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Abstract
Objectives: Due to the limited evaluation of the prognostic value of RNA processing genes 
(RPGs), which are regulators of alternative splicing events (ASEs) that have been shown 
to be associated with tumour progression, this study sought to determine whether colo-
rectal cancer (CRC) could be further stratified based on the expression pattern of RPGs.
Materials and Methods: The gene expression profiles of CRCs were collected from 
TCGA (training set) and three external validation cohorts, representing 1060 cases 
totally. Cox regression with least absolute shrinkage and selection operator (LASSO) 
penalty was used to develop an RNA processing gene index (RPGI) risk score. Kaplan-
Meier curves, multivariate Cox regression and restricted mean survival (RMS) analy-
ses were harnessed to evaluate the prognostic value of the RPGI.
Results: A 22-gene RPGI signature was developed, and its risk score served as a 
strong independent prognostic factor across all data sets when adjusted for major 
clinical variables. Moreover, ASEs for certain genes, such as FGFR1 and the RAS on-
cogene family, were significantly correlated with RPGI. Expression levels of genes 
involved in splicing- and tumour-associated pathways were significantly correlated 
with RPGI score. Furthermore, a combination of RPGI with age and tumour stage 
resulted in significantly improved prognostic accuracy.
Conclusions: Our findings highlighted the prognostic value of RPGs for risk strati-
fication of CRC patients and provide insights into specific ASEs associated with the 
development of CRC.
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1  | INTRODUC TION

Colorectal cancer (CRC) is the third most prevalent malignant tumour, 
accounting for 9% of all cancer-related fatalities worldwide in men and 
8% in women.1 Aberrant gene expression profiles play an essential role 
in the progression of CRC.2 A series of processes involved in post-tran-
scriptional RNA processing can mediate gene expression, including re-
moval of introns through alternative RNA splicing, as well as 5′-cap and 
3′-end formation.3 RNA processing, a determinant factor in translat-
ing genotype to phenotype, is pivotal for the DNA damage response, 
cancer development and chemo-resistance.4-7 Given that dysregulated 
expression of RNA processing genes may contribute to abnormalities 
in RNA expression profiles in CRC patients, systematic examination of 
the roles that RNA processing factors play in CRC is warranted.

RNA processing factors function in intron removal and regulate al-
ternative splicing events (ASEs) of eukaryotic genes. Aberrant selective 
RNA processing, especially alternative splicing (AS), facilitates cancer 
development and progression via alterations in protein structure, non-
sense-mediated mRNA decay, DNA repair defects and genome insta-
bility.8,9 In CRC, several RNA processing factors, including HNRNPLL, 
SRSF1, SRSF3 and SRSF6, have been shown to actively participate in tu-
mour progression and have demonstrated prognostic value, indicating 
that genetic alterations affecting RNA splicing are associated with CRC 
pathogenesis.10-13 Recently, Xiong et al analysed seven kinds of ASEs 
in CRC and linked a selection of ASEs to patient clinical outcomes.14 
However, to date, the prognostic significance of RNA processing genes 
serving as regulators of ASEs has not been clearly elucidated.

In this study, we systematically investigated the capability of 
RNA processing gene expression profiling for the prediction of 
overall survival in a total of 1060 CRC patients. RNA-sequencing 
data from The Cancer Genome Atlas (TCGA) and microarray data 
from the Gene Expression Omnibus (GEO) database were utilized 
for the construction and validation of the RNA processing-related 
signature. The association between this signature and both AS pro-
files and clinicopathological variables of CRC patients were further 
analysed. Eventually, ingenuity pathway analysis (IPA) and gene set 
enrichment analysis (GSEA) identified that a higher-risk score in the 
RNA processing-related signature was involved in several aspects 
of tumour progression in CRC patients, including RNA damage and 
repair, cell death and cell cycle regulation. These results provide 
novel insights into CRC progression and RNA processing.

2  | MATERIAL S AND METHODS

2.1 | Study population

Molecular data from patients diagnosed with colorectal cancer were 
retrieved from TCGA. Transcriptome HTSeq-count data from the 
TCGA-COAD (colon adenocarcinoma) and TCGA-READ (rectum ad-
enocarcinoma) projects were downloaded from the Genomic Data 
Commons using R package “TCGAbiolinks”,15 including 591 fresh-fro-
zen samples with primary malignancies. Somatic mutation data and 

patient survival information were downloaded from PanCanAtlas 
and were filtered for COAD and READ tumour types. Of these TCGA 
tumour samples, 43 samples whose overall survival (OS) time was 
less than three months were excluded to enhance the robustness of 
downstream analyses; corresponding clinicopathological information 
of the remaining 548 samples was retrieved from cBioPortal (http://
www.cbiop​ortal.org/datasets). Another three independent cohorts 
downloaded from the GEO, including GSE17536,16 GSE1753817 and 
GSE38832,18 comprising a total of 512 CRCs with known gene ex-
pression matrix and corresponding clinicopathological information 
were utilized to confirm the performance of the prognostic signa-
ture. Of these external validation cohorts, gene expression matrices 
were profiled using the Affymetrix Human Genome U133 Plus 2.0 
Array; the same exclusion criteria of OS were followed.

