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Visual complexity is ubiquitous in nature. Drivers of complexity include
selection in coevolutionary arms races between antagonists. However, the
causes and consequences of biological complexity and its perception are lar-
gely understudied, partly because complexity is difficult to quantify. Here,
we address this by studying egg pattern complexity and its perception in
hosts (tawny-flanked prinia Prinia subflava), which visually recognize and
reject mimetic eggs of their virulent brood parasite (cuckoo finch Anomalos-
piza imberbis). Using field data and an optimization algorithm, we compute a
complexity metric which predicts rejection of experimentally placed conspe-
cific eggs in prinia nests. Real cuckoo finch eggs exhibit significantly lower
pattern complexity than prinia eggs, suggesting that high complexity
benefits hosts because it distinguishes host eggs from parasitic eggs. We
show that prinias perceive complexity differences according to Weber’s
law of proportional processing (i.e. relative, rather than absolute, differences
between stimuli are processed in discrimination, such that two eggs with
simple patterns are more easily discriminable than two with complex pat-
terns). This may influence coevolutionary trajectories of hosts and
parasites. The new methods presented for quantifying complexity and its
perception can help us to understand selection pressures driving the
evolution of complexity and its consequences for species interactions.
1. Introduction
Biology is replete with examples of visual complexity [1], which can be loosely
defined as how difficult a pattern is to reproduce [2]. Patterns which appear com-
plex and difficult to reproduce (to the human eye) can be present on the bodies of
organisms, such as common cuttlefish (Sepia officinalis), or on external structures
constructed by organisms, such as mate-attracting bowers made by bowerbirds.
Theoretical models have suggested that coevolution can drive the evolution of
complexity, in particular when arms races drive reciprocal evolution in antagon-
ists [3–5]. For instance, in host–parasite arms races, selection fromparasiticmimics
(forgeries) can drive the evolution of complex ‘signatures of identity’ in hosts [6–
8], just as counterfeiters have driven banks to create more complex banknotes
which are difficult to forge. In a sexual selection context, complex visual signals
may be favoured due tomate choice or competition, as a result of antagonistic coe-
volution, or because they convey honest information about mate quality or
species identity [9]. While these and other adaptive hypotheses have been pro-
posed as biological conditions under which visual complexity should be
elevated [10], they have not been empirically tested, and nor have hypotheses
about how organisms might perceive complexity. Indeed, though complexity
has received considerable attention in fields such as engineering, mathematics
and computer science, it is in biology—where arguably themost complex systems
are found—that complexity and its perception have been neglected [11].
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This neglect is at least in part because complexity is diffi-
cult to measure objectively and in a biologically relevant way
[12]. Although the mathematician Andrey Kolmogorov pro-
posed an objective, information theoretical measure of
complexity, defined as the minimum size of programme
required to recreate the object, Kolmogorov complexity is
not computable [2,13]. Therefore, other measurements of
complexity are required. Quantifying complexity is challen-
ging because many different traits may contribute to
complexity [2,12], and because sensory systems may vary in
how they process complexity. A simple method to measure
complexity is to ask large numbers of people to rank
images by visual complexity, with consistently high rankings
indicating high complexity [14]. However, this method intro-
duces human bias [15] when the intended receivers of
complex stimuli are non-human animals. More recently, how-
ever, other methods of quantifying complexity have been
developed, which have aimed to take into account the sen-
sory system and psychology of receivers [1,2,13,16]. For
measures of visual complexity to be biologically relevant,
they must be based on receiver perception. Therefore, an
ideal model system for experimental tests of hypotheses to
explain the evolution of biological complexity would be one
in which receiver perception of complexity, and the traits
which contribute to complexity, can be objectively quantified.

Egg mimicry by avian brood parasites offers a study
system meeting these requirements. Avian interspecific
brood parasites lay eggs in the nests of host species, often
imposing considerable costs on hosts [17]. Hosts have there-
fore evolved defences, including egg rejection which has in
turn selected for egg mimicry by parasites [17]. Host egg phe-
notype diversification reduces the probability of accurate
mimicry by parasites, leading to individual ‘signatures of
identity’ in host eggs [6–8]. Some hosts exhibit highly com-
plex egg signatures [18–20] (figure 1a). Because host eggs
are the models for their parasitic mimics, parasitic eggs
may in turn evolve complex patterning [18,19] (figure 1a).
Given that host ability to discriminate between measurable
complex phenotypes can be quantified using egg rejection
experiments, brood parasitism provides an excellent system
in which to study selection pressures acting on visual
complexity.

