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Abstract: The release of the FDA’s guidance on Process Analytical Technology has motivated and
supported the pharmaceutical industry to deliver consistent quality medicine by acquiring a deeper
understanding of the product performance and process interplay. The technical opportunities to reach
this high-level control have considerably evolved since 2004 due to the development of advanced
analytical sensors and chemometric tools. However, their transfer to the highly regulated pharmaceu-
tical sector has been limited. To this respect, data fusion strategies have been extensively applied in
different sectors, such as food or chemical, to provide a more robust performance of the analytical
platforms. This survey evaluates the challenges and opportunities of implementing data fusion
within the PAT concept by identifying transfer opportunities from other sectors. Special attention is
given to the data types available from pharmaceutical manufacturing and their compatibility with
data fusion strategies. Furthermore, the integration into Pharma 4.0 is discussed.

Keywords: data fusion; process analytical technology; chemometrics; process control

1. Introduction

The pharmaceutical industry has witnessed substantial changes from a regulatory
perspective in the past few decades, aiming to ensure the quality of the pharmaceutical
product by a thorough understanding of both the product particularities and the manu-
facturing thereof [1]. The adoption of the ICH Q8-10 guidelines and the elaboration of the
concept of design of experiments by pioneering researchers in this field represented notable
milestones in the quality management of pharmaceutical products [2–4]. Concurrently to
these, the appearance of the Food and Drug Administration’s (FDA) guidance on Process
Analytical Technology (PAT) in 2004 forecasted an important paradigm shift of the major
regulatory bodies according to which quality cannot be tested in products; it should be
built-in or should be by design [5].

The driving force of many pharmaceutical companies to introduce PAT in their man-
ufacturing environment is referring to the reduced batch failures and reprocessing, pro-
duction process optimization, and faster release testing with the opportunity to enable
real-time release testing through feedback and feedforward control loops [6]. The immedi-
ate financial benefit/impact of a PAT-based control strategy translates into an increase in
production yield and a reduction in manufacturing costs. The increased amount of data
obtained from monitoring can further guide the optimization and continuous improvement
of the system, generating additional monetary value [7]. This ability to monitor a process
in real-time and obtain an improved understanding of product-process interplay requires
appropriate tools (PAT instruments) that can track the right product attributes [6].
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Process monitoring can be performed with various instruments, from built-in uni-
variate sensors to more complex sensors that can be interfaced with the process stream.
Both options could be very efficient if sufficient data is used to design these process control
tools to support their use. Thus, the reliability of a PAT procedure for the manufacturing
requirements and the selected control strategy is conditioned by its design, performance
qualification, and ongoing performance verification within proper lifecycle management [8].

The major challenges associated with the adoption of PAT in the pharmaceutical
industry refer to the integration of the probe, the sampling interface, data collection,
modeling, linking to a control system, the calibration of the method, and finally, the
validation of the integral system. Frequently, these high throughput instruments produce
large datasets recorded over multiple variables, requiring specialized data analysis methods.
In this respect, the European Directorate for the Quality of Medicines and Healthcare issued
the “Chemometric methods applied to analytical data” monograph in 2016 to encourage
using these analysis methods as an integral part of PAT applications [8].

As demands for the application of advanced technologies have increased, regulatory
documents aimed to formulate specific frameworks regarding the analytical development
and validation methodologies to facilitate the application of chemometrics in pharma. As
such, guidelines by the European Medicines Agency (EMA) and FDA have been elaborated,
dealing with the development and data requirements for submitting Near Infrared Spec-
troscopy (NIR) procedures in 2014 and 2021, respectively. Meanwhile, new ICH guidelines
have been considered—ICHQ13 and ICHQ14—having in sight the principles of continuous
manufacturing technology and the analytical quality by design (QbD) approach [4]. Fur-
thermore, with the elaboration of ICHQ14, the ICHQ2 guideline is currently under review,
with both concept papers being endorsed for public consultations on the 24 March 2022
(Figure 1).
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PAT is an indispensable unit in the newly emerging continuous manufacturing tech-
nologies and is required to demonstrate the process state of control and detect quality
variations. Continuously recorded data enables the detection of process deviations and
supports the root cause analysis of such events and the opportunity for continuous im-
provement [8].
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Drug products present a complex quality profile built around multiple critical quality
attributes (CQAs) influenced by controlled (formulation and process) and uncontrolled
factors. A multivariate approach to product/process understanding is critical due to the
complex interactions between these input factors affecting product quality. Moreover, these
factors are likely to have different influence patterns between several quality attributes.
To efficiently describe and understand these influences, a Design of Experiments-based
development with response surface methodology is recommended [3,4].

If the recorded data accounts for multiple factors influencing that particular response,
predicting complex quality attributes from PAT data can be managed appropriately from
only one data source. Under these circumstances, the variation of any influential factor will
be captured/perceived in the process analytical data and contribute to the method’s robust
predictive performance. Thus, to obtain a robust monitoring performance, it is essential to
identify the PAT tool sensible to these factors or to fuse multiple process analytical data.

The readily available advanced analytical platforms provide large amounts of di-
verse data associated with manufacturing processes that can be used for monitoring and
predictive purposes. The challenge, in this case, refers to the integration of data from
different sources to maximize the advantages of complementary information. The under-
lying idea/notion in performing data fusion (DF) is that the result of the fused dataset
will be more informative than the individual datasets. Thus, this procedure will provide a
more enhanced overview of the studied system with a more in-depth understanding and
data-driven decision-making [9–11].

Implementing the DF concept in PAT represents the next step in the evolution of
process monitoring technology that could provide a more comprehensive understanding
of the system and the opportunity to predict complex quality attributes of drug products.
Probably, due to the more strictly regulated field of the pharmaceutical industry, the use of
this concept in drug manufacturing has been limited to some extent.

Several review papers are available on DF, focusing on the chemometric/data pro-
cessing or the application side of data integration. Azcarate et al. published a review
on DF, focusing on the structure of data originating from different sources along with
DF strategies [12]. Mishra et al. reviewed the application of multi-block analysis meth-
ods for multi-source data integration, highlighting the advantages, disadvantages, and
particularities of different techniques [13]. On the same subject, Campos et al. reviewed
the pre-processing methods for multiblock applications [14]. Moreover, a relevant review
on the application of pre-processing strategies and pre-processing fusion approaches is
available from Mishra et al. [15].

On the application side of DF, food applications predominate. Zhou et al. reviewed
the application of DF technology in food quality authentication applications, providing
an effective comparison with non-fusion approaches [16]. Borras et al. provided a general
overview of DF strategies implemented for food and beverage characterization [17]. Two
other reviews are available on the application of artificial senses in food quality assess-
ment [18,19].

This review evaluates the challenges and opportunities of implementing DF in the
pharmaceutical industry, namely PAT, considering applications from other sectors. The
manuscript is organized into five sections. The first part focuses on the pharmaceutical
domain’s data types, considering small molecule processing and biotechnology. The second
part presents the concept behind DF, data processing, and modeling strategies. The third
section reviews the use of DF in classification, regression, and process control applications,
focusing on the interplay between input data structure, DF strategy, and performance
improvement. Moreover, attention is given to the handling of spectroscopic data. The
fourth part discusses the validation of these models, detailing the methodology used to
evaluate the performance of these models in the surveyed literature and the expectations
from a regulatory point of view. The last part presents the integration into Pharma 4.0 and
some future perspectives.
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The overall purpose of this work is to provide a systematic summary of all the key
elements that must be considered during the use of DF within PAT applications and to
support its implementation in real-life situations.

2. Data Types in the Pharmaceutical Industry
2.1. Off-Line Acquired Material Information

The utility of data acquired during routine in-process control (IPC) measurements
can be extended if used as input in models that predict the behavior of processes where
these manufactured materials are used. These measurements can characterize the com-
position of the samples (most commonly active pharmaceutical ingredient—API content,
moisture/residual solvent content, and the concentration of contaminants). Another rele-
vant type of information comes from the granulometric characterization of powders. This
includes the particle size distribution (PSD) (typically measured with laser diffraction or
sieve analysis), the shape of particles (characterized by static or dynamic image analysis),
the density of the powder (bulk, tapped, or true density), and the flowability (flowing time,
angle of repose, Carr index, Hausner ratio). Tablet cores can be evaluated by measuring
their mass, diameter, height, crushing strength, disintegration time, and friability. Further-
more, all techniques mentioned in the next part can also be applied as off-line tools for IPC
measurements [20,21].

