of ASEs has not been clearly elucidated.

In	 this	 study,	 we	 systematically	 investigated	 the	 capability	 of	
RNA	 processing	 gene	 expression	 profiling	 for	 the	 prediction	 of	
overall	 survival	 in	 a	 total	of	1060	CRC	patients.	RNA-sequencing	
data	 from	The	Cancer	Genome	Atlas	 (TCGA)	and	microarray	data	
from	the	Gene	Expression	Omnibus	 (GEO)	database	were	utilized	
for	the	construction	and	validation	of	the	RNA	processing-related	
signature.	The	association	between	this	signature	and	both	AS	pro-
files	and	clinicopathological	variables	of	CRC	patients	were	further	
analysed.	Eventually,	ingenuity	pathway	analysis	(IPA)	and	gene	set	
enrichment	analysis	(GSEA)	identified	that	a	higher-risk	score	in	the	
RNA	processing-related	signature	was	 involved	 in	several	aspects	
of	tumour	progression	in	CRC	patients,	including	RNA	damage	and	
repair,	 cell	 death	 and	 cell	 cycle	 regulation.	 These	 results	 provide	
novel	insights	into	CRC	progression	and	RNA	processing.

2  | MATERIAL S AND METHODS

2.1 | Study population

Molecular	data	from	patients	diagnosed	with	colorectal	cancer	were	
retrieved	 from	 TCGA.	 Transcriptome	 HTSeq-count	 data	 from	 the	
TCGA-COAD	(colon	adenocarcinoma)	and	TCGA-READ	(rectum	ad-
enocarcinoma)	projects	were	downloaded	from	the	Genomic	Data	
Commons	using	R	package	“TCGAbiolinks”,15	including	591	fresh-fro-
zen	samples	with	primary	malignancies.	Somatic	mutation	data	and	

patient	 survival	 information	 were	 downloaded	 from	 PanCanAtlas	
and	were	filtered	for	COAD	and	READ	tumour	types.	Of	these	TCGA	
tumour	samples,	43	samples	whose	overall	 survival	 (OS)	 time	was	
less	than	three	months	were	excluded	to	enhance	the	robustness	of	
downstream analyses; corresponding clinicopathological information 
of	the	remaining	548	samples	was	retrieved	from	cBioPortal	(http://
www.cbiop	ortal.org/datasets).	Another	three	 independent	cohorts	
downloaded	from	the	GEO,	including	GSE17536,16	GSE1753817 and 
GSE38832,18	comprising	a	total	of	512	CRCs	with	known	gene	ex-
pression	matrix	 and	 corresponding	 clinicopathological	 information	
were	utilized	 to	confirm	 the	performance	of	 the	prognostic	 signa-
ture.	Of	these	external	validation	cohorts,	gene	expression	matrices	
were	profiled	using	the	Affymetrix	Human	Genome	U133	Plus	2.0	
Array;	the	same	exclusion	criteria	of	OS	were	followed.

2.2 | Data pre-processing for gene 
expression profiles

For	 raw	 data	 from	 high-throughput	 sequencing,	 Ensembl	 IDs	 for	
mRNAs	 were	 transformed	 to	 gene	 symbols	 with	 GENCODE27.	
The	 number	 of	 fragments	 per	 kilobase	 of	 non-overlapped	 exon	
per	 million	 fragments	 mapped	 (FPKM)	 was	 computed	 first	 and	
transformed	 into	 transcripts	 per	 kilobase	 million	 (TPM)	 values,	
which showed greater similarity to those generating from microar-
ray analysis and were more comparable between samples.19	 The	
mRNAs	with	TPM	values	less	than	1	in	over	90%	of	samples	were	
considered	to	be	noise	and	removed.	For	microarray	data	retrieved	
from	 the	 GEO	 database,	 we	 performed	 RMA	 normalization	 and	
processing using default settings for background correction and 
normalization	with	the	R	package	“affy”.20	Affymetrix	probe	ID	was	
annotated	to	gene	symbols	according	to	the	GPL570	platform.	For	
multiple	probes	 that	mapped	 to	one	gene,	 the	mean	value	of	ex-
pression was considered.

2.3 | Collection of RNA processing genes

We	collected	a	total	of	929	genes	that	participated	in	any	procedure	
engaged in the conversion of at least one primary RNA transcript 
into	at	 least	one	mature	RNA	molecule	by	searching	GO:0006396	
term in the AmiGO online database (http://amigo.geneo ntolo gy.org/
amigo).	We	ultimately	collated	a	total	of	774	genes	shared	 in	both	
the	TCGA	and	GEO	data	sets	with	sufficiently	reliable	expression	for	
further analyses.

2.4 | Identification of the prognostic signature

Univariate	Cox	regression	analysis	was	performed	on	the	expression	
matrix	of	RNA	processing	genes	(RPGs)	to	first	determine	genes	that	
were	associated	with	prognosis	of	CRC	patients	 in	 the	TCGA	data	
set with a relatively loose threshold of P	<	.1.	To	enhance	robustness	

http://www.cbioportal.org/datasets
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http://amigo.geneontology.org/amigo
http://amigo.geneontology.org/amigo
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of	 the	 risk	 signature,	 the	TCGA	 cohort	 of	 548	 samples	was	 rand-
omized	into	two	subsets	based	on	5-fold	sampling;	the	training	set	
included	4-fold	CRC	samples,	and	the	 internal	 testing	set	 included	
the	 rest.	 Least	absolute	 shrinkage	and	selection	operator	 (LASSO)	
penalty	was	applied	to	multivariate	Cox	regression	analyses	to	build	
an	optimal	prognostic	signature	with	the	minimum	number	of	RPGs.	
Ten-fold	cross	validation	was	conducted	to	tune	the	optimal	value	of	
the penalty parameter λ,	which	gives	the	minimum	partial	likelihood	
deviance.	Finally,	a	set	of	RPGs	(ie	the	prognostic	signature)	and	their	
non-zero	coefficients	were	identified	and	used	to	build	an	RPG	index	
(RPGI).	An	RPGI	risk	score	was	calculated	for	each	sample	via	a	linear	
combination	of	the	selected	features,	weighted	by	the	correspond-
ing coefficients based on the following formula:

where Ci	 is	 the	 coefficient,	Ei	 is	 the	 normalized	 expression	 value	 of	
each selected gene by log2 and z-score	 transformations,	 and	 RRPGI 
represents	 the	 risk	 score	 for	RPGI.	Patients	were	dichotomized	 into	
high-risk	(HRisk)	and	low-risk	(LRisk)	groups	using	the	cohort-specific	
median	RPGI	risk	score	as	the	cut-off	for	each	data	set.

2.5 | Bioinformatics analyses

Gene	Ontology	(GO)	and	Kyoto	Encyclopedia	of	Genes	and	Genomes	
(KEGG)	analyses	were	utilized	for	gene	set	annotation,	and	GSEA	was	
further	used	to	investigate	the	functional	enrichment	of	risk	score-
associated	genes	using	the	R	package	“clusterProfiler”.21 Differential 
expression	analysis	based	on	TPM	values	was	conducted	by	the	two-
sample	Mann-Whitney	U	test.	The	Benjamini-Hochberg	method	was	
used to adjust nominal P	values	(false	discovery	rate,	FDR)	for	multi-
ple	testing.	We	divided	the	mean	expression	of	the	treatment	group	
(ie	HRisk	group)	by	the	control	group	(ie	LRisk	group)	to	obtain	the	
fold	change	value.	Differentially	expressed	genes	between	the	two	
groups	were	uploaded	into	IPA	software	(Qiagen)	for	core	analysis,	
which	described	possible	disease	and	bio-functions	enriched	in	the	
data	 set.	 The	 biological	 significance	 of	 the	 IPA	was	 defined	 as	 an	
absolute value of z-score	>	2.	The	presence	of	 infiltrating	 stromal	
cells	in	tumour	was	estimated	with	the	R	package	“ESTIMATE”.22	The	
population	abundance	of	tissue-infiltrating	immune	and	stromal	cell	
populations	 was	 estimated	 with	 the	 R	 package	 “MCPcounter”	 per	
sample	in	the	TCGA	cohort.23	The	mutation	landscape	was	analysed	
with	the	R	package	“maftools”	following	initial	removal	of	100	FLAGS	
genes,24,25 and differentially mutated genes were identified by using 
the	mafCompare()	 function	where	 genes	mutated	 in	 greater	 than	
5%	of	CRC	samples	in	the	TCGA	cohort	were	considered.	Individual	
consensus	molecular	subtype	(CMS)	was	predicted	with	the	R	pack-
age	 “CMScaller”	with	an	FDR	 threshold	of	0.05	by	default.26 Eight 
signal transduction pathways related to colorectal carcinogenesis 
were	analysed	based	on	the	published	literature,27 and we referred 
to a previous report to establish a signature of these eight oncogenic 

pathways.28	We	then	used	the	single	sample	GSEA	(ssGSEA)	method	
on these gene sets to generate enrichment scores for each path-
way	per	sample	for	the	TCGA	cohort	by	using	the	R	package	“GSVA.”	
Subsequently,	we	compared	the	ssGSEA	score	of	each	pathway	be-
tween the two risk groups.

2.6 | Construction of regulatory network between 
RNA processing genes and ASEs

We	retrieved	RNA	splicing	data	from	an	online	archive	(http://bioin	
forma	tics.mdand	erson.org/TCGAS	pliceSeq).	The	percent	spliced	in	
(PSI)	value,	which	represents	the	ratio	of	included	transcript	reads	in	
the	total	transcript	reads,	was	used	to	quantify	the	ASEs.29	To	gener-
ate	as	strongly	reliable	a	set	of	ASEs	as	possible,	we	implemented	a	
series	of	stringent	filters	(percentage	of	samples	with	PSI	value	≥	75	
and	average	of	PSI	value	≥	0.05).	RPGs	with	significant	changes	 in	
expression	 levels	were	used	to	 investigate	potential	association	of	
the	 differential	 PSI	 levels	 of	 ASEs	 between	 CRCs	 with	 lower-risk	
(first	quartile)	and	higher-risk	(fourth	quartile)	scores.	In	this	context,	
we	measured	the	Pearson	correlation	coefficient	for	each	RPG–ASE	
pair; those pairs with absolute correlation coefficients greater than 
0.5	and	an	FDR	less	than	0.05	were	considered	significantly	corre-
lated.	 The	 potential	 regulatory	 network	was	 constructed	 via	 each	
significantly	correlated	pair	and	visualized	via	Cytoscape.30

2.7 | Development and verification of a composite 
Processing-Clinical prognostic index

Based	 on	 the	 results	 derived	 from	multivariate	 analyses,	we	 inte-
grated	age	(continuous	value),	tumour	stage	(divided	into	early	stage	
[I	+	II]	and	advanced	stage	[III	+	IV];	binary	value),	and	RPGI	risk	score	
to	generate	a	composite	Processing-Clinical	prognostic	index	(PCPI)	
by	applying	a	Cox	proportional	hazard	regression	model	to	the	TCGA	
cohort;	 corresponding	coefficients	derived	 from	 the	TCGA	cohort	
were then applied to GEO validation sets for further validation. 
The	prognostic	value	of	the	PCPI	score	was	compared	with	that	of	
the	 RGPI	 in	 continuous	 form	 according	 to	 the	 concordance	 index	
(C-index)	and	given	by	the	restricted	mean	survival	 (RMS)	curve.31 
The	RMS	represents	the	life	expectancy	at	120	months	(10	years)	for	
patients	with	different	risk	scores.	The	performance	of	risk	groups	
determined	 by	 the	 RGPI	 risk	 score	 was	 assessed	 with	 reference	
to	the	RMS	time	ratio	between	the	HRisk	and	LRisk	groups.32	The	
higher	the	RMS	value,	the	greater	the	prognostic	difference.