There is a general consensus that egg pattern (signature)
complexity should be beneficial for hosts, because complex
signatures are expected to be more difficult to forge
[19,21,22]. For example, immaculate host eggs lack all pattern
complexity, and therefore a parasitic egg must simply match
the host’s background colour to be an effective mimic [23].
Yet, high complexity may also carry costs to hosts. For
example, among hosts of the common cuckoo Cuculus
canorus, signatures of intermediate complexity exhibited opti-
mal (i.e. high) recognizability and therefore discriminability,
since more complex signatures carried a cost of reduced
signature recognizability [19].

In this study, we devise a biologically relevant metric of
complexity in a brood parasitic system and subsequently con-
sider a second potential cost to hosts of high complexity,
which could arise if hosts proportionally process differences
in complexity. Weber’s law of proportional processing
states that the relative difference (as opposed to the absolute
difference) between stimuli predicts discriminability [24,25].
This means that if receiver discrimination adheres to
Weber’s law, the ‘just noticeable difference’ (i.e. the smallest
difference between two stimuli that can be discriminated) is
proportional to stimulus magnitude. Therefore, if complexity
is a stimulus used in discrimination, then two simple pheno-
types (i.e. low magnitude of complexity) will be more easily
discriminated than two complex phenotypes (i.e. high magni-
tude of complexity) [26].

Although Weber’s law has been applied to a range of taxa
and biological contexts (reviewed in [27]), it has rarely been
tested in coevolutionary systems. In deceptive coevolutionary
mimicry systems such as the aggressive egg mimicry of brood
parasites, models (i.e. hosts) benefit from increased discrimin-
ability in their stimuli. Therefore, under Weber’s law, models
(here, host eggs) should benefit from lower stimulus magni-
tudes since lower magnitude stimuli are easier to
discriminate [26]. If complexity is a stimulus that is used by
hosts in decision-making, therefore, Weber’s law could pro-
vide a second mechanism selecting against the evolution of
highly complex signatures in hosts (figure 1a). However,
reduced host signature complexity should be selected for
only when parasitic eggs are good matches in complexity to
host eggs (or, irrespective of Weber’s law, when parasitic
eggs have more complex patterns than host eggs). By contrast,
when parasitic egg patterns are less complex than host egg pat-
terns, hosts should not benefit from reduced complexity, since
this would make host eggs more similar to parasitic eggs
(figure 1b). Thus, the influence of Weber’s law on the evol-
utionary trajectories of hosts should depend on whether host
eggs are more or less complex than parasitic eggs.