2.2. Real-Time Measured Data

Nowadays, a great variety of real-time sensors is available in pharmaceutical manufac-
turing (Figure 2) [22–24]. The dimensionality of the yielded data varies significantly from
simple numbers to large three-dimensional matrices. In this respect, we can differentiate
between zero-, first- and second-order structures. Zeroth-order data contains one response
per sample, first-order data describes sample properties using multiple variables (a vector),
whereas second-order data includes a matrix for each sample [12].

One-dimensional (zeroth-order) data is acquired when measuring some of the funda-
mental physical properties of the system. Temperature is a classic example; it is a critical
parameter in many processes, including chemical reactions, granulation, and film coating.
Its real-time measurement can be accomplished with various instruments. Thermocouples
are a widespread solution, as they can be installed in multiple places inside an appli-
ance [25]. The measurement of pressure is essential in many instances, as apart from
influencing the quality of the product, its monitoring is a fundamental part of preventing
accidents. The amount of applied force is a crucial parameter of compaction processes.
Thus, it should be registered during dry granulation and tableting. The accurate real-time
measurement of weight with scales is vital in continuous manufacturing, where the mass
flow of the components is determined by the feeding rate of the feeders [26]. Moreover,
real-time weight measurement is also used in batch processes to keep track of the amount
of dosed material during wet granulation or film coating.

Monitoring the applied torque during high-shear or continuous twin-screw wet gran-
ulation can be used to characterize the state of the process, as the fill level of the apparatus
and the granular properties of the processed material can influence this parameter [27,28].
The rotational speed of impellers in chemical or crystallization reactors and granulation
appliances and the speed of the drum in film coating can also be registered [29]. The volume
flow and moisture content of air can also be critical parameters in the case of fluidized bed
granulation, drying, or film coating. The pH and conductivity value of the medium can be
measured with in-line electrode probes during chemical reactions of crystallization [30].
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Many analytical sensors provide two-dimensional (first-order) data, such as spectro-
scopic information and particle size distribution data. In-line measurement of the particle
size distribution can be realized with probes based on various principles. Spatial Filter
Velocimetry (SFV) [31] and Focused Beam Reflectance Measurement (FBRM) [32] charac-
terize the chord length of the particles, while methods based on digital imaging such as
Particle Vision Measurement (PVM) [33], or Eyecon® give information about the two-or
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three-dimensional shape of the particles [34]. The data obtained from these sensors usually
consists of the volume fraction of particles of different sizes.

Due to the dynamic evolution of spectroscopic techniques, most forms of spectroscopy
can now be performed in-line or on-line with commercially available instruments. Their
signal consists of the absorbance or intensity measured at multiple wavelengths. Typi-
cally, this information needs to be processed using multivariate data analysis techniques
before being used as input in a DF process model. Near-infrared (NIR) [35] and Raman
spectroscopy [36] can be applied in almost all types of pharmaceutical processes, as they
can be used to predict the composition and various physical properties of intermediate and
end products. Microwave sensors have been proposed as an alternative for quantifying
the composition of pharmaceutical products [37]. The concentration of some APIs can be
monitored using the light-induced fluorescence method [38]. Attenuated total reflectance
Fourier transform infrared (ATR-FTIR) spectroscopy can also be used in situ in liquid
phase systems, having widespread applications in monitoring crystallization [39]. In this
field, attenuated total reflection ultraviolet/visible (ATR-UV/Vis) spectroscopy can also
be utilized to measure the concentration of components [40]. Terahertz spectroscopy has
also become an option for characterizing solid-state pharmaceutical products [41]. With an
appropriate sampling system, even nuclear magnetic resonance (NMR) spectroscopy and
high-performance liquid chromatography (HPLC) measurements can be performed on-line,
providing an unparalleled ability to understand and control chemical syntheses [42]. Fur-
thermore, even the sound emitted by an apparatus can be used to gain information about
its state. Acoustic emission measurements are designed for this purpose [43]. In summary,
the great flexibility of spectroscopy makes these techniques excellent PAT sensors.

The most complex form of information comes from imaging appliances. The recorded
signal enables the characterization of sample features’ spatial distribution. Digital images
are the simplest example of such techniques; machine vision is a sensor that can be applied
in-line during practically all pharmaceutical processes [34]. It is a highly flexible tool that
can characterize samples’ size, shape, texture, and color. Optical coherence tomography is
an imaging technique with promising abilities in the real-time monitoring of film coating,
as the obtained images enable an accurate measurement of coating thickness [44]. Terahertz
pulsed imaging can also be applied for this purpose [45]. Hyperspectral imaging records a
spectrum at each pixel of the image, enabling the prediction of the samples’ composition in
each pixel. Raman [46], UV, and NIR spectroscopy can all be used to obtain hyperspectral
images, UV [47] and NIR imaging [48] already exist in applicable real-time forms.

2.3. Biopharmaceutical Aspects

The manufacturing of most biopharmaceuticals (except DNA/RNA and peptides)
includes production using bioreactor cell cultivation, chromatographic purifications, filtra-
tion steps, and formulation either in a liquid or solid form. Several methods are used to
monitor CQAs of raw materials and critical process parameters (CPPs) as real-time data
during these processes.

The cell culture media’s quality is of utmost importance to maintain process robust-
ness. It usually contains various substances (>50) in a relatively low concentration. Thus,
to characterize media quality, NMR, HPLC-MS/MS, and spectroscopic methods, such
as fluorescence- (2D, 3D), infrared- (NIR, MIR, FT-IR), or Raman spectroscopy are used,
resulting in complex multi-dimensional data [49–54]. In addition, the advantages of mul-
tivariate data analysis and DF methods can be utilized to gain accurate information on
media quality [55].

Real-time measurements of basic physicochemical parameters (such as temperature,
pH, conductivity, dissolved O2 and CO2, impeller speed, pressure, flow rate, weight, and
moisture content) resulting in one-dimensional data are conventionally carried out during
biopharmaceutical production [56,57]. However, gaining information on the cells and
monitoring nutrient and metabolite concentrations during bioreactor cell cultivation is also
necessary [58]. Optical density sensors measure the transmitted light absorbance, which
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correlates to total cell density. However, it gives no information on viability. Dielectric
spectroscopy can be used to determine viable cell density, where the capacitance of the
cell suspension is measured in an alternating frequency electric field, generating multi-
dimensional data [59]. If the morphology of the cells is an essential factor, in situ microscopy
aided with image analysis can be implemented in the bioreactor [60].

Spectroscopic methods (UV-, NIR-, Raman- and Fluorescence spectroscopy) have
applications for monitoring several cell culture parameters, such as nutrient and metabolite
concentrations, total and viable cell density, product concentration, and product qual-
ity [61,62]. Raman spectroscopy is gaining importance in biopharmaceutical manufacturing
as a multi-attribute multi-dimensional sensor due to its specificity and compatibility with
aqueous solutions [63]. During the purification of the biomolecules, monitoring of product
concentration and impurities is possible with spectroscopic methods [64]. Besides the
conventionally used UV absorbance at 280 nm as one-dimensional data or as a multi-
wavelength method, variable pathlength UV spectroscopy allows the accurate detection of
analytes in a high concentration range [65]. Furthermore, several analytical techniques are
used to detect aggregates in a wide size range, from which only a few can be integrated
as an in-line PAT tool (e.g., light scattering methods) [66,67]. When there is no available
in-line analytical tool for monitoring a CQA/CPP, an automated, sterile sampling system
can be integrated into the process. This is the case for several CQAs where the integration
of an online sampling and sample preparation system coupled with HPLC or HPLC-MS
can be applied [68].

3. Data Fusion
3.1. Classification and Comparison of Fusion Methods

Several aspects exist that are used to classify the fusion methods/strategies in the
terminology. Joint Directors of Laboratories (JDL) Data Fusion Group worked out a model
that deals with the categorization of the information and DF. Castanedo systematized
the classification of the DF techniques and strategies [69]. The divisions can be created
by several criteria; however, the widespread classification used to accept in analytical
chemistry follows the abstraction level of the input data [70]. The three levels are named
after the complexity of the processing of the inputs from the data sources. Thus, low-,
medium- and high-level DFs are distinguished (Figure 3).

Low-level data fusion (LLDF) is considered the simplest method to achieve a com-
bination of inputs. In this case, the data is rearranged into a new data matrix, where the
variables coming from different sources are placed one after the other. The columns, i.e., the
variables of the combined data matrix, will be the sum of the previously separated data sets.
Usually, the concatenated data are then pretreated before creating the final classification
or regression models. However, specific elementary operations can be conducted before
putting them together [17].