2.8 | Immunohistochemical analysis

Protein	 expression	 data	 were	 obtained	 from	 the	 Human	 Protein	
Atlas	 (HPA)	 (www.prote	inatl	as.org).	 These	 immunohistochemical	
staining	images	were	used	to	determine	protein	expression	of	the	22	
selected	genes	in	both	normal	and	CRC	tissues.

RRPGI=

n
∑

i=1

Ci×Ei

http://bioinformatics.mdanderson.org/TCGASpliceSeq
http://bioinformatics.mdanderson.org/TCGASpliceSeq
http://www.proteinatlas.org
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2.9 | Statistical analyses

All	 statistical	 analyses	 were	 conducted	 by	 R3.6.2	 using	 Mann-
Whitney	testing	for	continuous	data	and	Fisher's	exact	 testing	for	
categorical	data.	Correlation	between	two	continuous	variables	was	
measured	via	Pearson's	correlation	coefficient.	Kaplan-Meier	curves	
were	generated	for	survival	rates	of	patients,	with	difference	detec-
tion	based	on	log-rank	testing.	A	Cox	proportional	hazard	regression	
model	was	used	to	calculate	the	hazard	ratios	(HRs)	and	95%	confi-
dence	intervals	(CI)	regarding	OS.	The	C-index	was	calculated	with	
“survcomp”	 and	 compared	with	 the	 “compareC”	 R	 packages.33	 The	
RMS	curve	and	RMS	time	ratio	were	estimated	with	 the	 “survival”	
and	“survRM2”	R	packages.	For	all	statistical	analyses,	a	two-tailed	P 
value less than .05 was considered statistically significant.

3  | RESULTS

3.1 | Overview of study design

A	total	of	1060	patients	diagnosed	with	CRC	from	four	 independ-
ent data sets were ultimately included in this study; demographic 
and clinical characteristic descriptions of the different data sets are 
summarized	in	Table	1.	The	entire	workflow	of	this	study,	including	
the	filtration	of	RPGs,	development	and	validation	of	a	prognostic	
signature (ie	RPGI),	the	analyses	of	RPGI-associated	alteration	of	the	

ASEs	and	RNA	expression	profiles,	and	the	construction	of	a	com-
posite	Processing-Clinical	prognostic	index	(ie	PCPI),	are	delineated	
in	Figure	1.	A	schematic	view	of	RNA	processing	gene	selection	and	
prognostic	signature	development	is	depicted	in	Figure	S1.

3.2 | Prognostic value of RPGs and their biological 
function in CRCs

We	 evaluated	 the	 prognostic	 effect	 of	 the	 774	 RPGs	 and	 identi-
fied	 127	 genes	 that	 were	 associated	 with	 CRC	 patient	 OS	 (Table	
S1).	Among	 these,	70	RPGs	were	 risk-associated	because	 the	 cor-
responding	HRs	were	greater	than	1,	while	the	remaining	57	genes	
were	considered	protection-associated.	Since	these	RPGs	represent	
a grouping of genes that participate in any step involved with the 
conversion of at least one primary RNA transcript into at least one 
mature	 RNA	molecule,	we	 used	GO	 analysis	 to	 identify	 the	more	
explicit	biological	processes	that	these	prognosis-related	RPGs	are	
enriched	in.	We	found	that	they	were	relevant	to	such	key	biologi-
cal	functions	as	RNA	splicing,	RNA	3’-end	processing,	regulation	of	
RNA	splicing	and	regulation	of	mRNA	metabolic	process,	among	oth-
ers	(all	FDR	<	0.001;	Figure	2A).	We	further	used	KEGG	analysis	for	
annotation,	and	the	results	indicated	that	pathways	involved	in	the	
spliceosome,	mRNA	surveillance	pathway,	RNA	transport	and	ami-
noacyl-tRNA	biosynthesis	were	closely	associated	with	these	RPGs	
(all	FDR	<	0.05;	Figure	2A).

TA B L E  1   Demographic and clinic characteristic descriptions for colorectal cancer patients in different data sets

Characteristicsa  TCGA cohort Validation set 1 Validation set 2
Validation 
set 3

Number of samples 548 172 225 115

Median	survival	time	(month)	(95%	
CI)b 

83.0	(65.7-NA) 134.9	(65.9-NA) 134.9	(68.8-NA) NA

Number	of	death	(%) 109	(19.9) 69	(40.1) 87	(38.7) 24	(20.9)

Age	(years)c  66.0 ± 12.5 65.6 ± 13.2 64.6 ± 13.4 —

Gender

Female 246	(44.9) 79	(45.9) 107	(47.6) —

Male 302	(55.1) 93	(54.1) 118	(52.4) —

Tumour	stage

I 91	(16.6) 24	(14.0) 28	(12.4) 18	(15.7)

II 203	(37.0) 57	(33.1) 71	(31.6) 34	(29.6)

III 162	(29.6) 56	(32.6) 75	(33.3) 38	(33.0)

IV 73	(13.3) 35	(20.3) 51	(22.7) 25	(21.7)

CMS	(Predicted)

CMS1 85	(15.5) 29	(16.9) 37	(16.4) 21	(18.3)

CMS2 154	(28.1) 48	(27.9) 44	(19.6) 29	(25.2)

CMS3 84	(15.3) 24	(14.0) 32	(14.2) 19	(16.5)