Here, we conducted the first experimental study of com-
plexity in a brood parasite–host system, and tested whether
hosts process complexity according to Weber’s law. We
studied an Afrotropical system: the tawny-flanked prinia
Prinia subflava (hereafter ‘prinia’) has evolved a diverse array
of egg colours and seemingly complex egg signatures that
facilitate rejection of mimetic eggs of its parasite, the cuckoo
finch Anomalospiza imberbis [28]. We carried out field exper-
iments on host rejection of foreign eggs and used these
to compute a biologically relevant complexity score based
on higher-level attributes of pattern features quantified
by a computer vision tool for analysing visual patterns,
NATUREPATTERNMATCH [19]. We then tested whether Weber’s
law applies to how hosts process complexity, using the frame-
work proposed in [26]. Finally, we tested for differences in
pattern complexity between prinia and cuckoo finch eggs, to
assess whether visual complexity provides useful information
to hosts in detecting a parasitic egg, and to determine whether
high complexity should be costly for hosts.
2. Methods
(a) Field experiments
Field experiments (n = 126) were carried out on Semahwa Farm
(around 16°740 S, 26°900 S) and surrounding areas in the
Choma District of southern Zambia during January to April
2018–2020. The experimental protocol was almost identical to
that in [28]. Because cuckoo finches typically remove one or
more host eggs when they lay their own, we replaced (rather
than adding) one egg from a prinia nest with a conspecific egg
(the ‘experimental egg’). Experiments were carried out during
the first half of the incubation period, after the full clutch had
been laid (incubation stage was assessed by holding a torch
under the egg to visualize the embryo, following [29]). Hosts
lay clutches of 2–4 eggs (modal clutch size = 3). All eggs in the
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Figure 1. (a) (i) A prinia egg and (ii) a cuckoo finch egg, illustrating the complex patterning present in both species. (b,c) A schematic illustrating expected
evolutionary trajectories of hosts depending on whether parasites exhibit similar complexity to hosts. As the real eggs in (a) illustrate, high complexity is not
just produced by more markings on eggs, but other traits such as the variation in, and unpredictable distribution of, those markings. However, for simplicity,
we depict the magnitude of pattern complexity as the number of spots on eggs. More spots indicate higher complexity (i.e. higher stimulus magnitude).
(b) Scenario 1: parasitic egg patterns are good matches in complexity to host egg patterns, as depicted in (i). Even though both pairs of eggs (i) and (ii)
differ in only one spot, the difference between the two is easier to recognize in (ii). This illustrates Weber’s law; discrimination is easier in (ii) because the relative
difference in the number of spots is larger than in (i). Therefore, all else being equal, hosts will evolve reduced complexity, since this increases discriminability of
eggs. Parasites would evolve to better mimic this reduced complexity (rightmost egg). (c) Scenario 2: host eggs exhibit more complex patterns than parasitic eggs,
as depicted in (i). Hosts would not benefit from evolving reduced complexity (ii) because they would be becoming more similar to parasites, and therefore less
discriminable regardless of whether their perception adheres to Weber’s law. Therefore, Weber’s law should only lead hosts to evolve towards lower stimulus
magnitudes if hosts do not exhibit higher stimulus magnitudes than parasites. (Online version in colour.)
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host clutch, along with the experimental egg, were measured
with digital calipers and photographed (see below). Nests were
monitored daily for 4 days or until the host rejected the exper-
imental egg. If the egg was not rejected within 4 days, it was
recorded as accepted. Four days is a conservative threshold in
this system since almost all rejected eggs are removed within 3
days [28].

Unlike in [28], where hosts were given both subjectively good
and subjectively poor matches to their eggs, experimental eggs
were chosen to always be a good match (to the human eye) of
the host clutch phenotype. We did this to focus on effects of com-
plex pattern differences rather than egg colour or simpler pattern
measures. We therefore expected a lower rate of rejection in the
present experiments, than the approximately 50% rejection rate
estimated in [28].

(b) Photography of clutches
For each experiment, the entire host clutch and the experimental
egg were photographed in linearized RAW format. Photographs
were taken in the field in shade using a Nikon D90 camera with a
60 mm Micro-Nikkor lens. ISO (400) and aperture ( f/8) were
kept constant and shutter speed varied to control exposure.
Two grey standard squares (N6.5 and N5; reflectance values
36.2% and 19.8%, respectively) of an X-Rite ColorChecker
Passport (X-Rite, MI, USA) were used to normalize images.
To capture the full pattern of the egg, each egg was rotated
three times by 90 degrees around the long axis, resulting in
four images (‘sides’ a, b, c and d, where a is opposite c, and b
is opposite d ). For all pattern metrics calculated, the values for
all four sides of an egg were highly repeatable, with high
intra-class correlation coefficients (all greater than 0.81; electronic
supplementary material, table S1).

(c) Image analysis
Using the MICA toolbox [30] in IMAGEJ [31], images were normal-
ized and scaled to 29 px/mm; eggs were individually ‘cut out’
(i.e. removed from the background) and masked (i.e. given an
artificial black background). Greyscale images were produced
using the green channel, chosen because this channel corre-
sponds closely to the sensitivity of avian double cones, thought
to be involved in pattern processing [32]. Pattern features were
extracted using NATUREPATTERNMATCH (NPM) [19] (see [18] for
details). Briefly, the scale-invariant feature transform (SIFT)
algorithm used in NPM detects and encodes local features
(SIFT features) as 132-dimensional vectors, including the pos-
ition, scale and principal orientation of features. Alongside
other traits (§2d), variation in these dimensions can contribute
to pattern complexity, since high variation in these dimensions
would make a pattern less predictable.