2.2 | Data pre-processing for gene 
expression profiles

For raw data from high-throughput sequencing, Ensembl IDs for 
mRNAs were transformed to gene symbols with GENCODE27. 
The number of fragments per kilobase of non-overlapped exon 
per million fragments mapped (FPKM) was computed first and 
transformed into transcripts per kilobase million (TPM) values, 
which showed greater similarity to those generating from microar-
ray analysis and were more comparable between samples.19 The 
mRNAs with TPM values less than 1 in over 90% of samples were 
considered to be noise and removed. For microarray data retrieved 
from the GEO database, we performed RMA normalization and 
processing using default settings for background correction and 
normalization with the R package “affy”.20 Affymetrix probe ID was 
annotated to gene symbols according to the GPL570 platform. For 
multiple probes that mapped to one gene, the mean value of ex-
pression was considered.

2.3 | Collection of RNA processing genes

We collected a total of 929 genes that participated in any procedure 
engaged in the conversion of at least one primary RNA transcript 
into at least one mature RNA molecule by searching GO:0006396 
term in the AmiGO online database (http://amigo.geneo​ntolo​gy.org/
amigo). We ultimately collated a total of 774 genes shared in both 
the TCGA and GEO data sets with sufficiently reliable expression for 
further analyses.

2.4 | Identification of the prognostic signature

Univariate Cox regression analysis was performed on the expression 
matrix of RNA processing genes (RPGs) to first determine genes that 
were associated with prognosis of CRC patients in the TCGA data 
set with a relatively loose threshold of P < .1. To enhance robustness 
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of the risk signature, the TCGA cohort of 548 samples was rand-
omized into two subsets based on 5-fold sampling; the training set 
included 4-fold CRC samples, and the internal testing set included 
the rest. Least absolute shrinkage and selection operator (LASSO) 
penalty was applied to multivariate Cox regression analyses to build 
an optimal prognostic signature with the minimum number of RPGs. 
Ten-fold cross validation was conducted to tune the optimal value of 
the penalty parameter λ, which gives the minimum partial likelihood 
deviance. Finally, a set of RPGs (ie the prognostic signature) and their 
non-zero coefficients were identified and used to build an RPG index 
(RPGI). An RPGI risk score was calculated for each sample via a linear 
combination of the selected features, weighted by the correspond-
ing coefficients based on the following formula:

where Ci is the coefficient, Ei is the normalized expression value of 
each selected gene by log2 and z-score transformations, and RRPGI 
represents the risk score for RPGI. Patients were dichotomized into 
high-risk (HRisk) and low-risk (LRisk) groups using the cohort-specific 
median RPGI risk score as the cut-off for each data set.

2.5 | Bioinformatics analyses

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses were utilized for gene set annotation, and GSEA was 
further used to investigate the functional enrichment of risk score-
associated genes using the R package “clusterProfiler”.21 Differential 
expression analysis based on TPM values was conducted by the two-
sample Mann-Whitney U test. The Benjamini-Hochberg method was 
used to adjust nominal P values (false discovery rate, FDR) for multi-
ple testing. We divided the mean expression of the treatment group 
(ie HRisk group) by the control group (ie LRisk group) to obtain the 
fold change value. Differentially expressed genes between the two 
groups were uploaded into IPA software (Qiagen) for core analysis, 
which described possible disease and bio-functions enriched in the 
data set. The biological significance of the IPA was defined as an 
absolute value of z-score > 2. The presence of infiltrating stromal 
cells in tumour was estimated with the R package “ESTIMATE”.22 The 
population abundance of tissue-infiltrating immune and stromal cell 
populations was estimated with the R package “MCPcounter” per 
sample in the TCGA cohort.23 The mutation landscape was analysed 
with the R package “maftools” following initial removal of 100 FLAGS 
genes,24,25 and differentially mutated genes were identified by using 
the mafCompare() function where genes mutated in greater than 
5% of CRC samples in the TCGA cohort were considered. Individual 
consensus molecular subtype (CMS) was predicted with the R pack-
age “CMScaller” with an FDR threshold of 0.05 by default.26 Eight 
signal transduction pathways related to colorectal carcinogenesis 
were analysed based on the published literature,27 and we referred 
to a previous report to establish a signature of these eight oncogenic 

pathways.28 We then used the single sample GSEA (ssGSEA) method 
on these gene sets to generate enrichment scores for each path-
way per sample for the TCGA cohort by using the R package “GSVA.” 
Subsequently, we compared the ssGSEA score of each pathway be-
tween the two risk groups.