Medium-(mid-)level data fusion (MLDF) (also called “feature-level” fusion) is based
on a preliminary feature extraction that continues to maintain the relevant variables, elim-
inating the not sufficiently diverse, non-informative variables from the datasets. There
are many developed algorithms to select these features or make the data reduction before
merging them into one matrix that will be used in a chemometric method [71]. In detail,
these variable selection methods are discussed with the other preprocessing methods in
Section 3.2.
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The high-level data fusion (HLDF) (also called “decision-level” fusion) works on a
decision level. This means that the first step is to fit some supervised models to each data
matrix. These models consist of regression models providing continuous responses for
the input data or classifications, deciding the class membership of the new samples. The
decisions from these models are combined into a complex model that can create the final
estimation. The main idea behind HLDF is that the optimal regressions and classifications
are built up for the different data types. Accordingly, a better estimation may be reached by
unifying the outputs in one decision model.

Selecting and implementing an appropriate fusion method can prove to be a laborious
task and should be driven by the considered application and the structure of the input data.
To provide an effective comparison of the method’s performance in different setups (ap-
plication type/input data structure), a literature survey was performed using studies that
compare different fusion levels (Appendix A Table A1). Considering the pharmaceutical
industry, the main areas of application of DF would include classification, regression, and
process control, whereas regarding the data structure, mainly zero- and first-order data are
encountered. Thus, all these factors/criteria were considered in the survey.

LLDF predominated as a suitable DF option under process control applications, where
primarily multiple zero-order datasets were fused for multivariate- (MSPC) or batch sta-
tistical process control (BSPC) purposes (Figure 4). This strategy also proved effective for
regression applications to merge several first-order datasets. Therefore, the fusion of data
with a similar structure was efficient without applying a feature extraction procedure, as
the similar structure avoided the predominance of one dataset over the other. Increased
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performance of LLDF was also attributed to the existence of complementary information
between the datasets, which was maintained during the fusion procedure (not lost during
feature extraction) [72]. Having more complementary information will be beneficial for
reducing uncertainty.
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In some situations, instrument complementarity (not data complementarity) was not
sufficient to improve the performance of predictive several CQAs, as shown by a Raman
and FT-IR data based food analytical study [73].

As LLDF involves the concatenation of individual blocks at the level of original matri-
ces after proper preprocessing, the dataset will contain many variables, some with increased
predictive power, and also large parts of irrelevant data [72]. The ratio of predictive and
uninformative variables obtained by adding new data can be disadvantageous as the noise
can cancel out the advantages of valuable information [11,74,75]. Thus, the model building
can become time-consuming and requires high computational power, although this lim-
itation was overcome by using extreme learning machine modeling with a fast learning
speed [76].

Assis et al. found the LLDF superior to MLDF when fusing NIR with total reflection
X-ray fluorescence spectrometry (TXRF) data, highlighting the importance of scaling and
variable selection procedure on the fused dataset. Autoscaling outperformed the block-
scaling approach, and a variable reduction procedure was essential to eliminate redundant
information [77]. A similar method was found appropriate by Assis et al. when ATR-FTIR
and paper-spray mass spectrometry (PS-MS) data were combined [78].

Li et al. also demonstrated the superiority of LLDF over MLDF when NIR and MIR
data were fused. The partial loss of relevant information during feature extraction affected
MLDF performance [79]. As both LLDF and HLDF approaches relied on using the full
spectral range, the developed models were superior to MLDF [79]. In this respect, the
disadvantage of MLDF refers to the requirement of thoroughly investigating various feature
extraction methods by developing multiple individual models [72,74]. However, the time
invested in this stage is compensated by the more efficient model development using the
extracted features [80].
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MLDF was preferred when first-order data was combined with a zero-order or another
first-order dataset (Figure 4). MLDF outperformed other fusion strategies when the feature
extraction methods successfully excluded the uncorrelated variables.

If the extraction of features does not lead to the loss of predictive information, the
MLDF strategy can offer a more accurate model and improved stability [81]. Therefore,
the desired outcome of feature extraction is to maximize the amount of predictive variable
content and minimize data size [82].

MLDF can offer a more balanced representation of variability captured in each dataset,
especially when the number of variables is considerably large. The increased stability and
robustness of MLDF over LLDF were also described in other studies [75,83,84]. The high
level of redundant information found in LLDF data, negatively affected the synergistic
effect of the fusion for different datasets [75,82,85].

A huge amount of information is involved when handling spectroscopic data. Thus,
feature extraction is frequently implemented. Perfect classification of sample origin was
achieved by separately extracting features from three different spectroscopic analysis
techniques (NIR, fluorescence spectroscopy, and laser-induced breakdown spectroscopy
(LIBS)) [86]. A similar discrimination model with successful identification was demon-
strated for tablets using LIBS and IR spectra and MDLF [87].

Among the three areas of application, HLDF was selected as the best performing
mainly in the case of classification applications when fusing first-order datasets (Figure 3).
The utility of HLDF was also highlighted under similar input conditions in the case of
regression applications (Figure 4).

Li et al. demonstrated that the synergistic effect of fusing data (FT-MIR; NIR) was
achieved only when the valuable part of the data was used. LLDF was poorly performing
due to the increased content of useless data, whereas the best classification strategy relied
on HLDF [82]. The application dependency for selecting the fusion strategy has been
recognized in other studies [72]. Another NIR and MIR-based application demonstrated the
superior performance of HLDF, as the LLDF led to the loss of complementary information
in the large dataset. At the same time, the MLDF approach gave mixed results depending
on the evaluated response [11]. The use of the entire dataset over extracted features was
the reason for HLDF superiority in another study [79].

In a previous study, LLDF caused no progression in classification, as presumably the
analytical methods and sensors had dissimilar efficiency and provided noisy and redundant
data [88]. Therefore, each output of the models had to be considered with different weights
to make the final decision.

The advantages of HLDF are linked to its user-friendliness [11], and the possibility to
easily update models with new data sources increases the versatility [89].

3.2. Data Processing

Regardless of the specific goal of the DF, the data measured by the analytical tools and
sensors must be processed by various methods before building up chemometric models.

Firstly, the data sets might have different sizes, scales, and magnitudes. This can
be handled by normalization and standardization to rescale the values into a range or
to zero mean and unit variance. Autoscaling could be an appropriate solution for the
fusion of univariate sensors with multivariate data, which frequently occurs in chemical or
pharmaceutical processes [90–93]. The min-max normalization is suitable for MS [94] and
some vibrational spectroscopic data [86,95]. It is typical to use normalization methods or
elemental peak ratios for LIBS data to minimize the variability of replicates [96].

In the absence of differences in the measurement scale, additional preprocessing
methods (scaling methods) will not be necessary, as the chance of dominating behavior
will be reduced. This situation was encountered when mid-wave infrared (MWIR) and
low-wave infrared (LWIR) data recorded by the same device were fused [72].

Secondly, the data, especially the spectral data, is usually influenced by the external
interferences and measuring conditions causing different backgrounds, noise, and offset.
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Many well-known methods exist to increase the robustness of the datasets and, later,
the models. Savitzky–Golay smoothing (SGS) is a commonly used method for noise
reduction in spectra [79,85,97]. Several methods are proposed to tackle additive and/or
multiplicative effects in spectral data. Background correction (BC) [98], Multiplicative
Scatter Correction (MSC) [99], and Standard Normal Variate (SNV) [82,100] Unit area and
vector normalization [98] are possible transformation methods to compensate for these
effects. First or second derivatives are beneficial for enhancing the slight changes, thus,
separating peaks of overlapping bands [40,75,101].

Thirdly, a dimensionality reduction step is essential to extract relevant features in
MLDF [91,102,103]. Another justification for this step is to reduce the computational time
during model development, i.e., for neural networks [104,105].

The applied feature extraction strategies identified in the literature survey can be
divided into feature selection procedures relying on algorithms for selecting a sub-interval
of the original dataset or on dimensionality reduction procedures, such as projection
methods [76]. Moreover, their combined use has been demonstrated to have positive
results in some situations [75,78,85]. The feature extraction methods applied in the literature
survey for first-order data are presented in Figure 5.
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The measured data, particularly the spectral data, often include irrelevant variables
that should be separated from the initial variables. Variable selection algorithms eliminate
noisy spectral regions and redundant information to increase predictive accuracy [75]. In
this respect, several methods derived from partial least squares (PLS) have been used. The
synergy interval PLS (SI-PLS) algorithm was applied to select optimal subintervals and
exclude unwanted sources of variation before a feature extraction step [75,85]. De Oliviera
et al. reduced the variable numbers from LIBS and NIR spectra below 1% by recursive PLS
(rPLS) and used them for DF purposes [106].

