
Original Article
Deep learning applied to two-dime
nsional color Doppler flow imaging
ultrasound images significantly improves diagnostic performance in
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Abstract
Background: The current deep learning diagnosis of breast masses is mainly reflected by the diagnosis of benign and malignant
lesions. In China, breast masses are divided into four categories according to the treatment method: inflammatory masses, adenosis,
benign tumors, and malignant tumors. These categorizations are important for guiding clinical treatment. In this study, we aimed to
develop a convolutional neural network (CNN) for classification of these four breast mass types using ultrasound (US) images.
Methods: Taking breast biopsy or pathological examinations as the reference standard, CNNs were used to establish models for the
four-way classification of 3623 breast cancer patients from 13 centers. The patients were randomly divided into training and test
groups (n= 1810 vs. n= 1813). Separate models were created for two-dimensional (2D) images only, 2D and color Doppler flow
imaging (2D-CDFI), and 2D-CDFI and pulsed wave Doppler (2D-CDFI-PW) images. The performance of these three models was
compared using sensitivity, specificity, area under receiver operating characteristic curve (AUC), positive (PPV) and negative
predictive values (NPV), positive (LR+) and negative likelihood ratios (LR�), and the performance of the 2D model was further
compared betweenmasses of different sizes with above statistical indicators, between images from different hospitals with AUC, and
with the performance of 37 radiologists.
Results: The accuracies of the 2D, 2D-CDFI, and 2D-CDFI-PWmodels on the test set were 87.9%, 89.2%, and 88.7%, respectively.
The AUCs for classification of benign tumors, malignant tumors, inflammatory masses, and adenosis were 0.90, 0.91, 0.90, and 0.89,
respectively (95% confidence intervals [CIs], 0.87–0.91, 0.89–0.92, 0.87–0.91, and 0.86–0.90). The 2D-CDFI model showed better
accuracy (89.2%)on the test set than the2D (87.9%)and2D-CDFI-PW(88.7%)models. The 2Dmodel showedaccuracy of 81.7%on
breast masses�1 cm and 82.3% on breast masses>1 cm; there was a significant difference between the two groups (P< 0.001). The
accuracy of the CNN classifications for the test set (89.2%) was significantly higher than that of all the radiologists (30%).
Conclusions:TheCNNmay have high accuracy for classification of US images of breast masses and perform significantly better than
human radiologists.
Trial registration: Chictr.org, ChiCTR1900021375; http://www.chictr.org.cn/showproj.aspx?proj=33139.
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Introduction guiding clinical treatment, reducing the sufferingof patients,
Breast cancer is among the most commonly diagnosed
cancers and is the main cause of cancer death in women.[1]

Early detection of breast cancer with ultrasound (US)
reduces the mortality from breast cancer and provides
women diagnosedwith breast cancer more options for less-
aggressive treatment.[2,3] Previous researchers have
reported that color Doppler US in combination with B-
mode US can improve the diagnosis of breast cancer
lesions.[4,5] The main limitation of screening US is its low
positive predictive value (PPV), with a large number of
false positive results that can lead to unnecessary biopsies
or short-term follow-up visits.[6] According to network
protocol 6666 of the American College of Radiology and
Imaging (ACRIN 6666), the PPV of biopsies after US
screening in high-risk women is 7.4% (18 of 242 cases),
which is the current benchmark for breast cancer screening
in the United States.[7,8] However, the recall for tomosyn-
thesis showed a PPV of only 24% to 37% according to
biopsies and 24% to 50% according to magnetic
resonance imaging (MRI).[9-11] In addition, the level of
medical service in various regions of China varies greatly,
and in some primary hospitals the quality of the medical
service may not be guaranteed.[12]

Inflammatory masses and adenosis masses are both benign
tumors; however, some cases may be misdiagnosed as
malignant tumors on US. Sclerosing adenosis (SA) of the
breast has sonographic features similar to some malignant
tumors,[13] and can present as a solid hypoechoic mass with
unclear borders, irregular morphology, and visible calcifi-
cation. Granulomatous mastitis (GM) is a chronic inflam-
matory disease that occurs in the lobules of the breast.
Clinically, GM lesions can present as a solid mass with
unclear borders and are often highly suspected to be breast
cancer.[14] In China, breast masses are classified into four
categories according to the treatment methods:[15] inflam-
matory masses, adenosis, benign tumors, and malignant
tumors. However, it may be difficult to distinguish the four
types on US examination alone.

