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A B S T R A C T

Jingmen tick virus (JMTV) is a recently identified virus which provides an unexpected connection between
segmented and unsegmented RNA viruses. Recent investigations reveal that JMTV including JMTV-like virus
(Alongshan virus) could be associated with human disease, suggesting the significance of JMTV in public health.
To better understand the genetic diversity and host range of JMTV, a total of 164 rodents representing 8 species
were collected in Qapqal Xibe county of Xinjiang Uygur Autonomous Region, China, and were screened for
JMTVs using RT- PCR. Consequently, JMTV was identified in 42 rodents including 23 Microtus arvalis voles
(24.5%), 9 Apodemus uralensis mice (29.0%), 5 Mus musculus mice, 1 Rhombomys opimus gerbil, 1 Meriones
tamariscinus gerbil, 1 Meriones libycus gerbil, 1 Cricetulus migratorius hamster and 1 Microtus gregalis vole.
Interestingly, nearly complete genome sequences were successfully recovered from 7 JMTV positive samples.
Although the newly identified rodent JMTVs were closely related to those previously identified in ticks from
China, based on the phylogenetic analysis of the S1, S2 and S3 segments, the newly identified rodent viruses
clustered into two genetic groups. One group comprised of viruses only found in M. arvalis, while another group
included viruses from A. uralensis, C. migratorius andM. gregalis. However, all rodent viruses clustered together in
the S4 tree. Considering rodents live in close proximity to humans, more efforts are needed to investigate the role
of rodents in the evolution and transmission of JMTV in nature.

1. Introduction

Jingmen tick virus (JMTV) was first identified in ticks sampled from
Jingmen city of Hubei province and Wenzhou city of Zhejiang province
of China in 2010 (Qin et al., 2014). The JMTV genome comprises four
separate segments of linear, positive-sense single-stranded RNA, which
are referred to as the segments S1, S2, S3 and S4, respectively. The
segments S1 and S3 encode nonstructural proteins (NSP1 and NSP2),
while the segments S2 and S4 encode structural proteins (VP1, VP2 and
VP3). The segments S1 and S3 are related to the nonstructural protein
genes (NS3 and NS5) of classic flaviviruses of the family Flaviviridae, the
remaining two segments (S2 and S4) share no homology with viral
sequences of any known viruses (Qin et al., 2014). JMTV is as such one
of the most recent discovered viruses to provide an unexpected link
between segmented and unsegmented RNA viruses. Since the discovery

of JMTV in 2010, a group of JMTVs and JMTV-like viruses, which are
named Jingmenvirus (Shi et al., 2016), have been identified in ar-
thropods and mammals including cattle and monkey sampled from
Asia, Africa, Europe and America (Qin et al., 2014; Ladner et al., 2016;
Shi et al., 2016; Villa et al., 2017; de Souza et al., 2018; Emmerich
et al., 2018; Sameroff et al., 2019; Temmam et al., 2019), showing a
remarkable diversity and a global geographic distribution. In addition,
Jingmenviruses also exhibit diverse genome organization strategies
such as variation in segment numbers, monopartite and multipartite
forms (Ladner et al., 2016; Shi et al., 2016; Villa et al., 2017). More
importantly, JMTV has been identified in humans suffering with he-
morrhagic fever in Kosovo (Emmerich et al., 2018). Recently, human
febrile illness associated with JMTV and JMTV-like virus [named
Alongshan virus (ALSV)] was also described in China (Jia et al., 2019;
Wang et al., 2019). All these data reveal the importance of
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Jingmenviruses in both virus evolution and public health, therefore
calling for further efforts to better understand the diversity, prevalence,
and transmission of JMTV in nature to prevent its emergence.

Rodents are mammals of the order Rodentia, which includes ap-
proximately 2277 species worldwide (Wilson and Reeder, 2005). They
represent more than 40% of the world's mammalian biodiversity and
are found in all continents with the exception of Antarctica. Due to their
high diversity, global distribution and frequent contact with humans,
rodents are a major reservoir for a broad range of human pathogens
such as arenaviruses, hantaviruses, and Yersinia pestis bacteria (Li et al.,
2015; Milholland et al., 2018; Meerburg et al., 2009). Considering that
JMTV have been shown to infect mammals (Qin et al., 2014; Ladner
et al., 2016; de Souza et al., 2018), and that rodents are natural hosts of
a broad range of ticks, we hypothesized that rodents may harbor JMTV
and play an important role in its transmission and evolution.