2.6 | Construction of regulatory network between 
RNA processing genes and ASEs

We retrieved RNA splicing data from an online archive (http://bioin​
forma​tics.mdand​erson.org/TCGAS​pliceSeq). The percent spliced in 
(PSI) value, which represents the ratio of included transcript reads in 
the total transcript reads, was used to quantify the ASEs.29 To gener-
ate as strongly reliable a set of ASEs as possible, we implemented a 
series of stringent filters (percentage of samples with PSI value ≥ 75 
and average of PSI value ≥ 0.05). RPGs with significant changes in 
expression levels were used to investigate potential association of 
the differential PSI levels of ASEs between CRCs with lower-risk 
(first quartile) and higher-risk (fourth quartile) scores. In this context, 
we measured the Pearson correlation coefficient for each RPG–ASE 
pair; those pairs with absolute correlation coefficients greater than 
0.5 and an FDR less than 0.05 were considered significantly corre-
lated. The potential regulatory network was constructed via each 
significantly correlated pair and visualized via Cytoscape.30

2.7 | Development and verification of a composite 
Processing-Clinical prognostic index

Based on the results derived from multivariate analyses, we inte-
grated age (continuous value), tumour stage (divided into early stage 
[I + II] and advanced stage [III + IV]; binary value), and RPGI risk score 
to generate a composite Processing-Clinical prognostic index (PCPI) 
by applying a Cox proportional hazard regression model to the TCGA 
cohort; corresponding coefficients derived from the TCGA cohort 
were then applied to GEO validation sets for further validation. 
The prognostic value of the PCPI score was compared with that of 
the RGPI in continuous form according to the concordance index 
(C-index) and given by the restricted mean survival (RMS) curve.31 
The RMS represents the life expectancy at 120 months (10 years) for 
patients with different risk scores. The performance of risk groups 
determined by the RGPI risk score was assessed with reference 
to the RMS time ratio between the HRisk and LRisk groups.32 The 
higher the RMS value, the greater the prognostic difference.

2.8 | Immunohistochemical analysis

Protein expression data were obtained from the Human Protein 
Atlas (HPA) (www.prote​inatl​as.org). These immunohistochemical 
staining images were used to determine protein expression of the 22 
selected genes in both normal and CRC tissues.

RRPGI=

n
∑

i=1

Ci×Ei

http://bioinformatics.mdanderson.org/TCGASpliceSeq
http://bioinformatics.mdanderson.org/TCGASpliceSeq
http://www.proteinatlas.org
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2.9 | Statistical analyses

All statistical analyses were conducted by R3.6.2 using Mann-
Whitney testing for continuous data and Fisher's exact testing for 
categorical data. Correlation between two continuous variables was 
measured via Pearson's correlation coefficient. Kaplan-Meier curves 
were generated for survival rates of patients, with difference detec-
tion based on log-rank testing. A Cox proportional hazard regression 
model was used to calculate the hazard ratios (HRs) and 95% confi-
dence intervals (CI) regarding OS. The C-index was calculated with 
“survcomp” and compared with the “compareC” R packages.33 The 
RMS curve and RMS time ratio were estimated with the “survival” 
and “survRM2” R packages. For all statistical analyses, a two-tailed P 
value less than .05 was considered statistically significant.

3  | RESULTS

3.1 | Overview of study design

A total of 1060 patients diagnosed with CRC from four independ-
ent data sets were ultimately included in this study; demographic 
and clinical characteristic descriptions of the different data sets are 
summarized in Table 1. The entire workflow of this study, including 
the filtration of RPGs, development and validation of a prognostic 
signature (ie RPGI), the analyses of RPGI-associated alteration of the 

ASEs and RNA expression profiles, and the construction of a com-
posite Processing-Clinical prognostic index (ie PCPI), are delineated 
in Figure 1. A schematic view of RNA processing gene selection and 
prognostic signature development is depicted in Figure S1.

3.2 | Prognostic value of RPGs and their biological 
function in CRCs

We evaluated the prognostic effect of the 774 RPGs and identi-
fied 127 genes that were associated with CRC patient OS (Table 
S1). Among these, 70 RPGs were risk-associated because the cor-
responding HRs were greater than 1, while the remaining 57 genes 
were considered protection-associated. Since these RPGs represent 
a grouping of genes that participate in any step involved with the 
conversion of at least one primary RNA transcript into at least one 
mature RNA molecule, we used GO analysis to identify the more 
explicit biological processes that these prognosis-related RPGs are 
enriched in. We found that they were relevant to such key biologi-
cal functions as RNA splicing, RNA 3’-end processing, regulation of 
RNA splicing and regulation of mRNA metabolic process, among oth-
ers (all FDR < 0.001; Figure 2A). We further used KEGG analysis for 
annotation, and the results indicated that pathways involved in the 
spliceosome, mRNA surveillance pathway, RNA transport and ami-
noacyl-tRNA biosynthesis were closely associated with these RPGs 
(all FDR < 0.05; Figure 2A).