Uninformative and noise affected variables have been excluded using interval-PLS
(i-PLS) [107,108]. As i-PLS continuously selects the variables, it should not be applied when
the original data are not continuous (i.e., MS spectra) [78]. The use of variable importance
in the projection (VIP) and i-PLS has also been reported [100].

The VIP-based variable ranking has shown efficacy in filtering unimportant variables
and reducing variable space [84,108,109]. Generally, a VIP > 1 is considered relevant,
although this limit has no statistical meaning [84,99,110]. In this respect, Rivera-Perez et al.
identified discriminant variables through VIP and an additional statistical significance
criterium (p < 0.05) from ANOVA or t-tests [111].

The use of genetic algorithm (GA), iteratively retained informative variables (IRIV),
competitive adaptive reweighted sampling (CARS), successive projections algorithm (SPA),



Molecules 2022, 27, 4846 12 of 41

recursive feature extraction (RFE), univariate filter (UF), and ordered predictors selection
(OPS) has also been reported [78,86,94,108,110,112,113]. GAs have been used in spec-
troscopic applications for optimal wavelength selection, multicollinearity, and noise re-
duction [108]. The algorithm selects an initial set of spectral variables, which is further
optimized by testing multiple combinations of different features. The comparison between
GA and UF [113], respectively, and GA and OPS variable selection methods has been
investigated for DF applications [78].

The fine-tuning of variables can be dealt with individually for each data set at the
statistical significance level, through Pearson correlation analysis [114]. Another option
that enables the extraction of features from spectroscopic data is wavelet transformation.
During this procedure, the original signal is decomposed considering different wavelet
scales, resulting in a series of coefficients [115]. Wavelet compression was used for the
fusion of spectral data from different sources [107], while other studies fused different
scale-based wavelet coefficients generated from the same input data [115].

The other big category of feature extraction methods relies on estimating a new set
of variables. Projection methods were the most frequently applied feature extraction tools
to reduce the dimensionality and remove unwanted correlation. More than 60% of the
studies included in this survey used either Principal component analysis (PCA) or PLS
for this purpose during the development of fusion-based models. Both techniques are
based on the coordinate transformation of the original n × λ sized dataset (where n is
the number of observations and λ is the number of variables) by combining the original
variables. In the case of PCA, this is performed in the way that the new variables (i.e.,
principal components, PCs) are orthogonal, and the first few variables describe the possible
highest variance in the dataset. For PLS, the new variables (latent variables, LVs) maximize
the covariance with the dependent variables. For more details, the reader is referred to,
e.g., [116] and [117]. Other feature extraction methods found in the literature are parallel
factor analysis (PARAFAC), a generalization of PCA [91], independent component analysis
(ICA) [118], orthogonal-PLS [104], or autoencoder [119].

The obtained LVs have been extensively used as relevant features for DF applica-
tions [118,120–122]; for overview purposes [104] and outlier identification [72].

The use of latent variables as extracted features has to consider the size of captured vari-
ability [96,104,105]. In this respect, several significance criteria have been used for selecting
relevant PCs, including the percentage of explained original data (R2X) [82,123], the eigen-
value [104] or the predictive performance during cross-validation (RMSECV) [124,125].
Some applications excluded the possibility of discarding relevant PCs and fused multiple
latent variables, independent of their significance [76,126,127]. However, such an approach
increases the risk of overfitting.

The use of the Gerchberg–Saxton algorithm has also been reported to establish the
optimal number of feature components [75].

Several studies found PLS to be a superior feature extraction method, as it was possible
to emphasize the spectral variability correlated with the response of interest [125,128]. For
example, Lan et al. extracted the features of interest from NIR spectra by developing PLS
models having as a response the components of interest determined by HPLC [110].

The separation of spectral variability into predictive and orthogonal parts can be
achieved using orthogonal-PLS (OPLS). As a result, the feature extraction can efficiently
exclude uncorrelated variations from the input data [104]. Although it would appear
beneficial to use only the predictive components, non-predictive parts can have a positive
effect on performance results due to the intra-class correlations from different sources [129].

PLS-DA (PLS-Discriminant analysis), another extension of PLS, has also been applied
for feature extraction [74], by either generating latent variables [11] or by selecting a small
set of representative variables [80].
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3.3. Modeling Methods

PCA and PLS regression can be regarded as the most widespread chemometric
tools [130]; consequently, the literature survey highlighted the predominance of projection
methods in the modeling of fused datasets (Figure 6). PLS-DA and PCA were the preferred
modeling choice for classification applications, followed by the support vector machine
(SVM), soft independent modeling using class analogy (SIMCA), linear discriminant anal-
ysis (LDA), k-nearest neighbors (kNN), or artificial neural networks (ANN) (Figure 6a).
For process control applications, PLS models were mainly used to develop batch evolu-
tion/level models having process maturity (time-variable) or a CQA of the product as
response variables (Figure 6b). PLS was also the preferred modeling option for regression
applications, followed by ANN and SVM methods (Figure 6c).
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In the case of LLDF, PCA and PLS modeling can be directly applied to analyze the
different data sources. This is an especially suitable method when univariate sensor data
are fused, such as in [131], as the computational demand of the model might increase
significantly when several multivariate data (e.g., spectra with thousands of variables)
are handled together. Nevertheless, it is also possible to concatenate different spectra for
developing a single PCA or PLS model. For example, mid- and long-wave NIR spectra
could be incorporated into the same PLS model to utilize the information of the whole IR
range [72]. The only difference between PCA/PLS models developed for DF—compared to
a single-source model—is that additional preprocessing steps (see Section 3.2.) might be
necessary to compensate for the possible scale differences.

Several extensions of the traditional PCA/PLS concept account for the structured
nature of the fused dataset. For instance, Multiblock-PLS (MB-PLS) provides block scores,
as well as relative importance measures for the individual data blocks instead of accounting
for the whole concatenated data [132]. Although the prediction itself does not improve
compared to the traditional PLS model, it significantly contributes to the interpretability of
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the model. For example, the block weights and scores have helped identify the most critical
variables in an API fermentation [133]. In other studies, MB-PLS and the “block importance
in prediction (BIP)” index were used to determine which PAT sensors (IR, Raman, laser-
induced fluorescence-LIF spectroscopy, FBRM, and red green blue-RGB color imaging),
process parameters, and raw material attributes are necessary to be included in the DF
models [134,135]. Malechaux et al. demonstrated that a multiblock modeling approach
was superior to hierarchical PLS-DA, as the simple concatenation of NIR and MIR data pre-
sented a small fraction of predictive variables compared to the complete dataset [11]. Other
multiblock modeling methodologies are also promising, such as the response-oriented
sequential alternation (ROSA), which facilitates handling many blocks [136]. It was also
possible to include interactions in the model [137]. However, to the best of the authors’
knowledge, these approaches have not been utilized for real-life PAT problems.

For MLDF, it was demonstrated that both feature extraction and modeling steps signifi-
cantly impact the model performance and, therefore, need to be optimized carefully [11,104].
For PAT data, a typical combination of methods is the application of individual PCA models
for feature extraction and using the concatenated PC scores in a PLS regression model [72].
Besides PC scores, process/material parameters can also be conveniently incorporated
into the PLS model, improving the model compared to the LLDF of the analytical sensor
data [103]. Similarly, MSPC models can also be employed [10,103].

Another approach is the utilization of sequential methods in which the order of
data blocks will be important for modeling. Most feature extraction procedures use an
independent approach, meaning that each data source is processed individually, and the
blocks are exchangeable. Foschi et al. used Sequential and Orthogonalized-Partial Least
Squares-Discriminant Analysis (SO-PLS-DA) algorithm to classify samples through NIR
and MIR data [138]. The algorithm builds a PLS model from the first data block and aims
to improve the model’s performance using orthogonal (unique) information from the next
data block. This sequential approach removes redundant information between datasets
and extracts information to give an optimal model complexity [138].