In this study, we performed a molecular epidemiology survey of
JMTV in rodents sampled from Qapqal Xibe Autonomous County, Yili
Autonomous Prefecture, Xinjiang Uygur Autonomous Region of China,
to investigate the presence and diversity of JMTV in rodents.

2. Materials and methods

2.1. Collection of animals

During 2016, a total of 164 rodents were captured trapped in
Qapqal Xibe Autonomous county of Autonomous Yili prefecture of
Xinjiang Uygur Autonomous Region, China. All captured rodents were
first identified to species level by morphological examination. Rodent
species were then confirmed by analyzing sequence of mitochondrial
cytochrome b (mt-cyt b) gene (Guo et al., 2013; Chen et al., 2019).
Tissue samples of heart, liver, spleen, lung, and kidney were collected
from rodents to detect JMTV.

The study was reviewed and approved by the ethics committee of
the National Institute for Communicable Disease Control and
Prevention, Chinese Center for Disease Control and Prevention (CDC).
All animals were handled following the protocols approved by the
Laboratory Animal Use and Care Committee, CDC. Particularly, rodents
were anesthetized with ether before surgery as previously described
(Guo et al., 2013), and then liver, lung and other tissue samples were
collected and stored at −80 °C.

2.2. Extraction of DNA and RNA, RT-PCR and sequencing

DNA and RNA were extracted from liver, lung and other tissue
samples using a DNA/RNA isolation kit (Omega biotek, USA) according
to the manufacturer's instruction. A one step RT-PCR kit (TaKaRa,
Dalian, China) was used to reverse transcribe total RNA. JMTV and
JMTV-like viruses were detected by a nested RT-PCR as described
previously (Qin et al., 2014; Shi et al., 2016). We also attempted to
recover the complete genome of JMTV using primers designed pre-
viously by our laboratory (Qin et al., 2014; Shi et al., 2016). The pri-
mers used in this study are described in Table S1. The 5′ and 3′ ends of
the four segments were amplified by using a RACE kit (TaKaRa, Dalian,
China). Simple PCR was used to amplify mt-cyt b gene as described
previously (Guo et al., 2013). Finally, as cross contamination is an often
issue for PCR amplification, strict protocols for sample collection, an-
imal dissection, tissue homogenization, RNA or DNA isolation, negative
and positive controls were performed to prevent from false positive.
Our criteria for positive sample was based on nest PCR positive for 2–3
segments of JMTV, apart from negative and positive controls.

The PCR products were purified using QIAquick Gel Extraction kit
(Qiagen, Valencia, USA) for sequencing. Purified DNA with< 700 bp
was sequenced directly using the standard Sanger sequencing method
by Shanghai Sangon Biotechnology Company (Shanghai, China).
However, those with>700 bp was firstly cloned into pMD18-T vector
(TaKaRa, Dalian, China), and then transformed into JM109–143

competent cells. For each sample, at least three clones were selected for
sequencing. All the sequencing data were assembled by Seqman.

All viral genome sequences obtained in this study have been de-
posited in GenBank and assigned accession numbers (virus: MK174230
to MK174257 and MN369292-MN369308; mt-cyt b: MN454323-
MN454334 and MT024684-MT024691) (Table S2).

2.3. Phylogenetic analysis

Viral sequences were aligned using the Clustal W method im-
plemented in the MEGA software, version 6.0 (Tamura et al., 2013).
Identities of viral sequences were calculated by DNAStar (version 5.01).
Viral sequences used for phylogenetic analysis in this study are de-
scribed in Table S2.

Phylogenetic trees were constructed by using the maximum like-
lihood (ML) method available within the PhyML version 3.0 program
(Guindon et al., 2010). jModelTest was used to determine the best-fit
model of nucleotide substitution of all aligned sequences (Posada,
2008). Subtree Pruning and Regrafting (SPR) branch-swapping algo-
rithm was chosen, then Shimodaira-Hasegawa-like (SH-like) procedure
was used in the approximate likelihood ratio test (aLRT). Bootstrap
analysis was performed with 1000 replicates with bootstrap values>
70% considered significant.