(d) Complexity trait measurement and coefficient
optimization

Pattern complexity can be described by a combination of the
number of elements in a pattern, and the variation and unpredict-
ability among those elements [12]. Thus, we measured six traits
describing pattern complexity: (i) number of pattern features;
(ii) variation in the position of features; (iii) variation in the
scale (size) of features; (iv) variation in the orientation of features;
(v) Redies change, a measure of how much intensity
(i.e. brightness) changes across an image; and (vi) group metric,
a measure of clustering tendency of features and within-cluster
feature variation. All of these except for the Redies change were
based on features extracted using NPM (electronic supplemen-
tary material, §1). Complexity was defined as a weighted sum
of the six traits. Using an optimization algorithm (electronic sup-
plementary material, figure S1), we optimized the coefficients of
the six traits such that the difference in complexity between
experimental (conspecific) egg patterns and host egg patterns
best predicted egg rejection. Full details of the calculation and
optimization of the complexity metric are provided in the elec-
tronic supplementary material (§1); briefly, the number of
features, the variation in their position, and the Redies change
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Figure 2. ACD between experimental ‘parasitic’ egg and host clutch predicts
egg rejection. Points show individual field experiments; the curve plots pre-
dicted rejection probabilities according to the model Rejection∼ ACD;
shading indicates standard errors.

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:2022

4
contributed most to the optimized complexity metric. We did not
include any other colour or pattern metrics in the optimization, to
focus solely on complexity. Complexity had a linear axis of mag-
nitude (electronic supplementary material, figure S2).

As an independent validation of whether differences in our
complexity metric predicted egg rejection in a different dataset,
and to confirm that our metric was not overfitted to the 2018–
2020 data, we also tested whether differences in complexity pre-
dicted rejection in a previously published dataset from 2007 to
2009 [28]. This dataset was from the same species and study
site, and used nearly identical field experimental methods (elec-
tronic supplementary material, §4). Images from 2007 to 2009
were initially scaled to 50 px mm−1 [28] and then scaled down
to 29 px mm−1 for comparability in this study. Furthermore,
given that hosts were given a range of colour matches in 2007–
2009, only experiments in which the experimental egg was a
good match in colour to the host clutch were included in this
validation (electronic supplementary material, §4). The 2007–
2009 and 2018–2020 datasets could only be analysed separately,
due to differences in image processing (e.g. different normaliza-
tion methods; electronic supplementary material, §4). Therefore,
we used the 2007–2009 data only for validation, rather than
combining the two datasets.
0710
(e) Statistical analysis
When calculating the average complexity of host clutches,
removed eggs were excluded from the averages, following [28].
Average measurements for full clutches were highly correlated
with averages excluding the removed egg (electronic supplemen-
tary material, table S1).

Rejection was modelled using logistic regression (function
glm) in R v. 4.0.2 [33]. First, the complexity score for each egg
was calculated as the average complexity score of side a and
side c, since these two sides do not overlap and therefore an aver-
age score of the two estimates the complexity of the entire
pattern. The absolute difference between the complexity of the
experimental egg and the mean complexity of the host clutch
(hereafter, ACD) was used as a predictor to confirm that differ-
ence in complexity predicted rejection.

Then, relative complexity difference (hereafter, RCD) was cal-
culated as (ACD/mean complexity of host clutch). RCD was
highly correlated with ACD (Pearson’s r = 0.862, CI0.95 = 0.808
to 0.902). Following [34], we nevertheless conducted logistic
regression using RCD and ACD, particularly as the variance
inflation factors in the model containing ACD and RCD as
predictor variables were relatively low (3.16 for each variable).

If RCD is a better predictor of discrimination than ACD, then
this implies that the stimulus is proportionally processed. We
therefore included both ACD and RCD in the full model to test
which was the better predictor. Some sensory systems adhere
to the ‘near-miss’ to Weber’s law, where receiver discrimination
is affected less by stimulus magnitude than predicted by
Weber’s law [35–38]; others are thought to adhere to the ‘oppo-
site-miss’ to Weber’s law, where receiver discrimination is
affected more by stimulus magnitude than predicted by
Weber’s law [37,39,40]. These other forms of processing can be
distinguished from Weber’s law by testing whether discrimi-
nation is not only predicted better relative differences between
stimuli than absolute differences between stimuli, but also pre-
dicted by absolute magnitudes of the stimuli [40]. Specifically, if
absolute magnitudes predict discrimination along with relative
differences, then the near- or opposite-miss is supported
(depending on whether the coefficient of absolute magnitude is
positive or negative). If absolute magnitudes do not predict dis-
crimination but relative differences do, then Weber’s law is
supported. Here, the absolute magnitude of the stimulus is the
mean complexity of the host clutch (’host complexity’; hereafter
HC). Therefore, the full model included ACD, RCD and HC as
fixed effects (following [40]).