After the features are derived from the raw data, ANNs can also serve as the DF model,
which performed superior to PLS regression in multiple studies [104,105,139]. It was also
possible to develop a cascade neural network using PCA scores to predict the quantitative
process variables (i.e., component concentrations) of fermentation and then to evaluate the
process state, e.g., determine the harvest time [140]. Compared to PLS, ANN and SVM
have the advantage of being more suitable in the presence of non-linearity [85,104,141].

HLDF deduces a unique outcome from the results of multiple models, which are
built with individual data sources. Consequently, the method requires decision support
systems, which incorporate numerous versatile methods, e.g., sensitivity, uncertainty, and
risk analysis [142]. Moreover, in the QbD concept, the design space is defined as the multi-
dimensional combination and interaction of critical material and process parameters that are
demonstrated to assure quality. That is, it could be regarded as an HLDF model when the
critical input parameters are monitored with individual PAT tools and chemometric models.
Design spaces could be defined by several methods, such as response surface fitting, linear
and non-linear regression, first-principles modeling, or machine learning [143–145].

Independently of the fusion level, deep learning is another emerging modeling method
for PAT data but has been neglected [62]. The structure of the deep neural networks enables
the fusing of raw data (low-level), extracting features (mid-level), and making decisions
(high-level) adaptively in a single model [146]. Several deep learning solutions can be
found in the literature for DF in different industrial processes but not yet for pharmaceutical
processes. For example, convolutional neural networks (CNN) could be used for fault
diagnosis [147,148] or soft sensing in the production of polypropylene [149]. It has also been
demonstrated that support vector machines, logistic regression, and CNNs could be used
to fuse laser-induced breakdown spectroscopy (LIBS), visible/NIR hyperspectral imaging,
and mid-IR spectroscopy data at different levels [119]. Therefore, their applications in
pharmaceutical tasks could be further studied in the future.
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4. Integrating DF into PAT

Considering the multivariate nature of pharmaceutical manufacturing, the implemen-
tation of DF in PAT is expected to be highly beneficial. The manufacturing of a product
with a predefined quality profile is known to be dependent on the interplay between raw
material attributes, formulation variables, and process parameters. Although the product
development strategy strives to reach robustness, the uncontrolled variation and complex
interaction between input factors can introduce variability in the performance of the drug
product. Therefore, to mathematically describe and accurately predict the quality of a batch,
the fingerprint of that particular run can be the best predictor. The fingerprint of a batch
can be considered as a collection of data that comprises all the variables starting from the
attributes of raw materials down to the timely evolution of process variables or CQAs.
Such complex datasets, presenting diversely structured data from different sources, can be
fully exploited only by implementing DF strategies.

Some good examples of complex quality attributes can be the tableting performance
of granules and the dissolution profile of an API from prolonged-release tablets. To accu-
rately predict the tableting performance of granules, it is important to have input data that
can detect variations in granule particle size, particle size distribution, moisture content,
crystallinity, and lubricant distribution. It is less likely that one PAT instrument will take
account of all these factors, but combining machine vision (particle size; particle size distri-
bution), NIR (moisture content; lubricant distribution), and Raman methods (crystallinity
variation) stands as a promising solution. Similarly, for the accurate prediction of dissolu-
tion profiles, it is essential to keep track of API particle size variations, content, and particle
size of the release controlling polymer, tablet crushing strength, lubricant distribution, and
other factors depending on the particularities of the product [91,102,105,135,145].

The currently available pharmaceutical DF based applications are limited, suggesting
its slow integration into this field. DF has been successfully applied for classification
purposes, here including excipient qualification studies based on physical characteristics
(XRPD and particle size distribution data) [150], the identification of counterfeit prod-
ucts [96,120], and the detection of product quality deviations [104].

The majority of process control applications dealt with the development of statisti-
cal process control methods (MSPC, BSPC) relying on continuously recorded univariate
variables. Studies have been published on classical granulation [139,151], continuous
granulation processes [90,92,93]; continuous tableting lines [131,152], and biotech pro-
cesses [153–155]. On the other hand, studies that combine uni- and multivariate data are
scarce. Bostijn et al. used MLDF to combine Raman spectroscopic data with univariate
variables to monitor the manufacturing of an ointment type product and to reach an en-
hanced process control [156]. Probably, the challenges, with respect to the integration of
multi- and univariate data into process control models, have limited the combined use
of spectroscopic and classical process variables for the real-time monitoring of process
evolution. Such an approach requires a specialized IT infrastructure for data collection,
processing, and modeling. Thus, these elements have to be considered an integral part of a
modern manufacturing line.

In the case of regression applications, the used modeling approaches reach a higher
level of complexity when referring to the selected input variables. These studies usually
predict CQAs of final/intermediate products or CPP setpoints for subsequent processing
steps using a diverse range of input data. The first category of applications used the process
fingerprint, represented by the timely evolution of univariate variables, to predict the
desired responses [139,157,158]. The second category of applications used as predictors
variables that do not evolve over time. To this respect, process conditions, raw material
attributes, and multivariate data (spectroscopy) have been fused to predict granule qual-
ity [159], content uniformity [104,134], powder flowability [134], coating thickness [135],
and the dissolution of the API [91,102,105,135,145].

The following parts of this section will focus on the key considerations regarding the
development and validation of DF models, respectively, on their role within Pharma 4.0.
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4.1. Model Development

The majority of the studies included in the literature survey have demonstrated
the advantage of increased model performance by implementing DF, with less than 2%
demonstrating similar results to individual models. As in most cases, adjustments made
in the variable selection, feature extraction, type of the model, and DF strategy have led
to considerable improvements in predictive performance; all these operations have to be
thoroughly investigated during implementation.

A primary condition for reaching optimal model performance is to have relevant
input variables. Thus, the decision to implement a DF strategy should start in the initial
phases of the product’s lifecycle. Based on the results of risk assessment, the data collection
strategy can be defined, deciding what data and which sensors are to be implemented on
the manufacturing line. Moreover, an IT infrastructure has to be integrated into the process
control strategy to efficiently handle incoming data from different sources/process steps.
During product development, several data sources and PAT tools can be screened and
ranked based on their usefulness in the model.

Before fusing data from multiple sources, it is essential to evaluate the contribution
of each dataset to the model and its complementarity. Including this step into the model
development routine can provide an estimation for the size of predictive data and uncorre-
lated variables, which can further justify the use of variable selection or feature extraction
procedures. Ultimately, it can guide the correct choice of the best fusion strategy. The
performance of fusion strategies with respect to the structure of input data and model
objective was thoroughly described in Section 3.1.

Around 50% of the surveyed applications resumed the complementarity assessment
to the comparison of various models built on individual data and fused datasets, here
testing multiple strategies in a trial and error approach (Appendix A, Table A1). Stud-
ies that worked with univariate sensors did not evaluate this aspect, while others pre-
sented only one modeling approach. Approximately 20% of studies dedicate attention
to the effective comparison of individual datasets. In this respect, methods such as sta-
tistical total correlation [160], correlation maps [128], pairwise correlation analysis [110],
Pearson correlation analysis [114], confusion matrices [161], exploratory data analysis
(EDA) [103], PCA [107,118,138], VIP [11], Hoteling’s T2 [104], MB-PLS—block importance
evaluation [134,135,162], and OPLS [104] have been used.

As highlighted under Section 4, spectroscopic data represents a key input data source
when considering pharmaceutical applications. The high throughput, non-destructive, and
multivariate nature of these PAT tools are just some advantages that make them indispens-
able for reaching a more in-depth process control and product knowledge. Spectroscopic
data, recorded over a few hundred wavelengths, is frequently used in the pharmaceuti-
cal field to predict CQAs and monitor production processes [163–170]. Fusing spectral
data with other input variables will most likely require an MLDF approach, thus the
identification of a suitable data processing and feature extraction procedure is key. To
this respect, the application of PLS in DF has been extended towards developing models
able to predict some key characteristics. In this manner, a large number of variables from
spectroscopic data have been used to extract features such as moisture content, viscosity,
acidic number [10], API concentrations in semisolid products [156], or the API and release
rate controlling polymer content from prolonged-release tablets [145]. In subsequent steps,
this meaningful process information (in the form of CQAs or performance parameters) has
been used to detect deviations from normal process evolution or to predict batch quality. De
Oliviera et al. highlighted the improved interpretability of such models compared to latent
variables [10]. Other relevant outputs for spectroscopic data can be represented by concen-
tration profiles estimated through MCR and Hoteling T2/Q residual-based indicators from
MSPC models [10].