TA B L E  1   Demographic and clinic characteristic descriptions for colorectal cancer patients in different data sets

Characteristicsa  TCGA cohort Validation set 1 Validation set 2
Validation 
set 3

Number of samples 548 172 225 115

Median survival time (month) (95% 
CI)b 

83.0 (65.7-NA) 134.9 (65.9-NA) 134.9 (68.8-NA) NA

Number of death (%) 109 (19.9) 69 (40.1) 87 (38.7) 24 (20.9)

Age (years)c  66.0 ± 12.5 65.6 ± 13.2 64.6 ± 13.4 —

Gender

Female 246 (44.9) 79 (45.9) 107 (47.6) —

Male 302 (55.1) 93 (54.1) 118 (52.4) —

Tumour stage

I 91 (16.6) 24 (14.0) 28 (12.4) 18 (15.7)

II 203 (37.0) 57 (33.1) 71 (31.6) 34 (29.6)

III 162 (29.6) 56 (32.6) 75 (33.3) 38 (33.0)

IV 73 (13.3) 35 (20.3) 51 (22.7) 25 (21.7)

CMS (Predicted)

CMS1 85 (15.5) 29 (16.9) 37 (16.4) 21 (18.3)

CMS2 154 (28.1) 48 (27.9) 44 (19.6) 29 (25.2)

CMS3 84 (15.3) 24 (14.0) 32 (14.2) 19 (16.5)

CMS4 160 (29.2) 49 (28.5) 65 (28.9) 33 (28.7)

aSum of frequency numbers may not equal to the total sample size due to missing or unpredictable values. 
bMedian survival time is incalculable because the mortality at the last follow-up time is less than 50%. 
cAge is represented as mean ± standard deviation. 
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3.3 | Feature selection and prognostic 
signature building

To readily and efficiently categorize clinical outcomes of CRC pa-
tients via RPGs, we applied a LASSO penalty with multivariate Cox 
regression analysis to the TCGA training set and identified 22 fea-
tures with non-zero coefficients (Figure  2B, Figure S2A,B). These 
LASSO-selected features were used to build a prognostic signature, 
the RPG index (RPGI), and corresponding RPGI risk scores were 
computed for all data sets. All 1060 CRC samples were further di-
chotomized into high-risk (HRisk) and low-risk (LRisk) groups, and 
each sample was predicted to be one of the four CMS (Figure S3A-
D). Interestingly, the HRisk group of the TCGA cohort had more 

tumour protein 53 (TP53) mutations (P = .024), and CMS4 especially 
(P < .001; Figure S4A). We then pooled all 1060 CRCs samples to-
gether and found that almost all 22 LASSO-selected features were 
significantly differentially expressed between the two risk groups 
(Figure S4B-C). Moreover, advanced tumour stage (ie stage III and 
stage IV) was enriched in the HRisk group (57.4% vs 41.5%, P < .001; 
Figure  2C, Figure S5A). We further verified that CMS4, featuring 
stromal activation,34 was dramatically enriched in the HRisk group 
(46.8% vs 20.3%, P < .001; Figure 2C, Figure S5B), which was con-
sistent with the higher enrichment identified in a previously reported 
stromal score22 (P < .001; Figure S5C).

In all data sets, we found that the LRisk group had a significantly 
more favourable prognosis than the HRisk regarding OS (TCGA 

F I G U R E  1  Flow chart of the study design. Using 774 RNA processing genes derived from Gene Ontology (GO: 0006396), we constructed 
a 22-gene risk signature in the TCGA cohort that was subsequently validated in three external validation cohorts from GEO. Furthermore, 
we identified differential splicing events and underlying splicing networks between first and fourth quartiles of risk score. Moreover, 
pathway annotation by GSEA and IPA provided functional consequences associated with the RNA processing signature. Clinical prognostic 
value of this signature was highlighted by C-index and the restricted mean survival (RMS) curve
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training set: P < .001, HR = 0.22, 95% CI: 0.13-0.38; TCGA testing 
set: P = .018, HR = 0.38, 95% CI: 0.16-0.88; validation set 1: P = .002, 
HR = 0.47, 95% CI: 0.29-0.77; validation set 2: P = .004, HR = 0.53, 
95% CI: 0.35-0.82; validation set 3: P  =  .034, HR = 0.38, 95% CI: 
0.15-0.96; Figure 2D-h). RMS time ratios ranging from 0.62 to 0.84 
were observed in the four data sets (TCGA: P  <  .001; Validation 
set 1: P = .008; Validation set 2: P = .015; Validation set 3: P = .075; 
Table 2). To further investigate the prognostic performance of the 
RPGI risk score with adjustment for major clinical variables, includ-
ing tumour stage and patient age (an exception for validation 3 due 
to a lack of age records), we performed multivariate Cox regression 
analysis and found that RPGI risk score was a significant indepen-
dent prognostic factor for CRC patients (Table 3).