Our models did not include the colour and ‘lower-level’ pat-
tern metrics previously shown to predict rejection in this system
[18,28], because in our study, experimental eggs were chosen by
eye to be good matches to host clutches in these traits. We sub-
sequently validated that this was so, and confirmed that colour
and lower-level pattern metrics did not predict rejection in the
present dataset (electronic supplementary material, §5).

Percentage of variation explained by each model was calcu-
lated using Nagelkerke’s R2 (package rsq in R). If models
contained multiple predictor variables, percentage of variation
explained by each predictor was calculated using hierarchical par-
titioning (package hier.part in R). We carried out three tests to
determine whether host perception of egg complexity conformed
to Weber’s law, or to the near- or opposite-miss to Weber’s law:

First, model comparison was carried out using the R package
MuMIn [41], and models compared using Akaike information
criteria (AICc) [42] and Bayesian information criteria (BIC) [43].

Second, likelihood ratio tests were carried out to compare
models in which the predictor variables were correlated.

Third, we note that both ACD and RCD can be written as

ja� bj
bk

expression 1

where a is the complexity of the experimental egg and b is the aver-
age complexity of the host clutch.When k = 0, expression 1 equals |
a− b|, which is ACD; when k = 1, expression 1 equals ja� bj=b,
which is RCD. Furthermore, the near-miss and opposite-miss to
Weber’s law can also be described by expression 1: the near-miss
is described by 0 < k < 1 [35,37] and the opposite-miss by k > 1.
Thus, by estimating the value of k, we can evaluate how complex-
ity is processed. We used this re-parametrization to compare
predictive models with different values of k from −1 to 2 at inter-
vals of 0.25. If hosts process complexity according to Weber’s
law (i.e. they process RCD), then the minimum of a curve plotting
AIC against k should be at around k = 1. If hosts process absolute
differences (i.e. ACD), then the minimum should be at around
k = 0. To find the minimum, a fifth-order polynomial was fitted
to the points, and the value of k corresponding to minimum AIC
was estimated using the uniroot.all function in R.

For all the above models, the sample size was n = 119 (n = 19
rejected; n = 100 accepted). Although 126 experiments were con-
ducted, there were six females on which two experiments were
carried out, since females re-nest during seasons. One of each
pair of duplicates was randomly selected and excluded from
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Figure 3. Egg rejection based on pattern complexity conforms to Weber’s law. (a) RCD between the experimental egg and host clutch predicts egg rejection in field
experiments. Points show individual experiments; the curve plots predicted rejection probabilities according to the model Rejection∼ RCD; shading indicates standard
errors. (b) AICs for models of the form Rejection∼ ja� bj=bk , for−1 < k < 2, where a is the complexity of the parasitic egg and b is the complexity of the host clutch.
The curve is a fitted polynomial of order five, showing that the minimum AIC (large red point) is estimated to be at k = 1.127. The intersections between this curve and
the black line (indicating y = 2 + (minimum AIC)) give the 95% confidence intervals of 0.402 and 1.88 around this ‘best’ value of k. (Online version in colour.)
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the analysis. We also excluded one experiment where the host
clutch size was 1, since complexity excluding the replaced host
egg cannot be calculated for a clutch size of 1. In all analyses, pre-
dictor variables were scaled (by subtracting the mean and
dividing by the standard deviation); all reported estimates and
standard errors pertain to scaled variables. In figures, all predic-
tors shown are unscaled.
3. Results
(a) Absolute complexity difference predicts egg

rejection
We first verified that the complexity measure computed and
optimized using egg rejection data did indeed predict egg
rejection. ACD significantly predicted rejection (estimate ±
s.e. = 0.544 ± 0.222, d.f. = 117, Z = 2.448, p = 0.014, Nagelk-
erke’s R2 = 0.09; figure 2), meaning that experimental eggs
which differed more from the average complexity of the host
clutch were more likely to be rejected. Our measure also pre-
dicted rejection in the independent 2007–2009 dataset which
was not used to train the optimality model (estimate ±s.e. =
1.109 ± 0.492, Z = 2.254, p = 0.024, R2 = 0.12; electronic sup-
plementary material, §4), suggesting that the measure was
not overfitted to the 2018–2020 dataset.