CMS4 160	(29.2) 49	(28.5) 65	(28.9) 33	(28.7)

aSum	of	frequency	numbers	may	not	equal	to	the	total	sample	size	due	to	missing	or	unpredictable	values.	
bMedian	survival	time	is	incalculable	because	the	mortality	at	the	last	follow-up	time	is	less	than	50%.	
cAge is represented as mean ± standard deviation. 
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3.3 | Feature selection and prognostic 
signature building

To	 readily	 and	 efficiently	 categorize	 clinical	 outcomes	 of	CRC	pa-
tients	via	RPGs,	we	applied	a	LASSO	penalty	with	multivariate	Cox	
regression	analysis	to	the	TCGA	training	set	and	identified	22	fea-
tures	with	 non-zero	 coefficients	 (Figure	 2B,	 Figure	 S2A,B).	 These	
LASSO-selected	features	were	used	to	build	a	prognostic	signature,	
the	 RPG	 index	 (RPGI),	 and	 corresponding	 RPGI	 risk	 scores	 were	
computed	for	all	data	sets.	All	1060	CRC	samples	were	further	di-
chotomized	 into	 high-risk	 (HRisk)	 and	 low-risk	 (LRisk)	 groups,	 and	
each	sample	was	predicted	to	be	one	of	the	four	CMS	(Figure	S3A-
D).	 Interestingly,	 the	 HRisk	 group	 of	 the	 TCGA	 cohort	 had	 more	

tumour protein 53 (TP53)	mutations	(P	=	.024),	and	CMS4	especially	
(P	<	.001;	Figure	S4A).	We	then	pooled	all	1060	CRCs	samples	to-
gether	and	found	that	almost	all	22	LASSO-selected	features	were	
significantly	 differentially	 expressed	 between	 the	 two	 risk	 groups	
(Figure	S4B-C).	Moreover,	advanced	tumour	stage	 (ie	stage	 III	and	
stage	IV)	was	enriched	in	the	HRisk	group	(57.4%	vs	41.5%,	P < .001; 
Figure	 2C,	 Figure	 S5A).	We	 further	 verified	 that	 CMS4,	 featuring	
stromal	activation,34 was dramatically enriched in the HRisk group 
(46.8%	vs	20.3%,	P	<	.001;	Figure	2C,	Figure	S5B),	which	was	con-
sistent with the higher enrichment identified in a previously reported 
stromal score22 (P	<	.001;	Figure	S5C).

In	all	data	sets,	we	found	that	the	LRisk	group	had	a	significantly	
more	 favourable	 prognosis	 than	 the	 HRisk	 regarding	 OS	 (TCGA	

F I G U R E  1  Flow	chart	of	the	study	design.	Using	774	RNA	processing	genes	derived	from	Gene	Ontology	(GO:	0006396),	we	constructed	
a	22-gene	risk	signature	in	the	TCGA	cohort	that	was	subsequently	validated	in	three	external	validation	cohorts	from	GEO.	Furthermore,	
we	identified	differential	splicing	events	and	underlying	splicing	networks	between	first	and	fourth	quartiles	of	risk	score.	Moreover,	
pathway	annotation	by	GSEA	and	IPA	provided	functional	consequences	associated	with	the	RNA	processing	signature.	Clinical	prognostic	
value	of	this	signature	was	highlighted	by	C-index	and	the	restricted	mean	survival	(RMS)	curve
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training set: P	<	.001,	HR	=	0.22,	95%	CI:	0.13-0.38;	TCGA	testing	
set: P	=	.018,	HR	=	0.38,	95%	CI:	0.16-0.88;	validation	set	1:	P	=	.002,	
HR	=	0.47,	95%	CI:	0.29-0.77;	validation	set	2:	P	=	.004,	HR	=	0.53,	
95%	CI:	 0.35-0.82;	 validation	 set	3:	P	 =	 .034,	HR	=	0.38,	 95%	CI:	
0.15-0.96;	Figure	2D-h).	RMS	time	ratios	ranging	from	0.62	to	0.84	
were	 observed	 in	 the	 four	 data	 sets	 (TCGA:	 P < .001; Validation 
set 1: P = .008; Validation set 2: P = .015; Validation set 3: P	=	.075;	
Table	2).	To	further	 investigate	the	prognostic	performance	of	 the	
RPGI	risk	score	with	adjustment	for	major	clinical	variables,	includ-
ing	tumour	stage	and	patient	age	(an	exception	for	validation	3	due	
to	a	lack	of	age	records),	we	performed	multivariate	Cox	regression	
analysis	and	found	that	RPGI	risk	score	was	a	significant	 indepen-
dent	prognostic	factor	for	CRC	patients	(Table	3).

We	 further	 performed	 immunohistochemical	 analysis	 of	 the	 22	
identified	genes	 in	The	Human	Protein	Atlas,	 and	we	 found	 that	 the	
protein	products	of	the	risk-associated	genes	showed	higher	expression	
levels	 in	CRC	samples	compared	with	adjacent	normal	tissues	(Figure	

S6A).	In	contrast,	protein	expression	of	the	protection-associated	genes	
showed	the	opposite	trend	(Figure	S6B).	These	results	may	support	the	
functional	relevance	of	the	identified	22	RPGs	in	CRC	patients.