The model development step should be performed simultaneously/in parallel with
the optimization of the data processing and complementarity testing, as these steps are
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highly interrelated. Further details on data processing and modeling opportunities were
described in Sections 3.2 and 3.3.

4.2. Model Validation

Implementing DF strategies for PAT purposes within the strict and highly regulated
pharmaceutical environment will require extensive validation and robustness testing. Ap-
proximately 77% of the surveyed articles used an external dataset to test the developed
models’ performance, while the remaining fraction relied on cross-validation procedures
(Appendix A, Table A1). Testing the predictive ability of the models on external datasets is
critical for performance evaluation purposes. Additionally, eight studies also evaluated
the robustness of predictions by including controlled disturbances/interfering factors not
considered in the calibration set (Appendix A Table A1). Out of the surveyed articles, two
studies particularly stand out regarding the validation procedure. First, Assis et al. evalu-
ated the trueness, precision, linearity, and the working range of a NIR- and TXRF-based
method used to assess the composition of roasted and ground coffee [77]. Second, Casian
et al. used an accuracy profile approach to validate a four instrument DF platform used to
predict the API content of electrospun nanofibers [104].

Although several DF applications are present in the literature, to the best of the authors’
knowledge, no studies have addressed the question of model validation and maintenance
from the regulatory point of view, where different challenges arise depending on the
fusion level. Nevertheless, the revised general chapter ‘Chemometric methods applied to
analytical data’ (5.21) of the European Pharmacopoeia (Ph. Eur.), effective as of 1 April 2023,
will include a new subsection dealing with DF [171]. This is expected to further promote
the application of DF in the pharmaceutical industry.

The validation of an LLDF model is the most straightforward, as a single chemometric
model is developed and validated. This is directly addressed, e.g., by the NIR guidance of
the FDA or EMA [172,173]. Both guidelines consider NIR spectroscopy a suitable method
for qualitative (identification/qualification) and quantitative analysis.

The papers integrate the terminologies and principles defined in ICHQ8-Q10. It
is generally considered that NIR applications should use in the development strategy
the principles of QbD based on risk assessment, conducted as per the ICHQ9 guideline,
and both apparatus and material and manufacturing process-related variables should be
considered. For risk control and mitigation throughout product lifecycle management, a
DoE approach might be considered, and a risk assessment summary should be submitted
to the regulatory authorities.

The validation requirements differ whether the NIR spectroscopic method is intended
for qualitative or quantitative purposes. This could be transposed for fusion applications
as well. Both guidelines have the minimum requirement of specificity and robustness for
qualitative analysis.

The iterative nature of NIR method development should be kept-in-sight throughout
product lifecycle management as new, other sources of variability can appear in future
prediction sets. This implies a periodical re-evaluation of the method to confirm its suitabil-
ity for the intended purpose and to be able to discriminate the out-of-specification (OOS)
results. In the case of OOS results, a root cause investigation is necessary. If the outcome
reveals that the OOS result is related to human or instrument error and the product com-
plies using the reference method, the batch can be released. Until the update of the NIR
method, its use should be suspended. From a regulatory perspective, minor modifications
or those that are made within the scope of the elaborated NIR procedure should generally
be handled by the pharmaceutical quality system of the Applicant under the principles
of the current Good Manufacturing Practice (cGMP). Moderate, major, or modifications
outside the scope of the elaborated NIR procedure implies the application of variation. A
similar approach should be implemented for fusion-based analytical platforms.

These guidelines also emphasize that the selected variable range should be justified.
For the LLDF model, this also means that the need for the DF should be confirmed, e.g.,
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by comparing the performance of the data fused model to the models using a single PAT
tool. Furthermore, the robustness testing and change control of the LLDF model might also
impose a challenge, as the change or malfunction of a single PAT tool impacts the entire
model. The utilization of sensitivity analysis or an MB-PLS model with block variance
indices can assist these studies. It is also essential to establish a data quality management
method for each PAT measurement (e.g., acceptance limits of similarity indices), as well
as contingency plans for the potential failure of each PAT tool. This might be the usage
of a chemometric model with the functioning analytical tool(s) if the analytical tools
complement each other sufficiently.

A possible approach for validating an MLDF model might include the validation
of multiple sub-models, i.e., the feature extraction models (e.g., PCA models), as well
as the DF model. Consequently, if the acceptable ranges of inputs for the DF model are
determined, the robustness of the individual models could be individually studied, and the
change control procedure might be simplified, as in this case, it impacts only one sub-model.
It is also worth noting that special attention must be paid during validation to justify the
need for DF (similar to the low-level fusion) and the appropriate selection of features (e.g.,
number of PCs) to avoid the over-/under- fitting of the models.

As for the HLDF model, the validation and model maintenance of the individual
models providing the input for the DF model is not affected by the DF. Hence the existing
regulatory guidelines (e.g., the NIR guidance of FDA/EMA) could be directly followed.
As mentioned in Section 3.3, the HLDF model could be regarded as a design space. There-
fore, its construction, validation, and maintenance could be conducted following the ICH
guidelines dealing with the QbD concept [174]. For example, the risk assessment steps,
determining the acceptable ranges of the input parameters (CPPs and CQAs), and the edge
of failure of the design space might be an integral part of the model validation.

4.3. DF and Pharma 4.0

The fourth industrial revolution in the pharmaceutical domain, known as Pharma 4.0,
is set to streamline drug manufacturing through real-time optimization/control systems
and fast decision making [175]. Pharma 4.0 will yield integrated, self-organizing, and
autonomous manufacturing facilities, bringing the potential of more in-depth product-
and process-related knowledge [176]. The smart factory will provide an improved control
opportunity due to the greater connectivity and transparency by integrating digital solu-
tions. The manual processes of classic manufacturing will be replaced by self-regulating
automatic systems, improving the consistency in the quality of delivered products [177].
Reaching this level of technology requires the adoption of advanced data analytics and
automation systems [175].

Data science was described as a core component of several Pharma 4.0 ideas. Although
most data science tools are already available, they are not fully exploited, as they are applied
to individual unit operations or subparts of the product lifecycle. The more powerful use
of these tools for the materialization of autonomous systems stands in the development of
interconnections between sensors and equipment from all unit operations [178]. The DF
techniques combined with AI or machine learning can support the decision-making based
on key performance indicators in industrial chemical plants [179]. Platforms are available,
in which in silico development and optimization are performed by data-driven models and
digital twins for pharmaceutical systems [180].

By working with different data sources and types, the data analysis procedure will
be of key importance, especially since it will fuel the adaptive process control loops [176].
Thus, fusion-based data integration is needed to enable real-time monitoring and re-
sponsiveness within a well-controlled manufacturing environment. The collected data
will gain digital maturity, as it is processed into actionable wisdom that can support
decision-making [176,177].
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The importance of data management solutions for data collection, organization, and
integration is also acknowledged. Advanced computing infrastructure is needed to provide
product or process-related information rapidly [175].

5. Future Perspectives and Final Remarks

The value of DF in the pharmaceutical industry was demonstrated in this work through
the review of the existing literature in this field. The readily available large amounts of
data coming from manufacturing processes are still not fully exploited to reach the status
of a smart facility, as described in Pharma 4.0. In this respect, multiple obstacles need to
be overcome.

Initial risk analysis during product development has to be extended to identify the
most relevant data sources that can be used to gain a deeper level of knowledge and control
for the developed product. Once the opportunity of implementing DF has been confirmed,
the screening of instruments/sensors will be important to identify complementarity be-
tween different types of data. The use of complementary data sources will directly impact
the performance of predictions and the efficiency of the implemented monitoring strategy.

On the technical side, efficient data management solutions have to be integrated into
the manufacturing line to enable the real-time data processing needed for fast decision-
making. Although the data processing and modeling tools are readily available, the
improved connectivity between different unit operations still has to be resolved.

The slow integration of DF methods can be also explained, considering the strict
regulatory environment of the pharmaceutical industry. On the other side, the already
available and newly coming regulatory guidelines will strongly support pharmaceutical
companies in this respect. Moreover, another major driving force is the fourth industrial
revolution, Pharma 4.0, where DF occupies a key position for an efficient implementation.
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Appendix A

Table A1. Literature survey on the use of data fusion for classification, process control, and regression applications.