(b) Relative complexity difference is a better predictor
of egg rejection than absolute complexity
difference

We then tested whether RCD was a better predictor of
rejection than ACD, using three lines of evidence.

First, from a full model containing ACD, RCD and HC
(electronic supplementary material, table S2), the best model
according to both AICc and BIC was a model with RCD as
the only predictor (for this model, estimate ± s.e. = 0.730 ±
0.238, d.f. = 117, Z = 3.068, p = 0.002, R2 = 0.14; figure 3a). This
means that host perception of complexity is best described by
Weber’s law. Furthermore, perception does not adhere to the
near-miss or opposite-miss, because the final model did not
include HC as a significant predictor of rejection.
Second, we used likelihood ratio tests to compare the
models Rejection∼ACD and Rejection∼RCD to the model
Rejection∼ACD+RCD. The addition of RCD to a
model with ACD as the only predictor improved the model
(x21 ¼ 4:06, p = 0.044), whereas the addition of ACD to a
model containing RCD as the only predictor did not improve
the model (x21 ¼ 0:094, p = 0.759); this again suggests that RCD
is a better predictor than ACD.

Third, we plotted the AIC of models where we varied the
value of k in expression 1 (see ’Methods’). The minimum AIC
value was at k = 1.127 (AIC = 98.389). Thus, the lowest AIC
model was close to k = 1, again suggesting that RCD is the
best predictor (figure 3b). Ninety-five per cent confidence
intervals (calculated by adding two to the minimum AIC)
were at k = 0.402 and k = 1.88; these exclude k = 0, further
demonstrating that discrimination adheres to Weber’s law.

(c) Prinia egg patterns are more complex than cuckoo
finch egg patterns

Prinia egg patterns were significantly more complex than
cuckoo finch egg patterns (Kruskal–Wallis χ2 = 24.22, d.f. = 1,
p < 0.001; figure 4). There is a consistent difference between
host and parasite eggs in the complexity metric even
though this metric was derived from experimental data invol-
ving only hosts.
4. Discussion
In this study on complexity and its perception, we derived a
metric of pattern complexity which predicts egg rejection by a
common host of the brood-parasitic cuckoo finch. Using this
metric, we found evidence that Weber’s law of receiver per-
ception operates in host rejection decisions in this system,
since the relative difference in complexity between host and
an experimental ‘parasitic’ egg (the egg of another host
female) was a better predictor of rejection than the absolute
difference in complexity. This is the first demonstration that
Weber’s law can apply to rejection of eggs by the host of a
brood parasite. Finally, we showed that host egg patterns
are more complex than those of their parasite.
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(a) Absolute complexity difference predicts rejection
The absolute difference in complexity between host and
experimental egg patterns predicted egg rejection, as
expected given that the metric was optimized to predict rejec-
tion. However, the metric also predicted rejection in an
independent dataset from the same species and study site
(from 2007 to 2009), with a different distribution of host–
parasite differences, and for which it was not optimized. Fur-
thermore, even an optimized complexity metric could have
been a poor predictor of rejection if the traits contributing
to complexity were not used in rejection, and therefore this
study demonstrates that measures of complexity can be
shown to have biological relevance. Variation in ACD pre-
dicted 9–12% of variation in egg rejection, leaving much
variation unexplained. In this system, it has been shown
that pronounced differences in colour and lower-level fea-
tures (such as marking size) predict approximately 32% of
the variation in egg rejection [18,28]. This suggests that
when simpler differences between eggs exist (i.e. not in the
current study which was designed to exclude them), they
may be preferentially used by hosts as signals of egg identity;
indeed, the low rejection rate observed in this study is prob-
ably because experimental eggs were chosen to be good
matches to the host clutch. Furthermore, the median prinia
egg complexity is approximately 720 units greater than the
median cuckoo finch egg complexity (figure 4), and the prob-
ability of egg rejection at a difference of 720 units is low
(approximately 16%; figure 2), suggesting that most parasite
eggs would be accepted on the basis of complexity. Again,
this illustrates that other colour and pattern differences are
likely to be more important in explaining rejection in this
system, though complexity differences have a small but sig-
nificant effect.