3. Results

3.1. Detection and organ distribution of JMTV in rodents

During 2016, a total of 164 rodents, which included 94 Microtus
arvalis (common vole), 31 Apodemus uralensis (Ural field mouse), 13
Rhombomys opimus (great gerbil), 12 Mus musculus (house mouse), 6
Meriones tamariscinus (Kalmykis gerbils), 5 Meriones libycus (Lybian
jird), 2 Cricetulus migratorius (grey hamster) and 1 Microtus gregalis
(narrow-headed vole), were captured in Qapqal Xibe Autonomous
county of Yili Autonomous prefecture of Xinjiang Uygur Autonomous
Region, China. The RT-PCR, which targets the conserved region of the
S1 to S4 segments of JMTV, as described previously (Qin et al., 2014;
Shi et al., 2016), was used to screen for JMTV and JMTV-like viruses in
liver tissues from these rodents. Notably, 42 liver samples were found
positive by RT-PCR, including 23 M. arvalis (24.5%), 9 A. uralensis
(29.0%) and 5 M. musculus, 1 R. opimus, 1 M. tamariscinus, 1 M. libycus,
1 C. migratorius, 1 M. gregalis, with a total detection rate of 25.6%
(Table 1). Genetic analysis of the recovered viral sequences revealed
that they were closely related to each other with up to 90.7% nucleotide
identity and shared the high similarity (up to 87.2%) with known
JMTVs discovered in ticks sampled from China (Qin et al., 2014; Jia
et al., 2019), indicating the circulation of JMTV in rodents sampled
from Xinjiang of China. However, JMTV-like viruses had not yet been
found from these rodents.

To determine the tissue distribution of JMTV in rodents, organ

Table 1
Prevalence of Jingmen tick virus in liver of rodents in Qapqal of Xinjiang,
China.

Species PCR positive/Samples collected Total

Male Female

Microtus arvalis 7/28 16/66 23/94
Apodemus uralensis 5/17 4/14 9/31
Rhombomys opimus 0/10 1/3 1/13
Mus musculus 3/7 2/5 5/12
Meriones tamariscinus 1/3 0/3 1/6
Meriones. libycus 1/5 0/0 1/5
Cricetulus migratorius 1/2 0/0 1/2
Microtus gregalis 1/1 0/0 1/1
Total (%) 19/73 (26.0) 23/91(25.3) 42/164 (25.6)
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samples from individual rodents were screened by PCR for detecting
JMTV. Consequently, JMTV was found in the heart, liver, spleen, lung,
and kidney sampled from rodents collected in Xinjiang (Table 2).
However, the detection rate in tissue samples was different, with the
highest in liver (25.6%).

3.2. Genetic analysis of the newly identified rodent-borne JMTVs

To better characterize the JMTVs harbored by rodents, 5 partial and
7 nearly complete or complete coding genome sequences were re-
covered from viral RNA-positive samples (XJ9, XJ26, XJ58, XJ61, XJ77,

XJ155, XJ335, XJ363, XJ364, XJ445, XJ483 and XJ511) (Table S3).
Notably, all the nearly complete genome sequences were obtained from
M. arvalis voles. Genetic analysis of the recovered genome sequences
revealed that that the viruses sampled from voles shared the lowest
levels of sequence diversity, with 0.1–1.5% nucleotide differences in all
four segments (Tables S4 and S5). Vole viruses (strains XJ58, XJ61,
XJ77, XJ155, XJ335, XJ363, and XJ364) were most closely related to
the strains (JMTV_YJ3-3 and JMTV85) at the nucleotide level (up to
99.8% similarity in the S1 segment and 100% similarity in the S2 and
S4 segments, Tables S4 and S5), which were identified in Rhipicephalus
microplus tick sampled from Wenzhou city of Zhejiang province and
Jingmen city of Hubei province, respectively (Qin et al., 2014), more
than 4000 km away from Xinjiang. The nucleotide differences between
these sequences and other tick viruses sampled from other regions in
China (Qin et al., 2014) were up to 8.9% (Tables S4 and S5). Ad-
ditionally, the nucleotide similarities between viruses identified in
China and those identified in Africa, Europe, and America ranged from
77.8% to 92.1% (Tables S4 and S5). Finally, all these JMTV are far
distant from ALSV (Table S4 and S5), with<72.0% nucleotide
and< 79.2% amino acid identity for the nonstructural genes and<
65.0% nucleotide and<76.3% amino acid identity for the structural
genes, suggesting that ALSV may represent a novel member of Jing-
menvirus.

3.3. Phylogenetic relationship between rodent borne JMTV and known
JMTV

To better understand the newly identified rodent JMTVs from

Table 2
Prevalence of Jingmen tick virus in different rodent tissues from Xinjiang,
China.