The development of artificial intelligence in themedical field
has brought new opportunities with the potential to
improve the diagnostic accuracy of medical image interpre-
tation while reducing manpower requirements. Artificial
intelligence is good at identifying complex patterns in
images and quantifying information that humans have
difficulty detecting, thereby complementing clinical decision
making.[16] Deep learning algorithms have recently become
a widely used artificial intelligence method for medical
image analysis, being able to use continuous data, nominal
data, categorical data, and ordered data simultaneously,
taking into account the opinions of the US doctor in the
decision-making process. Therefore, the ultrasonologist can
work together with an enhanced intelligent algorithm to
achieve higher accuracy.[17] The field of deep learning
diagnosis of breast cancer is mainly concerned with the
differentiation of malignant and benign diagnoses. Howev-
er, regardless of the size of the mass, it may be difficult to
distinguish between malignant tumors, benign tumors,
adenosis, and inflammatory masses. In addition, further
differentiation of breast masses will be more conducive to
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and reducing the working load of ultrasonologists.

Therefore, our goal was to train a convolutional neural
network (CNN) to distinguish not only between benign
and malignant tumors of the breast, but also inflammatory
masses and adenosis. We also evaluated the performance
of different models trained on two-dimensional (2D)
images only, 2D images and color Doppler flow imaging
(2D-CDFI), and 2D images, color Doppler flow imaging,
and pulsed wave Doppler (2D-CDFI-PW) images.
Methods

Ethical approval

This study was approved by the Ethics Committee and
Institutional Review Board of Beijing Tiantan Hospital,
Capital Medical University (No. KY2018-099-01). Writ-
ten informed consent was not required for this study
because only fully anonymized US images have been used.

Study overview

This multicenter study used CNNs to classify breast masses.
A total of 13 hospitals from nine provinces of China
participated in the study and collected US images of breast
masses acquired from patients between January 2016 and
January 2018. Prior to recruitment, researchers at each site
received comprehensive guidance on the research program,
including the eligibility criteria and the standardized data
collection and interpretation procedures. Figure 1B shows a
flowchart of the training and testing protocol. Threemodels
were established to compare the diagnostic accuracy of 2D,
2D-CDFI, and 2D-CDFI-PW images of patients in the
training and test sets. The pathological results of breast
biopsy or surgery were used as the reference standard
against which the CNNs were judged.

Patients and datasets

The patients’ treatment process (from 2016.1 to 2019.12)
is shown in Figure 1A. If a patient had a grade higher than
category 4A (low suspicion for malignancy) according to
the Breast Imaging Reporting and Data System (BI-RADS,
American College of Radiology [ACR]), a biopsy would
typically be performed, with the patient’s consent. Breast
biopsy was performed using a 16- or 18-G needle (Bard
Magnum, GA, USA), and three breast pathologists, each
with more than 6 years of experience, examined the biopsy
or surgical specimens while blinded to the US and clinical
examination results.

Pathological results were classified into benign tumor (I),
malignant tumor (II), inflammatorymasses (III), or adenosis
(IV). Benign tumors include fibroids, intraductal papilloma,
benign lobular tumors, and lipomas. Malignant tumors
include infiltrative ductal carcinoma, intraductal papillary
carcinoma, carcinoma in situ, mucinous carcinoma, mye-
loid carcinoma, and invasive lobular carcinoma. Adenosis
include adenoid hyperplasia and SA. If the pathological
outcomewas a combination ofmultiple outcomes, themore
severe outcomewas taken as the classification for this study.
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Figure 1: Patient treatment process in flowcharts showing (A) Schematic representation of the patient’s clinical pathway from initial clinical diagnosis to ultrasound indications for subsequent
biopsy or surgical resection of the lesion; (B) Training and testing protocols. CDFI: Color Doppler flow imaging; PW: Pulse wave; BI-RADS: Breast imaging reporting and data system.
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The patient inclusion criteria were: (1) pathological results
clearly classified into one of the four categories mentioned
above; (2) at least 2D mode US images available, but
preferably also CDFI and PWmode images. The exclusion
criteria were: (1) a foreign-body in the breast, such as
breast augmentation material; (2) other metastatic tumors
or co-infection with HIV; (3) measurement markers,
arrows, or puncture needles within the image; (4) blurred
images or color overflow.
Ultrasound examinations