We do not suggest that prinias directly compute the com-
plexity of egg patterns; rather, complexity is likely to be a
proxy for integrative aspects of egg phenotype processed
by the host when comparing eggs. This is the case for any cal-
culated pattern metric, since we do not fully understand how
visual systems process pattern [1]. The finding that complex-
ity significantly predicts rejection, even when individual
lower-level features are unable to do so, emphasizes the
importance of ‘higher-level differences’ in addition to
colour and lower-level features in signalling egg identity [18].
The finding that hosts use complexity in discrimination
makes biological sense because hosts exhibited significantly
higher complexity than parasites (figure 4) and because com-
plexity shows high repeatability within clutches, with an ICC
value of 0.76 (electronic supplementary material, table S1),
which is higher than ICCs of other pattern traits in prinias
[44]. Both of these properties mean that complexity provides
reliable information about egg identity. Previous studies in
several systems (e.g. [28,45]) have similarly found that traits
that consistently differ in traits between hosts and parasites
are those that best predict rejection, presumably because
they provide reliable information.

Prinias may have evolved high complexity because this
reduces the mimetic fidelity of relatively simple cuckoo finch
eggs. Indeed, parasitized species of warblers (Cisticolidae,
including the tawny-flanked prinia) and weavers (Ploceidae)
show greater ‘entropy’ (randomness or unpredictability) in
egg phenotypes than unparasitized species [20]. Entropy has
been used as a measure of complexity of other stimuli, such
as auditory signals in birds and dolphins [46,47]. For hosts
of brood parasites, an increase in complexity (measured as
entropy) is thought to allow diversification into areas of phe-
notypic space unoccupied by parasites and to produce
signatures that are difficult to forge [20,48]. However, entropy
is a population-level measure, whereas our complexity metric
is an individual-level measure, so these different measures of
complexity are not interchangeable although they seek to cap-
ture a similar biological principle. Importantly, an individual-
level measure is required to test hypotheses about benefits and
costs of complexity, as we do here.

Why might cuckoo finch egg patterns be less complex
than prinia egg patterns? This may simply be due to evol-
utionary lag, for instance if cuckoo finches are constrained
from evolving complex phenotypes by their genetic architec-
ture. The cuckoo finch parasitizes multiple host species [44],
such that lineages parasitizing specific host species (gentes)
must maintain the ability to mimic a specific host despite
interbreeding between males and females of different
gentes. This problem is solved in the cuckoo finch by
maternal inheritance via the female-specific W chromosome,
preventing the costs of recombination and segregation when
parasites from different gentes interbreed [49]. However,
maternal inheritance carries the cost of slower evolution,
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constraining the evolution of complexity by forgoing recom-
bination and heterozygosity [49,50]. By contrast, prinias have
autosomal inheritance of egg phenotype, such that they
retain its advantages for generating novelty and diversity in
coevolutionary arms races [49]. Maternal inheritance may
therefore explain the relatively simple egg pattern pheno-
types exhibited by cuckoo finches. A non-mutually
exclusive explanation for simpler egg patterns in cuckoo
finches is that their closest relatives (Vidua spp.) lay immacu-
late white eggs [51]. This suggests that cuckoo finches have
more recently evolved egg patterns than prinias, whose clo-
sest relatives (Prinia and Cisticola spp.) lay patterned eggs
[52]. Perhaps, therefore, there has been insufficient evolution-
ary time for cuckoo finches to evolve high complexity, though
as previously shown in this system, frequencies of traits can
change rapidly [53].

Our method of quantifying complexity could be applied
to other systems in which organisms differentiate between
stimuli. A complexity metric optimized for one system will
probably be suboptimal for another. Therefore, psychophysi-
cal experiments are needed to derive a relevant measure of
complexity (optimized from chosen traits) which predicts dis-
crimination between stimuli in each specific system.
Researchers can choose any trait that a priori seems to
measure complexity; for instance, the number of pattern com-
ponents, the variation in properties of these components,
and/or how unpredictable the components are [12]. It is
necessary to be transparent about which traits are chosen
prior to optimization and be aware that important traits
may not have been considered.