We further performed immunohistochemical analysis of the 22 
identified genes in The Human Protein Atlas, and we found that the 
protein products of the risk-associated genes showed higher expression 
levels in CRC samples compared with adjacent normal tissues (Figure 

S6A). In contrast, protein expression of the protection-associated genes 
showed the opposite trend (Figure S6B). These results may support the 
functional relevance of the identified 22 RPGs in CRC patients.

3.4 | Correlation of RPGI risk score with 
immunity and oncogenic pathways

We used the MCPcounter algorithm to compare tumour immune 
microenvironments (TIMEs) between the HRisk group and the LRisk 
group (Figure S7A). We found significant elevations in the proportion 
of endothelial cells and fibroblasts in the HRisk group (both P < .01), 
whereas the proportions of CD8 + T cells and NK cells were com-
parable between the two groups (Figure S7B). We then estimated 
the enrichment score of eight oncogenic pathways (Figure S7C). We 
found that HIPPO, NOTCH, TGF-β, RTK/RAS and Wnt pathways were 
significantly enriched in the HRisk group (all P < .01), while the TP53 

F I G U R E  2  Prognosis-associated RPG expression profiles in CRCs. A, Dot-plot showing the pathway enrichment of 127 overall survival-
related RPGs by GO and KEGG analyses. B, Multivariate Cox regression analysis with LASSO penalty identified 22 prognosis-associated RPGs, 
which were used to construct an RNA processing gene index (RPGI). Yellow items indicate risk-associated genes; blue items indicate protection-
associated genes. Corresponding coefficients from multivariate Cox regression using LASSO and HRs are depicted by horizontal bars and dots, 
respectively. C, Heatmap showing the expression patterns of 22 prognosis-associated RPGs for the entire 1060 CRC sample set sorted by RPGI 
risk score in ascending order. Top panel, risk-associated genes; bottom panel, protection-associated genes. Individual stromal score, predicted 
CMS, TNM stage and RPGI risk score are also annotated above the heatmap. Kaplan-Meier overall survival curves with difference detection of 
log-rank testing for patients from the TCGA training set, TCGA internal testing set, and three external validation sets are portrayed in (D)-(H), 
respectively. Patients were divided into different risk groups based on a cohort-specific median cut-off value of RPGI risk score
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pathway was significantly downregulated in the HRisk group (P < .01), 
although this might be due to the frequent mutations in TP53 in this 
group. These results indicated an activation of stromal components 
in TIME of high-risk patients together with activated oncogenic path-
ways based on the proposed signatures, which likely contributed at 
least partially to the poorer prognosis in these patients.

3.5 | Functional enrichment of genes that were 
associated with RPGI risk score

Given that RPGs are the primary elements manipulating the life 
cycle of RNAs in eukaryotes, we subsequently assessed how the 
RPGI could mediate RNA expression profiles. In this context, we 
correlated the RPGI risk score with all robustly expressed mRNAs 
and generated a pre-ranked list sorted by Pearson correlation coef-
ficient. We then performed GSEA and found that RPGI risk score 
was closely associated with dysregulation of the cell cycle, wound 
healing, angiogenesis and protein serine/threonine kinase activity 
based on GO terms (all FDR < 0.01; Figure 3A). GSEA of KEGG also 
revealed dysregulation of the extracellular matrix (ECM)-receptor 
interaction, MAPK and p53 signalling pathways, spliceosomes and 
RNA transport (all FDR < 0.01; Figure 3B). IPA indicated that sev-
eral biological functions were significantly associated with RPGI risk 
score, including RNA damage and repair, cell cycle, cell death and 
RNA trafficking (all P < .001; Table 4).

3.6 | Association between RPGI risk score and ASEs

RNA splicing activities are dominated by RPGs, and we have dem-
onstrated that prognosis-associated RPGs are closely correlated 
with RNA splicing-related activities. Therefore, we comprehensively 
characterized ASEs in CRCs with different RPGI risk scores. A large 
number of ASEs within seven categories, including alternate accep-
tor site (AA), alternate donor site (AD), alternate promoter (AP), alter-
nate terminator (AT), exon skip (ES), mutually exclusive exons (ME) 
and retained intron (RI), were identified per CRC sample; the propor-
tion of these ASE categories in CRCs varied dramatically, from 0.3% 

to 45.8% (Figure 3C). Although the proportional pattern of each ASE 
type was similarly shared for all CRCs, the amount of each of the 
ASEs showed significant positive correlation with the RPGI (ρ = 0.22, 
P  <  .001 by Spearman's correlation analysis; Figure  3C), and the 
amount of detected ASEs was significantly higher in CRCs with a 
higher-risk (fourth quartile, n = 137) score compared to those with a 
lower-risk (fourth quartile, n = 137) score (P < .001, Figure 3D).