The US instruments employed to acquire the images used
in this study included Esaote My Lab (Esaote, Italy), GE
LOGIQ E9 (General Electric Co., USA), Hitachi (Hitachi,
Ltd., Japan), Mindray Resona 7 (Shenzhen Mindray Bio-
Medical Electronics Co., Ltd., China), Samsung (Samsung
Medison Co., Ltd. Korea), Siemens (Siemens Healthcare
GmbH, USA), Sonoscape (SonoScape Medical Corp.,
China), Supersonic (Supersonic Imagine, France), and
Toshiba (Aplio 500, Aplio i900, CANONMedical Systems
Corporation, Japan) systems. The 2D US images were
recorded first, followed by the CDFI. PW scanning was
performed if there was evidence of significant blood flow
around or within the mass. When a mass was too large to
displayona single image, itwasdivided into several parts for
imageacquisition.One tofive imageswere takenperpatient.
For thismulticenter study, strict quality controlwasadopted
for the entire process, with the operators (who had each
performed more than 7000 breast US scans) receiving
rigorous training in the use of uniform procedures for 2D-
CDFI-PWmeasurements.About tendoctorswithmore than
10years of experience inUSoperationswere hired as quality
control personnel to review all 2D-CDFI-PW images and
rule out non-qualifying acquisitions. After adoption of the
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above selection procedures, 3623 patients were selected for
this study,with an age range from11 to95years, ameanage
of 42.5 years, and a median age of 42 years. The pathology
subtypes include fibroids, intraductal papilloma, benign
lobular tumors, lipomas, infiltrative ductal carcinoma,
intraductal papillary carcinoma, carcinoma in situ, mucin-
ous carcinoma, myeloid carcinoma, invasive lobular
carcinoma, adenoid hyperplasia, and SA.
CNN for breast mass classification

The CNN was developed using a computer equipped with
an Intel Core i7-6850K 3.6-GHz 6-Core processor, 64
Gigabytes of RAM, and NVidia GeForce GTX 1080 TI
graphic processing units. The CNN model included two
modules: a detection module and a classification module.

The detection module, which is composed of two sub
modules, is used to detect the location of breast masses. The
first submoduleusesResNet50 to extract featuremaps from
the input image. The Feature Pyramid Networks (FPN)[18]

structure is used to extract multi-scale features because the
images of the selected patients were acquired from different
hospitals using different US instruments and therefore
exhibited different characteristics. The second submodule is
a bounding box regressionmodule,which is used to propose
and determine the bounding box (rectangle region) inwhich
the breast mass is located. Using feature maps extracted by
ResNet50 as the initial candidate maps, nine scale and
aspect ratio rectangles are proposed as candidate regions.
The candidate regions are then updated by performing
boundary regression with the ground truth regions. The
final detections are generated by applying a technique
known as non-maximum suppression: regions with confi-
dence scores less than0.5or intersectionover union less than
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0.5 are discarded, and only the remaining top K regions are
kept. Focal loss[19] is used to solve the extremely unbalanced
distribution between positive and negative samples during
the regression of bounding boxes. If a breast image of a
healthy person is input, there is no bounding box output by
the detection module.

The classificationmodule is used to output the type of breast
mass detected. The image containing the region defined by
the detection module is processed by 12 convolutional
layers, five pooling layers, and two fully connected (FC)
layers. The output layer is a four-category FC layer, with the
four categories corresponding to the pathological classi-
fications of benign tumor (I), malignant tumor (II),
inflammatory mass (III), and adenosis (IV) [Figure 2A–2C].