Species PCR-positive/Rodents trapped

Liver Lung Spleen Kidney Heart

Microtus arvalis 23/94 14/89 4/93 9/47 2/23
Apodemus uralensis 9/31 1/29 0/25 2/10 1/9
Rhombomys opimus 1/13 0/13 0/13 1/13 0/1
Mus musculus 5/12 1/12 0/10 3/7 0/4
Meriones tamariscinus 1/6 0/6 0/3 0/3 0/1
Meriones. libycus 1/5 1/5 0/5 0/1 0/1
Cricetulus migratorius 1/2 0/2 0/1 0/1 0/1
Microtus gregalis 1/1 0/1 0/1 0/1 0/1
Total (%) 42/164

(25.6)
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Fig. 1. Phylogenetic analysis of the nucleotide sequences of the segments 1 and 3 of JMTV. Viruses discovered in the present study are marked red with a rhombus
(Microtus arvalis borne), blue circle (Apodemus uralensis borne), purple square (Microtus gregalis borne), and green triangle (Cricetulus migratorius borne) according to
their hosts. The bootstrap support values greater than 70% are shown at relevant nodes. The trees were mid-point rooted for clarity only. The scale bar depicts the
number of nucleotide substitutions per site. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Z.-M. Yu, et al. Infection, Genetics and Evolution 84 (2020) 104411

3



Xinjiang, phylogenetic trees based on all four segment sequences were
estimated using the ML method. In the four phylogenetic trees (Figs. 1
and 2), all known JMTVs identified in and outside of China were
grouped into three phylogenetic groups, exhibiting a high genetic di-
versity. The first group comprises of the viruses sampled from Asia,
Africa and South America. The second group contains those identified
in Kosovo and Trinidad and Tobago (Emmerich et al., 2018; Sameroff
et al., 2019), while the third group includes ALSVs identified in China,
Finland and France (Wang et al., 2019; Kuivanen et al., 2019; Temmam
et al., 2019). Within the first group, viruses were classified into three
lineages (Figs. 1 and 2). All Chinese viruses including those identified in
this study and sampled from Lao PDR clustered together and formed the
phylogenetic lineage I (Qin et al., 2014; Temmam et al., 2019). The
second lineage just consisted of one virus which was identified in a
monkey sampled from Uganda (Ladner et al., 2016), while the third
lineage was comprised of those identified in ticks sampled from Brazil
and Guinea (Villa et al., 2017; de Souza et al., 2018).

Within the first lineage, the Chinese JMTVs still exhibited a high
diversity (Figs. 1 and 2). Notably, the rodent viruses sampled from
Xinjiang were grouped into two distinct sub-lineages in the S1, S2 and
S3 trees. The viruses sampled from M. arvalis voles clustered together
and showed a closer evolutionary relationship with JMTV_YJ3-3 iden-
tified in R. microplus from Wenzhou city of Zhejiang province (Qin
et al., 2014), while the viruses sampled from Ural field mice (A. ur-
alensis), grey hamsters (C. migratorius), narrow-headed voles (M. gre-
galis) formed another sub-lineage with other JMTVs identified in R.

microplus from Hubei province (Qin et al., 2014). However, all newly
identified rodent viruses from Xinjiang clustered together and formed
one lineage in the S4 tree.

3.4. Phylogenetic analysis of rodents

Rodents are geographically distributed worldwide, and are highly
diverse. To confirm the host species assignment for the rodent JMTV
viruses and the transmission of JMTV in relation to host genetic di-
versity, sequences of cytochrome b gene were amplified from liver tis-
sues of RNA positive rodents captured in Qapqal Xibe Autonomous
county of Xinjiang. With these data we compared the phylogenetic re-
lationships between rodents captured in Xinjiang and known rodents. In
the tree (Fig. 3), all eight species of rodents captured in this study were
closely related to known species. Furthermore, they showed a close
phylogenetic relationship with those sampled from Xinjiang and
neighboring areas. Particularly, common voles (M. arvalis) captured
here were closely related to those also from Yili Autonomous prefecture
and Kazakhstan, while Ural field mice (A. uralensis) clustered together
with those sampled from Bole city - a neighboring region of Yili, and
Kazakhstan and Uzbekistan.