3.4 | Correlation of RPGI risk score with 
immunity and oncogenic pathways

We	 used	 the	 MCPcounter	 algorithm	 to	 compare	 tumour	 immune	
microenvironments	(TIMEs)	between	the	HRisk	group	and	the	LRisk	
group	(Figure	S7A).	We	found	significant	elevations	in	the	proportion	
of endothelial cells and fibroblasts in the HRisk group (both P	<	.01),	
whereas	 the	 proportions	 of	CD8	+	T	 cells	 and	NK	 cells	were	 com-
parable	 between	 the	 two	 groups	 (Figure	 S7B).	We	 then	 estimated	
the	enrichment	score	of	eight	oncogenic	pathways	(Figure	S7C).	We	
found that HIPPO,	NOTCH,	TGF-β,	RTK/RAS and Wnt pathways were 
significantly enriched in the HRisk group (all P	<	.01),	while	the	TP53 

F I G U R E  2  Prognosis-associated	RPG	expression	profiles	in	CRCs.	A,	Dot-plot	showing	the	pathway	enrichment	of	127	overall	survival-
related	RPGs	by	GO	and	KEGG	analyses.	B,	Multivariate	Cox	regression	analysis	with	LASSO	penalty	identified	22	prognosis-associated	RPGs,	
which	were	used	to	construct	an	RNA	processing	gene	index	(RPGI).	Yellow	items	indicate	risk-associated	genes;	blue	items	indicate	protection-
associated	genes.	Corresponding	coefficients	from	multivariate	Cox	regression	using	LASSO	and	HRs	are	depicted	by	horizontal	bars	and	dots,	
respectively.	C,	Heatmap	showing	the	expression	patterns	of	22	prognosis-associated	RPGs	for	the	entire	1060	CRC	sample	set	sorted	by	RPGI	
risk	score	in	ascending	order.	Top	panel,	risk-associated	genes;	bottom	panel,	protection-associated	genes.	Individual	stromal	score,	predicted	
CMS,	TNM	stage	and	RPGI	risk	score	are	also	annotated	above	the	heatmap.	Kaplan-Meier	overall	survival	curves	with	difference	detection	of	
log-rank	testing	for	patients	from	the	TCGA	training	set,	TCGA	internal	testing	set,	and	three	external	validation	sets	are	portrayed	in	(D)-(H),	
respectively.	Patients	were	divided	into	different	risk	groups	based	on	a	cohort-specific	median	cut-off	value	of	RPGI	risk	score
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pathway was significantly downregulated in the HRisk group (P	<	.01),	
although	this	might	be	due	to	the	frequent	mutations	in	TP53	in	this	
group.	These	 results	 indicated	an	activation	of	stromal	components	
in	TIME	of	high-risk	patients	together	with	activated	oncogenic	path-
ways	based	on	 the	proposed	signatures,	which	 likely	contributed	at	
least partially to the poorer prognosis in these patients.

3.5 | Functional enrichment of genes that were 
associated with RPGI risk score

Given	 that	 RPGs	 are	 the	 primary	 elements	 manipulating	 the	 life	
cycle	 of	 RNAs	 in	 eukaryotes,	 we	 subsequently	 assessed	 how	 the	
RPGI	 could	 mediate	 RNA	 expression	 profiles.	 In	 this	 context,	 we	
correlated	 the	RPGI	 risk	 score	with	all	 robustly	expressed	mRNAs	
and	generated	a	pre-ranked	list	sorted	by	Pearson	correlation	coef-
ficient.	We	 then	performed	GSEA	and	 found	 that	RPGI	 risk	 score	
was	closely	associated	with	dysregulation	of	 the	cell	cycle,	wound	
healing,	 angiogenesis	 and	 protein	 serine/threonine	 kinase	 activity	
based	on	GO	terms	(all	FDR	<	0.01;	Figure	3A).	GSEA	of	KEGG	also	
revealed	 dysregulation	 of	 the	 extracellular	 matrix	 (ECM)-receptor	
interaction,	MAPK and p53	 signalling	 pathways,	 spliceosomes	 and	
RNA	transport	 (all	FDR	<	0.01;	Figure	3B).	 IPA	 indicated	 that	sev-
eral	biological	functions	were	significantly	associated	with	RPGI	risk	
score,	 including	RNA	damage	and	 repair,	 cell	 cycle,	 cell	 death	 and	
RNA trafficking (all P	<	.001;	Table	4).

3.6 | Association between RPGI risk score and ASEs

RNA	splicing	activities	are	dominated	by	RPGs,	and	we	have	dem-
onstrated	 that	 prognosis-associated	 RPGs	 are	 closely	 correlated	
with	RNA	splicing-related	activities.	Therefore,	we	comprehensively	
characterized	ASEs	in	CRCs	with	different	RPGI	risk	scores.	A	large	
number	of	ASEs	within	seven	categories,	including	alternate	accep-
tor	site	(AA),	alternate	donor	site	(AD),	alternate	promoter	(AP),	alter-
nate	terminator	(AT),	exon	skip	(ES),	mutually	exclusive	exons	(ME)	
and	retained	intron	(RI),	were	identified	per	CRC	sample;	the	propor-
tion	of	these	ASE	categories	in	CRCs	varied	dramatically,	from	0.3%	

to	45.8%	(Figure	3C).	Although	the	proportional	pattern	of	each	ASE	
type	was	 similarly	 shared	 for	 all	CRCs,	 the	amount	of	each	of	 the	
ASEs	showed	significant	positive	correlation	with	the	RPGI	(ρ	=	0.22,	
P	 <	 .001	 by	 Spearman's	 correlation	 analysis;	 Figure	 3C),	 and	 the	
amount	 of	 detected	ASEs	was	 significantly	 higher	 in	CRCs	with	 a	
higher-risk	(fourth	quartile,	n	=	137)	score	compared	to	those	with	a	
lower-risk	(fourth	quartile,	n	=	137)	score	(P	<	.001,	Figure	3D).