In US imaging, the 2D image contains the intensity
information of the lesion area, the CDFI image contains
information about the blood flow surrounding the lesion,
and the PW image contains information about the
frequency spectrum over a specific area within the lesion.
To investigate whether additional information can
improve the classification performance, three kinds of
network models were designed. The 2D model used only
2D images as input and was considered the baseline model.
The 2D-CDFI model added CDFI images, and the 2D-
CDFI-PW model further added PW images. These three
models were designed to match the three steps adopted in
the standard operation of Chinese sonographers perform-
ing a breast examination, who first use the 2D mode to
acquire images, then second use CDFI, then add the third
PW mode when accurate blood flow color Doppler signal
is detected. The structures of the three models were
approximately the same, except for some differences in the
classification module. For the 2D-CDFI model, 2D image
features and CDFI image features were extracted in turn,
then channel concatenation was used to merge these
Figure 2: This figure shows the architectures used for building the three models. (A) The wh
detection modules; (C) The architecture of the classification modules.
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features before final classification using the FC layer. For
the 2D-CDFI-PWmodel, features were still extracted from
the 2D and CDFI images and concatenated for classifica-
tion, but an attention mechanism was then used to
introduce PW features into the 2D and CDFI features. The
information provided by the PW and CDFI images is
considered supplementary to the information from the 2D-
mode US images, but the PW image has some character-
istics that require special processing. The PW image
generally includes two parts, a 2D image and a PW image,
which are arranged in left-and-right or up-and-down
layouts. Each part only has half the image resolution of the
original 2D or 2D-CDFI image. Usually, the 2D image part
contains blood flow information overlaid on the 2D image,
which results in part of the lesion area being covered by
pixels representing blood flow. Therefore, the overall PW
image contains complex information, and we considered it
reasonable to extract features from the PW image using an
attention mechanism. The attention mechanism multiplies
PW features with 2D and CDFI features, with the PW
features being obtained by global pooling of the features
extracted from the PW images with Resnet50. The full
model structure is shown in Supplementary Figures 1–3,
http://links.lww.com/CM9/A433.

The following parameters were used to train the models:
2000 max iterations; base learning rate of 0.001, decay by
5% per 100 steps, and batch size of 64. The input images
were resized to 416 � 416. Data augmentation was
performed before the training process, to reduce any
potential bias caused by imbalances in the binary
classification data.[20] The images in the training set were
augmented according to random rotations of �30° to 30°
and random scaling of 0.5 to 1.5 times. The image pixel
values of all selected patients were normalized to maintain
the consistency of pixel distributions across the different
hospitals. The stochastic gradient descent (SGD) algorithm
ole architecture detection modules and classification modules; (B) The architecture of the
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was used to optimize themodels, with an early training stop
strategy to avoid over-fitting during the model training.

The integration of different neural networks results in
more robustness and better accuracy than that achieved
by a single network. The Snapshot Ensemble model
provides a simple method for training integrated mod-
els.[21] For each of the 2D, 2D-CDFI, and 2D-CDFI-PW
models, Snapshot Ensembles were used to train five groups
of different model parameters, then the five weak models
were combined to achieve a better and more comprehen-
sive strong model.
Statistical analysis

However, to compare the diagnostic performance for
different breast masses (benign tumors, malignant tumors,
inflammatory masses, and adenosis) between three kinds of
images (2D vs. 2D-CDFI vs. 2D-CDFI-PW), the sensitivity,
specificity, positive and negative predictive values, and
positive and negative likelihood ratios were calculated for
each category for each model, and the areas under the
receiver operating characteristics curves (AUCs) were
calculated to evaluate the model performance. Further
comparisons of these performance measures were made
between breast masses of different sizes (size � 1 cm vs.
1< size � 2 cm vs. 2 < size � 5 cm vs. size > 5 cm).
Differences between AUCs were compared using a Delong
test. A systematic comparison of the sample composition
and performance of each hospital revealed that different
results were obtained from images from different hospitals,
whichmay be a result of different distributions. To compare
the general ability of the models, we show performance
results for data selected from the China-Japan Friendship
Hospital of Jilin University (CJ) as an independent
validation set. In the calculation of the above values for
each category, the corresponding categorywas processed as
a “positive sample,” and the other three categories as a
Table 1: A summary of sample composition of each hospital, n (%).