4. Discussion

Since its discovery in 2010 (Qin et al., 2014), JMTV has been
identified not only in multiple Chinese regions (Shi et al., 2016; Jia
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et al., 2019), but also in Asia, Africa, America and Europe (Qin et al.,
2014; Ladner et al., 2016; Shi et al., 2016; Villa et al., 2017; de Souza
et al., 2018; Emmerich et al., 2018; Jia et al., 2019; Sameroff et al.,
2019; Temmam et al., 2019), indicating a worldwide distribution. Ad-
ditionally, JMTVs and JMTV-like viruses exhibit a high genetic di-
versity (Ladner et al., 2016; Shi et al., 2016; Wang et al., 2019). In this
study, the newly identified rodent JMTVs from Qapqal Xibe Autono-
mous county of Xinjiang also show a high genetic diversity, especially
up to nearly 10% nucleotide difference in the both the S2 and S4 seg-
ments. Interestingly, although viruses (Xinjiang-Au-9; Xinjiang-Mg-26;
Xinjiang-Au-445; Xinjiang-Au-483; and Xinjiang-Cm-511) were sam-
pled from different rodent species, they exhibited high similarity
(Figs. 1 and 2). Considering the hosts were captured from the same
trapping location, this may suggest common transmission of these
viruses between these different rodent species.

During a long-term of evolutionary history, some of mammal RNA
viruses establish a specific association with their mammal hosts and
show a geographic clustering pattern such as arenaviruses and hanta-
viruses (Li et al., 2015; Guo et al., 2013). However, generally, some of
arthropod RNA viruses have lost the ability to transmit in vertebrates
such as flaviviruses and phleboviruses (Elliott and Brennan, 2014;
Bradley and Andrew, 2015; Zhang et al., 2012). To date, JMTVs have
been identified in both arthropods and mammals (Qin et al., 2014;
Ladner et al., 2016; Villa et al., 2017; de Souza et al., 2018; Jia et al.,
2019; Sameroff et al., 2019; Temmam et al., 2019). Herein, JMTV is
also identified in multiple species of rodents. All these data indicate that
JMTVs have a broad range of hosts (Qin et al., 2014; Ladner et al.,
2016; Villa et al., 2017; de Souza et al., 2018; Emmerich et al., 2018;
Jia et al., 2019; Sameroff et al., 2019; Temmam et al., 2019). These data
also suggest that no observable variation in genome structure is needed
for the transmission of JMTV in between arthropods and mammals.
Although JMTVs show a geographic cluster pattern in a large geo-
graphical scale, such as between different continents, the viruses
identified in Xinjiang are closely related to those identified in Hubei
and Zhejiang provinces of China (Qin et al., 2014), which are very
distant from Xinjiang (about 4000 km apart). Additionally, one sub-
lineage of viruses is just identified in M. arvalis voles. In sum, all these
data suggest a complex evolutionary history of JMTV.

Rodents are geographically distributed worldwide, being the most
diverse mammals. Additionally, they often live in close proximity to
humans or domestic animals. They serve as one of the most important
reservoirs for a broad range of human pathogens, and they play a key
role in the transmission of zoonotic diseases in humans such as he-
morrhagic fever with renal syndrome and plague (Meerburg et al.,
2009; Milholland et al., 2018). Over the past decade, more and more
viruses have been identified in rodents sampled around the world in-
cluding coronavirus, rotavirus, paramyxovirus, and orthopoxvirus
(Wang et al., 2015; Oldal et al., 2015; Li et al., 2016; Berto et al., 2018).
In addition to the high prevalence of JMTV in a broad range of ar-
thropods (Qin et al., 2014; Villa et al., 2017; de Souza et al., 2018; Jia
et al., 2019; Sameroff et al., 2019; Temmam et al., 2019), previous
studies also revealed the presence of JMTV in cattle and monkey (Qin
et al., 2014; Ladner et al., 2016; de Souza et al., 2018). Recently, JMTVs
including ALSV are found to be associated with human disease (Jia
et al., 2019; Wang et al., 2019). In this study, JMTV was identified in
eight species of rodents sampled from Qapqal Xibe Autonomous County
of Xinjiang, China, with a high detection rate (25.6%). Furthermore,
JMTV was also identified in a broad range of tissue samples. Hence, our
data indicate that rodents are one of natural hosts of JMTV. In addition,
as shown in Figs. 1 and 2, rodent JMTVs were closely related to those
identified in arthropods from China (Qin et al., 2014; Jia et al., 2019).
The close relationship between rodent and tick JMTVs suggests a pos-
sibility of horizontal transmission between arthropods and rodents. As
rodents are also a natural host of ticks, rodents may play an important
role in the evolution and transmission of JMTV. However, as the cur-
rent investigation was performed only in a small region of Xinjiang, a

large-scale surveillance is needed to fully understand the circulation
and transmission of JMTV in rodents and between rodents and ar-
thropods.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.meegid.2020.104411.
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