We	 further	 identified	 differentially	 expressed	 RPGs	 (abso-
lute	 fold	 change	 >	 1.5	 and	 FDR	 <	 0.05;	 Table	 S2)	 and	 ASEs	with	
significantly	 different	 PSI	 levels	 (absolute	 fold	 change	 >	 1.5	 and	
FDR	<	0.05;	Table	S3)	in	CRCs	with	lower	and	higher	RPGIs.	In	total,	
701	ASEs	for	623	genes	with	increased	PSI	in	higher-risk	CRCs	were	
identified,	compared	to	only	42	ASEs	for	39	genes	with	decreased	
PSI	(Figure	4A).	We	found	that	genes	involved	in	the	RAS	oncogene	
family (eg RAB15 and RAB23),	 various	 splicing	 factors	 (eg DUSP11,	
HNRNPLL,	HNRNPC),	 aberrant	RNA	 splicing	 in	CRC	 (eg CD44)	 and	
receptor tyrosine kinase signalling (eg FGFR1)	 were	 differentially	
spliced	 among	CRCs	with	 lower	 and	 higher	 RPGIs	 (Figure	 4B).	 To	
further	examine	the	role(s)	of	alternative	splicing	 in	CRCs,	we	per-
formed	GO	analysis	 for	 all	 differential	 spliced	genes	 in	CRCs	with	
lower-	and	higher-risk	scores.	Generally,	genes	that	had	differential	
PSI	 levels	 were	 principally	 related	 to	 protein-containing	 complex	
localization,	RNA	splicing,	nucleocytoplasmic	transport	for	biologi-
cal	process,	mitochondrial	matrix,	cell	division	site,	actomyosin	 for	
cellular component and cadherin binding for molecular function (all 
FDR	<	0.05;	Figure	4C).	For	these	ASEs	with	markedly	different	PSIs,	
we	found	that	the	frequency	of	all	ASE	types	(except	for	ME,	which	
has	the	lowest	proportion)	was	significantly	altered	(P	<	.001	for	AP,	
AT,	AD	and	ES;	P	<	.05	for	AA	and	RI;	Figure	S8)	compared	to	back-
ground	ASEs,	which	suggested	that	the	presence	of	altered	ASEs	is	
relevant	for	the	prognosis	of	CRC	patients.

Subsequently,	 we	 examined	 potential	 regulatory	 networks	 in-
volved	among	the	significantly	altered	36	RPGs	and	743	ASEs,	and	
constructed a network with 453 pairwise correlations that ultimately 
involved	25	differential	RPGs	and	164	associated	differential	ASEs	
(Figure	5A,	Table	S4).	The	25	RPGs	regulated	different	numbers	of	
ASEs,	which	ranged	from	5	to	39	for	12	overexpressed	RPGs	com-
pared	to	1	 to	28	for	13	under-expressed	RPGs.	For	RPGs	with	 in-
creased	expression,	we	found	that	PABPC1L regulated a substantial 

Data set NHRisk NLRisk

RMSHRisk (95% 
CI)a 

RMSLRisk 
(95% CI)a 

RMS ratio 
(95% CI)b  P

TCGA	cohort 274 274 66.60 
(55.07-78.12)

107.22	
(95.86-
118.58)

0.62 
(0.51-0.76)

<.001

Validation set 1 86 86 73.58	
(61.08-86.09)

97.81	(86.90-
109.72)

0.75	
(0.61-0.93)

.008

Validation set 2 113 112 78.02	
(66.98-89.07)

97.31	(86.74-
107.88)

0.80 
(0.67-0.96)

.015

Validation set 3 58 57 76.27	
(65.01-87.53)

90.71	(79.79-
101.63)

0.84 
(0.70-1.02)

.075

aRMS	time:	months.	
bRMS	ratio	=	RMSHRisk/RMSLRisk. 

TA B L E  2   Restricted mean survival 
(RMS)	time	ratio	between	two	risk	groups	
in different data sets
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number	of	ASEs,	especially	for	RI,	and	CSDC2 and QKI were highly 
correlated	 with	 ES;	 in	 contrast,	 AHNAK2 regulated fewer ASEs. 
Among	 RPGs	 with	 decreased	 expression	 in	 CRCs,	 LSM3,	MRPL1,	
THOC7,	TRMT10C,	C1QBP,	RPF1 and TFB2M regulated a markedly 
greater	number	of	ASEs—especially	for	AT—whereas	only	a	few	ASEs	
were regulated by PPIH and SLBP	(Figure	5B).

3.7 | Combining RPGI with clinical characteristics

In	addition	to	RPGI	risk	score,	we	also	affirmed	that	clinical	charac-
teristics (ie	age	and	tumour	stage)	served	as	independent	prognostic	
factors,	which	 could	have	 complementary	 values	 (Table	3).	 To	 fur-
ther	improve	the	prognostic	accuracy,	we	combined	RPGI	risk	scores	

TA B L E  3  Multivariate	Cox	proportional	hazard	regression	in	TCGA	cohort	and	three	GEO	validation	data	sets

Data set

RPGI risk score Tumour stage Age

HR
(95% CI) P

HR
(95% CI) P

HR
(95% CI) P

TCGA	cohort 4.21	(2.74-6.47) <.001 2.93	(1.89-4.52) <.001 1.03	(1.02-1.05) <.001

Validation set 1 1.84	(1.20-2.81) .004 4.10	(2.29-7.34) <.001 1.02	(1.00-1.04) .051

Validation set 2 2.06	(1.30-3.24) .002 3.88	(2.29-6.57) <.001 1.02	(1.00-1.04) .028

Validation set 3 3.28	(1.41-7.60) .006 NAa  NAa  —b  —b 

aAll	patients	with	advanced	tumour	stage	(III	+	IV)	died	at	the	end	of	follow-up.	
bNo record. 