We further identified differentially expressed RPGs (abso-
lute fold change  >  1.5 and FDR  <  0.05; Table S2) and ASEs with 
significantly different PSI levels (absolute fold change  >  1.5 and 
FDR < 0.05; Table S3) in CRCs with lower and higher RPGIs. In total, 
701 ASEs for 623 genes with increased PSI in higher-risk CRCs were 
identified, compared to only 42 ASEs for 39 genes with decreased 
PSI (Figure 4A). We found that genes involved in the RAS oncogene 
family (eg RAB15 and RAB23), various splicing factors (eg DUSP11, 
HNRNPLL, HNRNPC), aberrant RNA splicing in CRC (eg CD44) and 
receptor tyrosine kinase signalling (eg FGFR1) were differentially 
spliced among CRCs with lower and higher RPGIs (Figure  4B). To 
further examine the role(s) of alternative splicing in CRCs, we per-
formed GO analysis for all differential spliced genes in CRCs with 
lower- and higher-risk scores. Generally, genes that had differential 
PSI levels were principally related to protein-containing complex 
localization, RNA splicing, nucleocytoplasmic transport for biologi-
cal process, mitochondrial matrix, cell division site, actomyosin for 
cellular component and cadherin binding for molecular function (all 
FDR < 0.05; Figure 4C). For these ASEs with markedly different PSIs, 
we found that the frequency of all ASE types (except for ME, which 
has the lowest proportion) was significantly altered (P < .001 for AP, 
AT, AD and ES; P < .05 for AA and RI; Figure S8) compared to back-
ground ASEs, which suggested that the presence of altered ASEs is 
relevant for the prognosis of CRC patients.

Subsequently, we examined potential regulatory networks in-
volved among the significantly altered 36 RPGs and 743 ASEs, and 
constructed a network with 453 pairwise correlations that ultimately 
involved 25 differential RPGs and 164 associated differential ASEs 
(Figure 5A, Table S4). The 25 RPGs regulated different numbers of 
ASEs, which ranged from 5 to 39 for 12 overexpressed RPGs com-
pared to 1 to 28 for 13 under-expressed RPGs. For RPGs with in-
creased expression, we found that PABPC1L regulated a substantial 

Data set NHRisk NLRisk

RMSHRisk (95% 
CI)a 

RMSLRisk 
(95% CI)a 

RMS ratio 
(95% CI)b  P

TCGA cohort 274 274 66.60 
(55.07-78.12)

107.22 
(95.86-
118.58)

0.62 
(0.51-0.76)

<.001

Validation set 1 86 86 73.58 
(61.08-86.09)

97.81 (86.90-
109.72)

0.75 
(0.61-0.93)

.008

Validation set 2 113 112 78.02 
(66.98-89.07)

97.31 (86.74-
107.88)

0.80 
(0.67-0.96)

.015

Validation set 3 58 57 76.27 
(65.01-87.53)

90.71 (79.79-
101.63)

0.84 
(0.70-1.02)

.075

aRMS time: months. 
bRMS ratio = RMSHRisk/RMSLRisk. 

TA B L E  2   Restricted mean survival 
(RMS) time ratio between two risk groups 
in different data sets
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number of ASEs, especially for RI, and CSDC2 and QKI were highly 
correlated with ES; in contrast, AHNAK2 regulated fewer ASEs. 
Among RPGs with decreased expression in CRCs, LSM3, MRPL1, 
THOC7, TRMT10C, C1QBP, RPF1 and TFB2M regulated a markedly 
greater number of ASEs—especially for AT—whereas only a few ASEs 
were regulated by PPIH and SLBP (Figure 5B).

3.7 | Combining RPGI with clinical characteristics

In addition to RPGI risk score, we also affirmed that clinical charac-
teristics (ie age and tumour stage) served as independent prognostic 
factors, which could have complementary values (Table 3). To fur-
ther improve the prognostic accuracy, we combined RPGI risk scores 

TA B L E  3  Multivariate Cox proportional hazard regression in TCGA cohort and three GEO validation data sets

Data set

RPGI risk score Tumour stage Age

HR
(95% CI) P

HR
(95% CI) P

HR
(95% CI) P

TCGA cohort 4.21 (2.74-6.47) <.001 2.93 (1.89-4.52) <.001 1.03 (1.02-1.05) <.001

Validation set 1 1.84 (1.20-2.81) .004 4.10 (2.29-7.34) <.001 1.02 (1.00-1.04) .051

Validation set 2 2.06 (1.30-3.24) .002 3.88 (2.29-6.57) <.001 1.02 (1.00-1.04) .028

Validation set 3 3.28 (1.41-7.60) .006 NAa  NAa  —b  —b 

aAll patients with advanced tumour stage (III + IV) died at the end of follow-up. 
bNo record. 