Hospitals All patients Benign tumor Ma

TT 1897 (52.4) 1055 (65.9)
TR 195 (5.4) 76 (4.7)
NN 223 (6.2) 55 (3.4)
CJ 219 (6.0) 81 (5.1)
PLA 158 (4.4) 55 (3.4)
LZ 146 (4.0) 46 (2.9)
TD 135 (3.7) 63 (3.9)
CA 128 (3.5) 37 (2.3)
SW 114 (3.1) 3 (0.2)
HP 122 (3.4) 86 (5.4)
XJ 105 (2.9) 36 (2.2)
HN 103 (2.8) 0 (0.0)
ZZ 78 (2.2) 8 (0.5)
SUM 3623 1601

TT: Beijing Tiantan Hospital; TR: Beijing Tongren Hospital; NN: The Second
University; PLA: Chinese People’s Liberation Army General Hospital; LZ: L
Hospital Chinese Academy of Medical Sciences; SW: The First Hospital A
Hospital; XJ: The First Affiliated Hospital of Xi’an Jiaotong University; HN
Affiliated Hospital of Zhengzhou University; SUM: Total sample size of each
number of samples of this category in all hospitals.
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“negative sample.” All statistical tests were two sided, and
P value less than 0.05 indicates statistical significance.
However, to compare the performance of the model with
that of human doctors, 37 experienced ultrasonologists
were invited to classify 50 breast mass images randomly
selected from the test set into the 4 mass categories. All
ultrasonologists had more than 5 years of working
experience in breast US. The sample read by each physician
was consistent with the AI model, which used all patient
cases in the test set. Comparisons were made according to
the accuracy of the diagnosis and the total time required to
make the diagnosis. All statistical analyses were performed
using SPSS for Windows V.20.0 (IBM SPSS Statistics,
International Business Machines Corporation, Armonk,
NY, USA) and MedCalc (V.11.2; 2011 MedCalc Software
bvba, Mariakerke, Belgium).
Results

Baseline characteristics

A total of 5127 patients were initially identified for
potential inclusion in this study. From these, 1504 patients
were excluded because of the presence of other diseases,
antiviral treatment, or unqualified histological, serological,
and/or 2D-CDFI-PW results. Thus, 3623 patients with
15,648 images were finally enrolled for analysis. The
patients were randomly allocated to training and test sets,
with 7835 breast images from 1810 patients used as a
training set to train the model and optimize its parameters,
and the remaining 7813 images from 1813 patients being
used as an independent test set to verify the performance of
the generated model. The mean dimension of the tissue
samples obtained by needle biopsy was 17.7 mm (all
patients). There were 1601 benign masses (I), 1179
malignant masses (II), 572 inflammatory masses (III),
and 271 cases of adenosis (IV). The patients’ character-
istics are summarized in Table 1.
lignant tumor Inflammatory masses Adenosis

714 (60.6) 110 (19.2) 18 (6.6)
82 (7.0) 33 (5.8) 4 (1.5)
50 (4.2) 108 (18.9) 10 (3.7)
61 (5.2) 30 (5.2) 47 (17.3)
35 (3.0) 18 (3.1) 50 (18.5)
35 (3.0) 38 (6.6) 27 (10.0)
59 (5.0) 9 (1.6) 4 (1.5)
67 (5.7) 22 (3.8) 2 (0.7)
1 (0.0) 55 (9.6) 55 (20.3)
22 (1.9) 14 (2.4) 0 (0.0)
53 (4.5) 9 (1.6) 7 (2.6)
0 (0.0) 102 (17.8) 1 (0.4)
0 (0.0) 24 (4.2) 46 (17.0)
1179 572 271

Nanning people’s Hospital; CJ: China-Japan Friendship Hospital of Jilin
anzhou University Second Hospital; TD:Tangdu Hospital; CA: Cancer
ffiliated to AMU (Southwest Hospital); HP: Henan Provincial People’s
: The First Affiliated Hospital of Hebei North University; ZZ: The First
category; n: The percentage of the sample size of this category in the total
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Comparison of diagnostic performance between the different
US image combinations

On the test set, the 2D-CDFI model showed better
accuracy (89.2%) than the 2D (87.9%) and 2D-CDFI-
PW (88.7%) models (P< 0.005). This 2D-CDFI model
showed AUC, specificity, sensitivity, and PPV of 0.94,
99%, 93%, and 96%, respectively, for benign tumors;
0.96, 100%, 96%, and 93% for malignant tumors; 0.80,
96%, 55%, and 92% for inflammatory masses; and 0.81,
98%, 46%, and 92% for adenosis [Figure 3; Supplemen-
tary Table 1, http://links.lww.com/CM9/A434]. The
results suggest that adding the color mode image (2D-
CDFI) to the 2D image is helpful for increasing the
accuracy of classification, but that further addition of the
PW mode image (2D-CDFI-PW) reduced the accuracy.
This may be due to the low number of PW images
available, which resulted in insufficient training of the
model, meaning that the model could not fully fit the
distribution of the 2D-CDFI-PW images and thus gave
lower performance than the 2D-CDFI and 2D models. A
confusion matrix of the classifications is shown in Table 2.