Domain Objective Data Source Data Fusion
Level

Modeling
Method

Variable Selection/Feature
Extraction

Complementarity
Evaluation

Performance
Results

Robustness/
Validation Reference

CLASSIFICATION

Agriculture Discrimination of
different crop types

CCD digital
camera; Spectro-

radiometry
MLDF DISCRIM (SAS) PCA / MLDF >

individual model / [181]

Botanical Plant recognition
Spectro-

radiometer;
Imaging

MLDF Euclidean distance Spectral signatures; leaf
venation feature extraction

DF-individual
model comparison

MLDF >
individual model e.d. [182]

Chemical

iIdentification of
essential oils in
Melaleuca sp.

GC-MS; NMR LLDF - - Statistical Total
Correlation

LLDF > individual
model / [160]

Classification of
pigments and inks LIBS; Raman LLDF PCA; SIMCA;

PLS-DA; SVM - DF-individual
model comparison

LLDF > individual
model / [183]

Identification of
explosives Raman; LIBS MLDF Simple Linear

correlation 2D-image based estimator DF-individual
model comparison

MLDF >
individual model / [95]

Classification of ochre
pigments

Micro-Raman;
XRF LLDF; MLDF PLS-DA

PLS-DA-based identification of
the local positive maxima and

negative minima of the
weights for variables with
good classification power

DF-individual
model comparison MLDF > LLDF e.d. [80]

Environmental

Evaluate the state of
conversion over time for

an ecosystem

Conductivity; pH;
NIR; Fluorescence

emission-
excitation

data

MLDF MCR-ALS PARAFAC; MCR-ALS / MLDF >
individual model / [184]

Quantify potentially
toxic elements from soil NIR; TXRF LLDF; MLDF SVM UF; GA DF-individual

model comparison

response
dependent; GA >

UV
e.d. [113]
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Table A1. Cont.

Domain Objective Data Source Data Fusion
Level

Modeling
Method

Variable Selection/Feature
Extraction

Complementarity
Evaluation

Performance
Results

Robustness/
Validation Reference

Food

Chestnut cultivar
identification

Sensory
evaluation;

FT-NIR
LLDF PLS-DA - DF-individual

model comparison

LLDF > individual
model (response

dependent)
/ [185]

Authentication of raw
and cooked free-dried
rainbow trout fillets

NIR; Colorimetry;
Texture analysis LLDF PLS-DA; LDA;

QDA; kNN - DF-individual
model comparison

LLDF > individual
model e.d. [186]

Classification of
sparkling wines

HPLC; antioxidant
capacity tests;

FTIR
LLDF PCA; HCA;

PLS-DA - / LLDF > individual
model e.d. [187]

Detect adulteration of
cocoa butter Fluorescence; UV LLDF PCA-LDA - DF-individual

model comparison
LLDF > individual

model e.d. [188]

Storage time
classification

Dielectric
spectroscopy;

Computer Vision
MLDF ANN; SVM; BN;

MLR

CFS; image processing—red,
green, blue, hue, saturation,

intensity, lightness, a∗ and b∗
chromatic components

/ MLDF >
individual model e.d. [189]

Understand the effect of
storage factors on rice

germ shelf life
NIR; e-nose MLDF PCA

PLS (NIR); Pearson’s
correlation coefficient-based

data selection (e-nose)
Correlation maps no comparison / [128]

Characterisation of black
pepper

LC-MS; GC–MS;
NMR MLDF OPLS-DA OPLS-DA -> VIP DF-individual

model comparison
enhanced process

control e.d. [111]

Discrimination of four
species of Boletaceae

mushrooms from
different geographical

origins

UV-VIS; FT-IR MLDF PLS-DA; GS-SVM PLS-DA DF-individual
model comparison

MLDF >
individual model;

GS-SVM >
PLS-DA;

e.d. [190]

Predict fish freshness
through total volatile
basic nitrogen level

NIR; Computer
Vision MLDF BP-ANN PCA DF-individual

model comparison
MLDF >

individual model e.d. [126]

Predict the olive variety E-nose; E-eye;
E-tongue MLDF PLS-DA PCA DF-individual

model comparison
MLDF >

individual model e.d. [191]
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Table A1. Cont.

Domain Objective Data Source Data Fusion
Level

Modeling
Method

Variable Selection/Feature
Extraction

Complementarity
Evaluation

Performance
Results

Robustness/
Validation Reference

Food

Classification of edible
salts DORS; LIBS MLDF PCA; kNN PCA confusion matrices MLDF >

individual model e.d. [161]

Authentication of virgin
olive oil CE-UV; GC-IMS HLDF PCA, LDA, kNN - DF-individual

model comparison
HLDF >

individual model e.d. [192]

Craft beer authentication
Thermo-

gravimetry; MIR;
NIR; UV; VIS

LLDF; MLDF SIMCA; PLS-DA PLS-DA scores on individual
data sets

sensitivity &
specificity

comparison
MLDF > LLDF e.d. [74]

Establish the
geographical traceability

of wild Boletus
tomentipes

FT-MIR; ICP-AES
data recorded on
two parts of the

mushroom (pileus
and stipe)

LLDF; MLDF SVM; RF PCA DF-individual
model comparison MLDF > LLDF e.d. [83]

Discrimination of emmer
landraces NIR; MIR LLDF; MLDF PLS-DA;

SO-PLS-DA
Scores of optimal single-block

PLS-DA or multiblock PCA MLDF > LLDF e.d. [138]

Varietal discrimination
of olive oil NIR; MIR LLDF; MLDF;

HLDF

PLS-DA; Decision
HLDF:majority

vote
PLS-DA; MB-PLS-DA

VIP- evaluate
variable

contribution

HLDF >
individual model;

MLDF >/<
individual model
(f. methodology);

LLDF ≈
individual model;

e.d. [11]

Identification of the
botanical origin of honey

IR; NIR; Raman;
PTR-MS; E-nose

LLDF; MLDF;
HLDF

PLS-DA (Decision
HLDF: indiv PLS-

DA—majority
voting and
Bayesian

consensus with
discrete

probability
distributions)

PCA DF-individual
model comparison

HLDH >
MLDF/LLDF e.d. [121]

Authentication of Panax
notoginseng

geographical origin
FT-MIR; NIR LLDF; MLDF;

HLDF RF RF; PCA DF-individual
model comparison

HLDF > MLDF >
LLDF e.d. [82]

Detect the adulteration
of hazelnut paste with

almond
NIR; Raman MLDF; HLDF SIMCA

variable selection based on the
normalized differences

between reference and sample
spectral data

DF-individual
model comparison MLDF > HLDF

e.d. +
interfering

factors
[89]
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Table A1. Cont.

Domain Objective Data Source Data Fusion
Level

Modeling
Method

Variable Selection/Feature
Extraction

Complementarity
Evaluation

Performance
Results

Robustness/
Validation Reference

Medical

Diagnosis of lung cancer FT-IR; Raman LLDF PLS-DA - DF-individual
model comparison

LLDF > individual
model; Wavelet

threshold
denoising of

spectral data was
beneficial

e.d. [193]

Discrimination of raw
and processed

Curcumae rhizoma

FT-NIR; E-nose;
colorimetry MLDF PLS-DA

GA -> PLS; IRIV -> PLS; CARS
-> PLS for NIR; correlation

coefficient based feature
extraction for e-nose

Pairwise
correlation

analysis

MLDF >
individual model e.d. [110]

Identification of rhubarb NIR; MIR MLDF PLS-DA; SIMCA;
SVM; ANN Wavelet compression; iPLS PCA MLDF >

individual model e.d. [107]

Pharmaceutical

Evaluate nanofiber
deposition homogeneity

NIR; Raman;
Colorimetry;

Image analysis
MLDF PLS; ANN PCA/OPLS scores from raw or

preprocessed data Hoteling’s T2 MLDF >
individual model e.d. [104]

Identification of
counterfeit

pharmaceutical
packaging

LIBS; ATR-FTIR MLDF kNN; LDA PCA DF-individual
model comparison

MLDF >
individual model e.d. [96]

Omeprazole
fingerprinting to detect

counterfeit products

HPLC-UV;
GC-MS; NIR;
NMR; XRPD

LLDF; MLDF PCA; HCA PCA DF-individual
model comparison

DF > individual
model (f. fused

data)
/ [120]

Advanced qualification
of pharmaceutical

excipients
XRPD; PSD data LLDF; MLDF MB-PLS -

Predict LV’s of one
method using data
originating from

other sources

DF > individual
model e.d. [150]

PROCESS CONTROL

Automotive

Establish good and
stable operating
conditions for an

autobody assembly
process

Seal gap; margin
and flushness
measurements

LLDF PCA - /; complementary
univariate sources

Enhanced process
control / [194]
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Table A1. Cont.