F I G U R E  3  Risk score-related functional pathways and alternative splicing profile analysis in CRCs with lower- (first quartile) or higher-
risk (fourth quartile) scores. A, GSEA of GO for risk scores based on pre-ranked Pearson's correlation coefficients of risk score-associated 
mRNAs. B, GESA of KEGG analysis for risk scores based on pre-ranked Pearson's correlation coefficients of risk score-associated mRNAs. 
C, Proportions of alternative spliced events (ASEs) in 548 TCGA CRC samples sorted by increased risk score. Bars indicate the proportion of 
each ASE type. Dark blue dots indicate the number of ASEs in each sample. The risk scores in ascending order are shown at the top panel. D, 
The absolute numbers of all ASEs were compared in CRCs with lower- or higher-risk (both, n = 137) scores
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with these major clinical variables using the coefficients generated 
from multivariate Cox regression analysis in the TCGA cohort and 
derived a PCPI as follows: PCPI = 1.44 × RPGI + 1.07 × stage + 0.03 
× age; such an integrated model of PCPI was further applied to the 
TCGA cohort and validated in validation sets 1 and 2 where full clini-
cal information was available. Significant improvement in estimation 
of survival was achieved with the continuous form of PCPI relative 
to RPGI (C-index: 0.78 vs 0.72 in the TCGA cohort, P < .001; C-index: 
0.71 vs 0.62 in validation set 1, P <  .001; C-index: 0.71 vs 0.62 in 
validation set 2, P < .001; Figure 6A-C).

4  | DISCUSSION

In this study, we linked genomic expression patterns of RPGs with 
patient clinical outcomes, the alternative mRNA splicing landscape, 
molecular characteristics and pathway enrichment in CRC. We fur-
ther constructed a prognostic signature for risk stratification and 
identified underlying biological functions associated with higher-
risk scores via IPA. The identified altered RPG expression pattern, in 

TA B L E  4  Top enriched diseases and bio-functions (IPA) 
associated with risk signature

Disease/bio-functiona  P
Number of 
molecules

RNA post-transcriptional 
modification

3.47 × 10−286 257

RNA damage and repair 1.17 × 10−24 55

Cancer 3.66 × 10−16 414

Organismal injury and 
abnormalities

2.19 × 10−16 421

Molecular transport 3.92 × 10−15 36

RNA trafficking 3.92 × 10−15 25

Protein synthesis 6.49 × 10−12 53

Cell death and survival 1.16 × 10−9 75

Cell cycle 1.23 × 10−9 65

Cellular growth and proliferation 4.24 × 10−7 48

aDifferentially expressed genes between high- and low-risk groups, 
as determined by RNA-Seq, were uploaded into Ingenuity Pathway 
Analysis software to determine the most enriched biological functions 
underlying the risk signature. 

F I G U R E  4  Differential RPGs and ASEs in CRCs with lower- or higher-risk scores. A, Heatmaps displaying the expression levels of RPGs 
(top panel, peach and blue colour scale) and PSI value of ASEs with significant differences between lower- and higher-risk scores (bottom 
panel, yellow and blue colour scale). B, Representative ASEs with differential PSI values between CRC lower- and higher-risk groups. C, GO 
functional annotation of spliced genes with differential PSI values between the lower- and higher-risk CRC groups
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combination with various clinical parameters, reliably demonstrated 
accurate prognostic predictions for CRC patients.

Increasing numbers of anecdotes have suggested that RNA pro-
cessing, the molecular events by which primary transcripts become 
mature RNA, plays a critical role in CRC carcinogenesis.4,13,35 The 
roles several famous splicing variants play in tumour progression, 

such as CD44, have been well studied.36,37 In this study, we observed 
that CD44 was differentially spliced in the lower- and higher-risk 
groups. Additionally, several genes involved in mRNA splicing, the 
RAS oncogene family and receptor tyrosine kinase signalling also 
showed significant differential PSIs between the first and fourth 
quartiles of the risk score. Interestingly, several splicing factors, such 

F I G U R E  5  ASE networks and RPGs. A, Labelled circles in the centre represent differentially expressed RPGs. Red ellipses indicate 
upregulated RPGs in CRCs with higher-risk scores, whereas blue ellipses indicate downregulated RPGs. Coloured circles connected to 
RPGs by red or blue lines represent distinct types of differential ASEs. The red connecting lines represent positive correlations, while blue 
connecting lines represent negative correlations. B, Numbers of ASEs significantly correlated with upregulated (top panel) or downregulated 
(bottom panel) RPGs. ASE type ME is absent due to its failure to pass the correlation threshold