F I G U R E  3  Risk	score-related	functional	pathways	and	alternative	splicing	profile	analysis	in	CRCs	with	lower-	(first	quartile)	or	higher-
risk	(fourth	quartile)	scores.	A,	GSEA	of	GO	for	risk	scores	based	on	pre-ranked	Pearson's	correlation	coefficients	of	risk	score-associated	
mRNAs.	B,	GESA	of	KEGG	analysis	for	risk	scores	based	on	pre-ranked	Pearson's	correlation	coefficients	of	risk	score-associated	mRNAs.	
C,	Proportions	of	alternative	spliced	events	(ASEs)	in	548	TCGA	CRC	samples	sorted	by	increased	risk	score.	Bars	indicate	the	proportion	of	
each	ASE	type.	Dark	blue	dots	indicate	the	number	of	ASEs	in	each	sample.	The	risk	scores	in	ascending	order	are	shown	at	the	top	panel.	D,	
The	absolute	numbers	of	all	ASEs	were	compared	in	CRCs	with	lower-	or	higher-risk	(both,	n	=	137)	scores
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with these major clinical variables using the coefficients generated 
from	multivariate	Cox	 regression	 analysis	 in	 the	TCGA	cohort	 and	
derived	a	PCPI	as	follows:	PCPI	=	1.44	×	RPGI	+	1.07	×	stage	+	0.03	
×	age;	such	an	integrated	model	of	PCPI	was	further	applied	to	the	
TCGA	cohort	and	validated	in	validation	sets	1	and	2	where	full	clini-
cal information was available. Significant improvement in estimation 
of	survival	was	achieved	with	the	continuous	form	of	PCPI	relative	
to	RPGI	(C-index:	0.78	vs	0.72	in	the	TCGA	cohort,	P	<	.001;	C-index:	
0.71	vs	0.62	 in	validation	 set	1,	P	<	 .001;	C-index:	0.71	vs	0.62	 in	
validation	set	2,	P	<	.001;	Figure	6A-C).

4  | DISCUSSION

In	this	study,	we	linked	genomic	expression	patterns	of	RPGs	with	
patient	clinical	outcomes,	the	alternative	mRNA	splicing	landscape,	
molecular	characteristics	and	pathway	enrichment	in	CRC.	We	fur-
ther constructed a prognostic signature for risk stratification and 
identified	 underlying	 biological	 functions	 associated	 with	 higher-
risk	scores	via	IPA.	The	identified	altered	RPG	expression	pattern,	in	

TA B L E  4  Top	enriched	diseases	and	bio-functions	(IPA)	
associated with risk signature

Disease/bio-functiona  P
Number of 
molecules

RNA	post-transcriptional	
modification

3.47	×	10−286 257

RNA damage and repair 1.17	×	10−24 55

Cancer 3.66	×	10−16 414

Organismal injury and 
abnormalities

2.19	×	10−16 421

Molecular	transport 3.92	×	10−15 36

RNA trafficking 3.92	×	10−15 25

Protein	synthesis 6.49	×	10−12 53

Cell	death	and	survival 1.16	×	10−9 75

Cell	cycle 1.23	×	10−9 65

Cellular	growth	and	proliferation 4.24	×	10−7 48

aDifferentially	expressed	genes	between	high-	and	low-risk	groups,	
as	determined	by	RNA-Seq,	were	uploaded	into	Ingenuity	Pathway	
Analysis software to determine the most enriched biological functions 
underlying the risk signature. 

F I G U R E  4  Differential	RPGs	and	ASEs	in	CRCs	with	lower-	or	higher-risk	scores.	A,	Heatmaps	displaying	the	expression	levels	of	RPGs	
(top	panel,	peach	and	blue	colour	scale)	and	PSI	value	of	ASEs	with	significant	differences	between	lower-	and	higher-risk	scores	(bottom	
panel,	yellow	and	blue	colour	scale).	B,	Representative	ASEs	with	differential	PSI	values	between	CRC	lower-	and	higher-risk	groups.	C,	GO	
functional	annotation	of	spliced	genes	with	differential	PSI	values	between	the	lower-	and	higher-risk	CRC	groups
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combination	with	various	clinical	parameters,	reliably	demonstrated	
accurate	prognostic	predictions	for	CRC	patients.

Increasing numbers of anecdotes have suggested that RNA pro-
cessing,	the	molecular	events	by	which	primary	transcripts	become	
mature	RNA,	plays	 a	 critical	 role	 in	CRC	carcinogenesis.4,13,35	The	
roles	 several	 famous	 splicing	 variants	 play	 in	 tumour	 progression,	

such as CD44,	have	been	well	studied.36,37	In	this	study,	we	observed	
that CD44	 was	 differentially	 spliced	 in	 the	 lower-	 and	 higher-risk	
groups.	Additionally,	 several	 genes	 involved	 in	mRNA	splicing,	 the	
RAS oncogene family and receptor tyrosine kinase signalling also 
showed	 significant	 differential	 PSIs	 between	 the	 first	 and	 fourth	
quartiles	of	the	risk	score.	Interestingly,	several	splicing	factors,	such	

F I G U R E  5  ASE	networks	and	RPGs.	A,	Labelled	circles	in	the	centre	represent	differentially	expressed	RPGs.	Red	ellipses	indicate	
upregulated	RPGs	in	CRCs	with	higher-risk	scores,	whereas	blue	ellipses	indicate	downregulated	RPGs.	Coloured	circles	connected	to	
RPGs	by	red	or	blue	lines	represent	distinct	types	of	differential	ASEs.	The	red	connecting	lines	represent	positive	correlations,	while	blue	
connecting	lines	represent	negative	correlations.	B,	Numbers	of	ASEs	significantly	correlated	with	upregulated	(top	panel)	or	downregulated	
(bottom	panel)	RPGs.	ASE	type	ME	is	absent	due	to	its	failure	to	pass	the	correlation	threshold