(b) Relative complexity difference is a better predictor
of rejection than absolute complexity difference

An understanding not only of what stimuli organisms
perceive, but how they perceive them, is needed to under-
stand the selection pressures acting on senses and signals
[54]. In sensory ecology, we usually assume that organisms
perceive absolute differences between stimuli [27]. However,
Weber’s law of proportional processing states that relative
rather than absolute differences between stimuli predict dis-
crimination between them [24,25]. Here, we showed that
host discrimination of complexity adheres to Weber’s law,
and therefore that the relative difference is a more important
trait to measure than the absolute difference. Furthermore,
host discrimination follows Weber’s law rather than the
near- or opposite-miss to Weber’s law [37,40,55]. Although
we studied complexity because complex patterning remains
understudied, Weber’s law could also apply to other traits
processed by hosts, for which it must be tested indepen-
dently. For Weber’s law to apply, traits must have certain
properties such as having quantitative magnitudes on con-
tinuous or quasi-continuous scales [26]. This rules out traits
such as colour differences between host and parasitic eggs,
since although differences in colour between eggs can be cal-
culated, an egg does not have a quantifiable (i.e. numerical)
magnitude of colour.

Weber’s law is known to be evolutionarily relevant in
foraging and mate choice [27,56,57], but this is one of the
first demonstrations of Weber’s law applying to receiver dis-
crimination in a coevolutionary system. In coevolutionary
systems, receiver perception may influence the evolution of
both models and mimics, and can inform expectations about
evolutionary trajectories of multiple interacting species [26].
Weber’s law states that discriminability declines as stimulus
magnitudes increase, because for a given absolute stimulus
difference, the relative stimulus difference is greater at a low-
stimulus magnitude. Since hosts benefit from having egg sig-
natures that are discriminable from parasitic forgeries, under
certain circumstances (i.e. when parasitic eggs are good
matches to host eggs in complexity, or more complex than
host eggs), hosts should benefit from less complex signatures
[26]. This runs counter to the general assumption that hosts
should benefit from ever more complex signatures [19,21,22].

Should hosts therefore evolve towards lower complexity in
this system? We show that this should not occur, because
cuckoo finch egg patterns are less complex than prinia egg pat-
terns. Therefore, prinias should not currently be expected to
evolve towards lower complexity, since this would make
host eggs more similar to parasitic eggs (figure 1b). Only if
cuckoo finches ‘catch up’ to prinias in complexity, should pri-
nias benefit from and thus evolve reduced complexity
(figure 1a). Instead, in this system, parasitic eggs should
experience selection for more complex patterns, since this
would improve mimetic fidelity. Host eggs should either
remain at an elevated level of pattern complexity, or evolve
greater complexity that would further reduce mimetic fidelity.
The prediction that hosts should evolve towards lower magni-
tude stimuli should therefore be tested in systems where the
trait that is proportionally processed has highmimetic fidelity.

Although Weber’s law operates in egg discrimination, as
revealed by our field experiments using conspecific eggs with
high complexity, Weber’s law may have little impact on
whether hosts reject real parasitic eggs. Since parasitic eggs
exhibit lower pattern complexity than host eggs, in many
cases, differences in complexity could be perceived regardless
of whether hosts perceive absolute or RCD between egg pat-
terns [26]. Our experiments therefore provide evidence for
Weber’s law that natural observations of rejection of parasitic
eggs would probably have missed.
5. Conclusion
We computed a biologically relevant measure of pattern com-
plexity and found evidence that host perception of differences
in complexity adheres toWeber’s law. Ourmethod produced a
receiver-specific metric of complexity, which is important
because complexity is difficult to define objectively, and
because different receiver species will probably process com-
plexity differently. This method can be applied to other
animal signals to test whether specific traits contribute to bio-
logical complexity, facilitating the study of the evolution of
both complex signals and the sensory systems that receive
them. In our study system, host egg patterns are significantly
more complex than those of parasitic eggs, and therefore hosts
are not currently expected to evolve towards lower complexity
as Weber’s law would otherwise lead us to expect. Instead,
hosts may experience selection for greater complexity, or
relaxed selection because their eggs are already highly dis-
criminable from parasites. Furthermore, parasites should
experience selection for greater complexity over time. We
suggest that the prediction that hosts should evolve towards
reduced stimulus magnitudes should be tested in parasite–
host systems where mimetic fidelity is higher. Since the
latter prediction only applies when host perception adheres
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to Weber’s law (or the near- or opposite-miss to Weber’s law),
host perception itself must also be studied across systems.
While much work on receiver perception focuses on sensory
systems, greater understanding of perceptual processes such
as Weber’s law will improve our understanding of howmimi-
cry and pattern complexity might evolve. More generally,
measuring complexity and how organisms perceive it can
improve our understanding of the selection pressures driving
the evolution of biological complexity, and its consequences
on species and their interactions.
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