F I G U R E  6  RMS curves for RPGI and the integrated PCPI scores are plotted for: A, the TCGA cohort, B, validation set 1 and C, validation 
set 2. Each point represents the RMS time of corresponding RPGI and PCPI scores. The RMS curves show a larger slope in all three data 
sets for PCPI, indicating superior estimation of survival with PCPI. C-indexes for RPGI and PCPI are also provided. P values represent the 
difference between the two models in terms of C-index



     |  11 of 13LU et al.

as DUSP11, HNRNPLL and HNRNPC, were differentially spliced as a 
result of aberrant RPG expression profiles, as revealed by high RPG 
signature scores. Greater numbers of ASEs were identified in the 
high-risk group, which was consistent with a previous pan-cancer re-
port that greater numbers of ASEs were detected in tumour samples 
compared to normal samples.9

Misregulated RNA expression profiles, including autopha-
gy-related gene sets,38 metabolism-associated gene sets,39 im-
mune gene sets,40 hypoxia-associated gene sets,41 microRNAs42 
and long non-coding RNAs,43 have all been shown to affect dis-
ease progression and prognosis in CRC. In this study, we demon-
strated that dysregulation of RPGs could allow the stratification of 
CRC patients based on different outcomes. Moreover, we found 
several splicing- and tumour-associated pathways were enriched 
with increased risk scores, such as RNA damage and repair, cell 
cycle regulation, angiogenesis, spliceosome, p53 and MAPK signal-
ling pathways. In reality, the MAPK signalling pathway and RNA 
splicing are inextricably linked with each other. More specifically, 
the Ras/MAPK pathway was regulated by alternative splicing with 
regard to variants of EGFR, BRAF, p19- or p21-Ras, MEK1b and 
ERK1c44; activation of the MAPK pathway also required serine/
arginine-rich splicing factor 1 (SRSF1), a splicing factor that can 
promote tumorigenesis in CRC.45,46

Among the 22 survival-related RPGs in the risk signature, sev-
eral have previously been reported to have substantial effects on 
tumorigenesis. The apoptosis repressor with caspase recruitment 
domain (ARC, also termed NOL3) can be induced by hypoxia and 
further promote carcinogenesis by reducing apoptosis in CRC cell 
lines.47 Human telomerase reverse transcriptase (TERT) expres-
sion has demonstrated prognostic value for predicting recurrence 
in papillary thyroid carcinomas,48 and TERT has been found to be 
overexpressed in the right colon compared to the left,49 indicating 
worse prognosis in CRC. Both papillary thyroid carcinoma and right 
colon cancer are characterized by BRAF V600E mutation, which 
might interact with TERT expression and TERT mutation for the 
promotion of tumour invasion.50,51 The elongator complex protein 
6 (ELP6) gene encodes an elongator subunit, which is reportedly ca-
pable of controlling cell migration and melanoma tumorigenesis.52 
PTB-associated splicing factor (PSF), also known as splicing factor 
proline- and glutamine-rich (SFPQ), is a PPARγ-interacting protein 
involved in RNA processing and DNA repair process,53 and serves 
as a regulator of apoptosis in colon cancer cell lines.54 These re-
sults indicate that our study protocol may be able to identify novel 
carcinogenesis-associated RPGs; future studies of these prognostic 
RPGs may identify novel mechanisms underlying RNA processing 
and overall CRC progression.

Several strengths of this study warrant specific focus. First, we 
analysed a large sample size of 1060 CRC patients with either RNA-
Seq or microarray data, which indicates that our analysis conclusions 
are likely highly reliable, robust and independent of specific expres-
sion quantitative platform. This also suggests the possibility of fu-
ture verification of the risk signature in additional cohorts. Second, 
we used restricted mean survival time, an alternative summary 

measure of survival time distributions that does not rely on the 
proportional hazards assumption to demonstrate the clinical utility 
of the RPG risk signature, which is robust and more clinically inter-
pretable.55 However, as with all investigations, certain limitations 
are present as well. Both validation cohorts were derived from mi-
croarray platforms, and additional validation in a prospective cohort 
using an RNA-Seq platform is warranted. Additionally, further exper-
imental results regarding these prognosis-related RPGs are required 
to elucidate the mechanisms underlying RNA processing and CRC 
tumorigenesis.

In summary, we identified the prognostic value of specific genes 
associated with RNA processing in CRC and propose a 22-RPG sig-
nature for risk classification of CRC patients. We further identified 
differential ASEs, bio-functions, signalling pathways, and clinical fea-
tures underlying the RPG risk signature. Combining data concerning 
age, tumour stage and risk signature could further improve progno-
sis prediction in CRC patient samples.
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