However, as a comparison, we selected data from the CJ to
form an independent validation set to test the model
training on data from other hospitals. The CJ hospital data
consist of 219 cases, including 81 benign tumors, 61
malignant tumors, 30 inflammatory masses, and 47 cases
of adenosis. The training dataset consisted of 3404 cases,
including 1520 benign tumors, 1118 malignant tumors,
542 inflammatory masses, and 224 cases of adenosis. A
similar training strategy was applied to the dataset. The 2D
model correctly classified 72 of 81 benign tumors, 55 of 61
Figure 3: Comparison of ROC curves between 2D (n= 3623), 2D-CDFI (n= 2573), and 2D-CDF
CDFI: n= 589, 2D-CDFI-PW: n= 28); (B) Malignant tumor (2D: n= 589, 2D-CDFI: n= 447, 2D-
n= 10); (D) Adenosis (2D: n= 135, 2D-CDFI: n= 78, 2D-CDFI-PW: n= 3) in the training cohort;
tumor (2D: n= 590, 2D-CDFI: n= 448, 2D-CDFI-PW: n= 70); (G) Inflammatory masses (2D: n=
2D-CDFI-PW: n= 3) in the test cohort. CDFI: Color doppler flow imaging; PW: Pulse wave; R
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malignant tumors, 22 of 30 inflammatory masses, and 33
of 47 cases of adenosis, with accuracy of 88.9% for benign
tumors, 90.2% for malignant tumors, 73.3% for inflam-
matory masses, and 70.3% for adenosis. The 2D-CDFI
model correctly classified 12 of 14 benign tumors, 50 of 55
malignant tumors, 16 of 21 inflammatory masses, and 18
of 24 cases of adenosis, with accuracy of 0.857, 0.909,
0.762, and 0.750, respectively. These results are lower
than those obtained using the models trained with half of
the CJ hospital samples. This result suggests that differ-
ences in machines and scanning habits across different
hospitals lead to different data distributions across
different hospitals. There were insufficient PW images to
train the 2D-CDFI-PW model, and therefore, only the 2D
and 2D-CDFI models were used for this comparison.

Comparison of diagnostic performance between masses of
different sizes

The model trained on 2D images was used to compare
performance between different mass sizes and hospitals
because 2D images were available for the most complete
group of patients in terms of age, pathology subtype, and
coverage, and could, therefore, best reflect the differences
caused by different mass sizes and different hospitals. For
benign tumors, a larger size was associated with a higher
correct diagnosis rate. For malignant tumors, size did not
affect the accuracy of deep learning, even if the maximum
diameter of the tumor was less than 1 cm. For
inflammatory masses and adenosis, the accuracy rates
were lower than for benign and malignant tumors, but this
was to be expected.More details are shown in Figure 4 and
Supplementary Table 2, http://links.lww.com/CM9/A435.
I-PW (n= 222) for the assessment of breast masses of (A) Benign tumor (2D: n= 800, 2D-
CDFI-PW: n= 69); (C) Inflammatory masses (2D: n= 286, 2D-CDFI: n= 171, 2D-CDFI-PW:
and (E) Benign tumor (2D: n= 801, 2D-CDFI: n= 590, 2D-CDFI-PW: n= 29); (F) Malignant
286, 2D-CDFI: n= 171, 2D-CDFI-PW: n= 10); (H) Adenosis (2D: n= 136, 2D-CDFI: n= 79,
OC: Receiver operating characteristic.
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Table 2: Confusion matrix of the diagnoses of 2D, 2D-CDFI, and 2D-CDFI-PW models.