F I G U R E  6  RMS	curves	for	RPGI	and	the	integrated	PCPI	scores	are	plotted	for:	A,	the	TCGA	cohort,	B,	validation	set	1	and	C,	validation	
set	2.	Each	point	represents	the	RMS	time	of	corresponding	RPGI	and	PCPI	scores.	The	RMS	curves	show	a	larger	slope	in	all	three	data	
sets	for	PCPI,	indicating	superior	estimation	of	survival	with	PCPI.	C-indexes	for	RPGI	and	PCPI	are	also	provided.	P values represent the 
difference	between	the	two	models	in	terms	of	C-index
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as DUSP11,	HNRNPLL and HNRNPC,	were	differentially	spliced	as	a	
result	of	aberrant	RPG	expression	profiles,	as	revealed	by	high	RPG	
signature scores. Greater numbers of ASEs were identified in the 
high-risk	group,	which	was	consistent	with	a	previous	pan-cancer	re-
port that greater numbers of ASEs were detected in tumour samples 
compared to normal samples.9

Misregulated	 RNA	 expression	 profiles,	 including	 autopha-
gy-related	 gene	 sets,38	 metabolism-associated	 gene	 sets,39 im-
mune	 gene	 sets,40	 hypoxia-associated	 gene	 sets,41 microRNAs42 
and	 long	non-coding	RNAs,43 have all been shown to affect dis-
ease	progression	and	prognosis	in	CRC.	In	this	study,	we	demon-
strated	that	dysregulation	of	RPGs	could	allow	the	stratification	of	
CRC	patients	based	on	different	outcomes.	Moreover,	we	 found	
several	 splicing-	and	 tumour-associated	pathways	were	enriched	
with	 increased	 risk	 scores,	 such	 as	 RNA	damage	 and	 repair,	 cell	
cycle	regulation,	angiogenesis,	spliceosome,	p53 and MAPK signal-
ling	 pathways.	 In	 reality,	 the	MAPK signalling pathway and RNA 
splicing	are	inextricably	linked	with	each	other.	More	specifically,	
the Ras/MAPK pathway was regulated by alternative splicing with 
regard to variants of EGFR,	 BRAF,	 p19- or p21-Ras,	MEK1b and 
ERK1c44; activation of the MAPK	 pathway	 also	 required	 serine/
arginine-rich	 splicing	 factor	 1	 (SRSF1),	 a	 splicing	 factor	 that	 can	
promote	tumorigenesis	in	CRC.45,46

Among	the	22	survival-related	RPGs	in	the	risk	signature,	sev-
eral have previously been reported to have substantial effects on 
tumorigenesis.	The	apoptosis	 repressor	with	caspase	 recruitment	
domain (ARC,	 also	 termed	NOL3)	 can	be	 induced	by	hypoxia	 and	
further	promote	carcinogenesis	by	reducing	apoptosis	in	CRC	cell	
lines.47 Human telomerase reverse transcriptase (TERT)	 expres-
sion has demonstrated prognostic value for predicting recurrence 
in	papillary	thyroid	carcinomas,48 and TERT has been found to be 
overexpressed	in	the	right	colon	compared	to	the	left,49 indicating 
worse	prognosis	in	CRC.	Both	papillary	thyroid	carcinoma	and	right	
colon	 cancer	 are	 characterized	 by	BRAF	 V600E	mutation,	 which	
might	 interact	with	 TERT	 expression	 and	 TERT	mutation	 for	 the	
promotion of tumour invasion.50,51	The	elongator	complex	protein	
6 (ELP6)	gene	encodes	an	elongator	subunit,	which	is	reportedly	ca-
pable of controlling cell migration and melanoma tumorigenesis.52 
PTB-associated	splicing	factor	(PSF),	also	known	as	splicing	factor	
proline-	and	glutamine-rich	(SFPQ),	 is	a	PPARγ-interacting	protein	
involved	in	RNA	processing	and	DNA	repair	process,53 and serves 
as a regulator of apoptosis in colon cancer cell lines.54	 These	 re-
sults indicate that our study protocol may be able to identify novel 
carcinogenesis-associated	RPGs;	future	studies	of	these	prognostic	
RPGs	may	 identify	novel	mechanisms	underlying	RNA	processing	
and	overall	CRC	progression.

Several	strengths	of	this	study	warrant	specific	focus.	First,	we	
analysed	a	large	sample	size	of	1060	CRC	patients	with	either	RNA-
Seq	or	microarray	data,	which	indicates	that	our	analysis	conclusions	
are	likely	highly	reliable,	robust	and	independent	of	specific	expres-
sion	quantitative	platform.	This	also	suggests	the	possibility	of	 fu-
ture	verification	of	the	risk	signature	in	additional	cohorts.	Second,	
we	 used	 restricted	 mean	 survival	 time,	 an	 alternative	 summary	

measure of survival time distributions that does not rely on the 
proportional	hazards	assumption	to	demonstrate	the	clinical	utility	
of	the	RPG	risk	signature,	which	is	robust	and	more	clinically	inter-
pretable.55	 However,	 as	 with	 all	 investigations,	 certain	 limitations	
are	present	as	well.	Both	validation	cohorts	were	derived	from	mi-
croarray	platforms,	and	additional	validation	in	a	prospective	cohort	
using	an	RNA-Seq	platform	is	warranted.	Additionally,	further	exper-
imental	results	regarding	these	prognosis-related	RPGs	are	required	
to	elucidate	 the	mechanisms	underlying	RNA	processing	 and	CRC	
tumorigenesis.

In	summary,	we	identified	the	prognostic	value	of	specific	genes	
associated	with	RNA	processing	in	CRC	and	propose	a	22-RPG	sig-
nature	for	risk	classification	of	CRC	patients.	We	further	identified	
differential	ASEs,	bio-functions,	signalling	pathways,	and	clinical	fea-
tures	underlying	the	RPG	risk	signature.	Combining	data	concerning	
age,	tumour	stage	and	risk	signature	could	further	improve	progno-
sis	prediction	in	CRC	patient	samples.
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