Prediction, n

Model Ground truth Inflammatory masses Adenosis Benign tumor Malignant tumor

2D model Inflammatory masses (n= 572) 406 85 72 9
Adenosis (n= 271) 71 181 17 2

Benign tumor (n= 160) 36 89 1451 25
Malignant tumor (n= 1179) 37 54 35 1053

2D-CDFI model Inflammatory masses (n= 342) 252 47 40 3
Adenosis (n= 157) 39 110 6 2

Benign tumor (n= 1179) 17 57 1097 8
Malignant tumor (n= 895) 26 40 17 812

2D-CDFI-PW model Inflammatory masses (n= 20) 16 1 2 1
Adenosis (n= 6) 1 5 0 0

Benign tumor (n= 57) 2 4 49 2
Malignant tumor (n= 139) 2 3 1 133

Ground truth, number of samples in each category identified by the doctor; Prediction, number of samples for each category predicted by the models. 2D:
Two-dimensional images only; CDFI: Color Doppler flow imaging; PW: Pulsed wave.

Figure 4: Comparison of receiver operating characteristic (ROC) curves for the assessment of breast masses of: (A) size� 1 cm (Benign: n= 165, Malignant: n= 55, Inflammation: n= 88,
Adenosis: n= 8); (B) 1–2 cm (Benign n= 370, Malignant: n= 223, Inflammation: n= 91, Adenosis: n= 22); (C) 2–5 cm (Benign: n= 186, Malignant: n= 213, Inflammation: n= 46,
Adenosis: n= 51); (D) ≥5 cm (Benign: n= 8, Malignant: n= 11, Inflammation: n= 3, Adenosis: n= 14) in the training cohort, and (E) size � 1 cm (Benign: n= 166, Malignant: n= 55,
Inflammation: n= 88, Adenosis: n= 8); (F) 1–2 cm (Benign: n= 371, Malignnat: n= 223, Inflammation: n= 91, Adenosis: n= 22); (G) 2–5 cm (Benign: n= 186, Malignant: n= 213,
Inflammation: n= 46, Adenosis: n= 51); (H) ≥5 cm (Benign: n= 8, Malignant: n= 12, Inflammation: n= 4, Adenosis: n= 15) in the test cohort.
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Comparison of diagnostic performance between hospitals

The TT hospital was the most numerically optimized in all
aspects, which may be related to the TT hospital having
provided more cases than any of the other hospitals. More
details are shown in Figure 5 and Supplementary Table 3,
http://links.lww.com/CM9/A436.
Comparison of the classification of breast masses between
the CNN and radiologists

The CNN showed superior performance to all 37 ultra-
sonologists for the classification of 50 breast mass images
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randomly selected from the test set, showing a shorter time
and higher accuracy. The accuracy of the CNN model
was 89.2%, the CPU processing time 1 s, and the GPU
processing time 400 ms. For the 37 ultrasonologists the
average time was 314 s, the average accuracy was 30%, the
shortest time was 83 s, and the highest accuracy was 45%.

Discussion

In this study, we have used a CNN algorithm to classify 2D,
2D-CDFI, and 2D-CDFI-PW images of breast masses into
four categories. The 2D-CDFImodel showed better accuracy
than the 2D and 2D-CDFI-PW models. There was no

http://links.lww.com/CM9/A436
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Figure 5: Comparison of assessments of breast masses between different hospitals using (A) ROC curves; (B) Benign, malignant, inflammation, and adenosis category sample size ratios.
ROC: Receiver operating characteristic; TT: Beijing Tiantan Hospital; TR: Beijing Tongren Hospital; NN: The Second Nanning people’s Hospital; CJ: China-Japan Friendship Hospital of Jilin
University; PLA: Chinese People’s Liberation Army General Hospital; LZ: Lanzhou University Second Hospital; TD:Tangdu Hospital; CA: Cancer Hospital Chinese Academy of Medical Sciences;
SW: The First Hospital Affiliated to AMU (Southwest Hospital); HP: Henan Provincial People’s Hospital; XJ: The First affiliated Hospital of Xi’an Jiaotong University; HN: The First Affiliated
Hospital of Hebei North University; ZZ: The First Affiliated Hospital of Zhengzhou University.
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significant difference in the performance of our model
according to different sizes of breast masses. After processing
by the CNN model, the background and lesion areas were
clearly distinguishable. The model achieved better accuracy
than37 ultrasonologists. As described in the sample selection
process, our samples were selected from historical patients
who obtained a definite diagnosis after biopsy, with patients
without a definite diagnosis being excluded. Therefore, our
model may be at risk of low diagnostic accuracy for patients
who are difficult to diagnose. Additionally, the data may be
affected by the pathological distribution of historical case
data, such as in invasive ductal carcinoma, where fibroade-
noma pathological types account for the majority of cases,
and some cases may also have been affected by concomitant
diseases. This bias may lead to a risk of higher diagnostic
accuracy for samples belonging to the majority pathological
type and lower diagnostic accuracy for samples belonging
to less frequent pathological types. When we divided the
data sets, we tried our best to consider the data distributions
of the training and validation sets, to ensure that they were
similar. The classification accuracywas better for benign and
malignant tumors than for inflammatory masses and
adenosis, which may reflect our data distribution.

Ultrasound is among the most commonly usedmethods for
the screening of breast lumps in China. The ultrasonologist
typically examines about 150 patients a day, which is a
heavy workload. Neural networks can learn from every
new case they deal with and can apply the acquired
knowledge to future US diagnoses.[22-24] Therefore, the
application of artificial intelligence to US-assisted diagno-
sis is of great significance for reducing the workload of
doctors and providing a rapid diagnosis of breast masses.
422
Until now, research on US classification of breast masses
has focused on differentiating benign from malignant
tumors. We here propose four classifications for breast
masses: benign tumors, malignant tumors, inflammatory
masses, and adenosis, which is more in line with the clinical
diagnostic process [Supplementary Figure E4, http://links.
lww.com/CM9/A433]. Human doctors show excellent
performance in distinguishing benign tumors from malig-
nant tumors on US images, with an accuracy rate of
about 84%,[25] whereas the accuracy rate of the doctors
who performed best on the four-category classification
problem was only 45%. It is also difficult to distinguish
inflammatory masses from adenosis on more expensive
radiological methods, such as MRI or molybdenum target
imaging. This indicates that most clinical cases require
biopsy or pathological examination to confirm the
diagnosis. Therefore, we tried to identify the four types
of masses simultaneously during diagnosis, which is of
great importance for improving the efficiency of clinical
diagnosis and treatment. Our results show that the
classification accuracy for inflammatory masses and
adenosis was less than that for benign and malignant
lesions, which may be a result of the lower number of
samples available for training in the inflammatory masses
and adenosis categories.

As a multicenter study, we collected US data from 3623
patients from 13 hospitals. This is the largest breast US
dataset ever reported, and it contains high quality
annotations using pathological results as the reference
standard. The dataset also includes PW mode images,
which have not been mentioned in previous studies. Our
research supplements the small amount of data used in

http://links.lww.com/CM9/A433
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previous studies, and validates the applicability of deep
learning models created using small amounts of breast US
data to the analysis of large datasets.

In this study, we provided not only the commonly used 2D-
CDFI diagnosis and processing methods, but also intro-
duced PW mode images as model inputs rarely. This is
more in line with the clinical diagnostic process. However,
because of the limitations of the current PWmode data, we
were not able to conclude that PW can significantly
improve diagnostic results. Still, the PW images acquired as
an auxiliary method in the clinical diagnostic process
contain additional spectral information. The same struc-
tural methods were used to build the different models to
allow the contribution of images acquired using different
modes to be compared. There is currently no other research
model focusing on PW images, and we expect to further
improve this model in future research work.

This study used datasets acquired using US equipment
from different manufacturers. As different US devices may
have different signal processing and image optimization
parameters, many traditional auxiliary diagnostic models
are only suitable for use with a single model of US device.
Therefore, we included images acquired on US equipment
from different manufacturers, which will also help with the
implementation of future models.

Because this study reports preliminary research results, it is
subject to the following limitations. We have not fully
explored the features of various patterns of images and
established targeted models. We did not investigate
whether the classification results change according to
the distribution of the characteristics of the device, the
characteristics of the doctor, or the characteristics of the
patients. We expect to provide a more detailed discussion
and analysis of various details of the dataset in future
research.
Conclusion

The author would like to conclude that using 2D-CDFI US
images, the deep CNNmodel achieved better results in the
diagnosis of breast masses than observations by experi-
enced ultrasonologists. In addition to benign and malig-
nant breast masses, the CNN model could accurately
diagnose inflammatory and adenopathy breast masses.
Without the need for special equipment, the CNNmodel’s
diagnostic recommendations based on US images could
reduce predetermined biopsies, simplify the workload of
US doctors, and enable targeted and refined treatment.
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