Domain Objective Data Source Data Fusion
Level

Modeling
Method

Variable Selection/Feature
Extraction

Complementarity
Evaluation

Performance
Results

Robustness/
Validation Reference

Chemical

Control polymer
properties

Temperature
sensors; feed rate LLDF PLS - /; complementary

univariate sources
Enhanced process

control / [195]

Monitor the conversion
of nitrobenzene to

aniline

UV spectroscopy;
process variables

(reactor
temperature,

reactor pressure,
gas feed, jacket

in/out
temperature, oil
flow rate, stirrer

speed)

LLDF PLS - DF-individual
model comparison

Enhanced process
control e.d. [196]

Process management
and end-point
identification

Temperature;
Pressure; Flow

rate
LLDF MPLS - /; complementary

univariate sources
Enhanced process

control / [197]

On-line monitoring of
injection molding and a

fed-batch penicillin
cultivation process

7 univariate
process variables

for injection
molding;

10 univariate
process variables

for cultivation
process

LLDF PCA; DPCA;
MPCA - /; complementary

univariate sources
Enhanced process

control

e.d. +
interfering

factors
[198]

Multivariate monitoring
of a continuous API

synthesis

29 process
variables for stage

1; 40 process
variables for

stages 2–3

LLDF PCA - /; complementary
univariate sources

Enhanced process
control e.d. [199]

Fault detection for a
sulfite pulp digester

process

Temperature;
pressure; viscosity;

Kappa number
LLDF PCA - /; complementary

univariate sources
Enhanced process

control / [181]

Monitoring of a polymer
reactor in a

petrochemical plant
Not presented LLDF PCA - / Enhanced process

control e.d. [200]
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Table A1. Cont.

Domain Objective Data Source Data Fusion
Level

Modeling
Method

Variable Selection/Feature
Extraction

Complementarity
Evaluation

Performance
Results

Robustness/
Validation Reference

Chemical

Monitoring of
tryptophan and biomass

for bioprocess
production

E-nose; NIR;
standard

bioreactor probes
MLDF PLS

Forward selection procedure
based variable selection

relying on the correlation with
the desired model output

/ Enhanced process
control e.d. [201]

Monitor the solid-state
fermentation process of

feed protein; process
state identification

E-nose; NIR MLDF BP-AdaBoost
neural network PCA; ICA

DF-individual
model

comparison; PCA

Enhanced process
control e.d. [118]

Food
Analyze the continuous

bottling process of
beverages

CO2 content;
sugar content; Net

content; washer
temperatures;

rinse
temperatures;

closing/opening
torque

LLDF PCA; 3-way PLS - /; complementary
univariate sources

Enhanced process
control / [202]

Pharmaceutical

Multivariate monitoring
of continuous tableting

line

37 process sensors
from 5 unit
operations

LLDF PCA; PLS - /; complementary
univariate sources

Enhanced process
control e.d. [131]

BSPC of a continuous
twin-screw granulation

line

21 process
parameters related

to multiple unit
operations

LLDF PLS - /; complementary
univariate sources

Enhanced process
control e.d. [92]

MSPC of a continuous
granulation and drying

process

25 univariate
variables logged
by ConsiGmaTM

LLDF PCA - /; complementary
univariate sources

Enhanced process
control

e.d. +
interfering

factors
[93]

MSPC of a continuous
granulation and drying

process

35 univariate
variables for the

monitoring of
granulation and

drying

LLDF PLS - /; complementary
univariate sources

Enhanced process
control e.d. [90]
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Table A1. Cont.

Domain Objective Data Source Data Fusion
Level

Modeling
Method

Variable Selection/Feature
Extraction

Complementarity
Evaluation

Performance
Results

Robustness/
Validation Reference

Pharmaceutical

Multivariate control of
continuous tableting line

14 univariate
variables recorded

from feeding,
extrusion, and

drying unit
operations

LLDF PCA; PLS - /; complementary
univariate sources

Enhanced process
control / [152]

MSPC of a granulation
process

temperature;
agitation speed;
torque; power
consumption

LLDF PLS - /; complementary
univariate sources

Enhanced process
control / [151]

Predict culture
performance across

different scales

pH; dissolved
oxygen;

temperature;
dissolved CO2;

metabolic
indicators; cell

growth
parameters

LLDF PLS - /; complementary
univariate sources

Enhanced process
control / [153]

Monitoring of a
fed-batch cell culture

process

pH; agitation;
air/CO2/O2

flows; dissolved
O2; vessel

temperature

LLDF PCA - /; complementary
univariate sources

Enhanced process
control

e.d. +
interfering

factors
[154]

Batch modeling of cell
culture unit operation

pCO2; pO2;
glucose; pH;

lactate;
ammonium ions

LLDF PLS - /; complementary
univariate sources

Enhanced process
control / [155]

Process control for
ointment manufacturing

Temperature;
Viscosity; FBRM;

Raman (API
concentration)

MLDF PLS PLS / Enhanced process
control

e.d. +
interfering

factors
[156]

Pharmaceutical/
Chemical

MSPC of fluid bed
granulation, polyester

production, and gasoline
distillation processes

Temperature
sensors; NIR; MLDF PCA

PLS; MCR-ALS; T2,
Q—derived from NIR based

MSPC
/ Enhanced process

control e.d. [10]
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Table A1. Cont.

Domain Objective Data Source Data Fusion
Level

Modeling
Method

Variable Selection/Feature
Extraction

Complementarity
Evaluation

Performance
Results

Robustness/
Validation Reference

REGRESSION; PROCESS CONTROL

Chemical

Monitor glucose
concentrations on a

fermentation process

NIR; airflow rate;
alkali addition

rate
LLDF PLS SWS DF-individual

model comparison
LLDF > individual

model / [203]

MSPC control chart for
styrenic polymer

production process;
predict melt flow index

and percentage of bound
acetonitrile

NIR/NIR; process
sensor data* LLDF; MLDF* PLS; PCA PCA EDA MLDF >

individual model e.d. [103]

Food Monitoring of yogurt
fermentation

NIR; temperature;
E-nose MLDF ANN Forward selection / No comparison

e.d. +
interfering

factors
[140]

Pharmaceutical

BSPC of a fluid bed
granulation process;

prediction of granule
density and flowability

from process fingerprint

Spatial filter
velocimetry;

temperature data
LLDF PLS - / Enhanced process

control e.d. [157]

Predict granulation
water, tableting speed,

and tablet disintegration

Process data; Raw
material data;

Granulometric
data

MLDF PLS; ANN PCA /; complementary
univariate sources

Enhanced
feedforward

process control
e.d. [139]

Predict the viscosity of a
personal care product

from process data

8 process
parameters

(temperature,
pressure data)

MLDF MPLS PLS /; complementary
univariate sources

Enhanced process
control / [158]

REGRESSION

Agriculture
Determination of starch
and protein content in

navy bean flour

NIR; Fluorescence
spectroscopy LLDF PCR; PLS -

X-Y correlated
variability
estimated

LLDF >/≈
individual model

(f. response)
e.d. [204]
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Table A1. Cont.

Domain Objective Data Source Data Fusion
Level

Modeling
Method

Variable Selection/Feature
Extraction

Complementarity
Evaluation

Performance
Results

Robustness/
Validation Reference

Chemical

Analysis of protein
secondary structure CF; UVRR LLDF MCR-ALS - DF-individual

model comparison
LLDF > individual

model / [205]

Analysis of coal volatile
content and caloric value LIBS; FT-IR LLDF PLS - DF-individual

model comparison
LLDF > individual

model e.d. [206]

Simultanous
determination of Cu(II),

Ni (II) and Cr (II)

UV-VIS
spectroscopy MLDF PLS Wavelet transformation

Fusion of different
scale based

wavelet
coefficients

MLDF >
individual model

e.d. +
interfering

factors
[115]

Prediction of elemental
concentrations in ore MWIR; LWIR LLDF; MLDF PLS PCA DF-individual

model comparison
LLDF > individual

model > MLDF e.d. [72]

Determination of
deltamethrin in

insecticide formulations
NIR; UV-VIS LLDF; MLDF ELM PLS DF-individual

model comparison

LLDF >
MLDF/individual

model
e.d. [76]

Predict properties of
oil/biodiesel blends NIR; MIR LLDF; MLDF PLS; SVM VIP -> PCA; iPLS -> PCA DF-individual

model comparison
DF > individual

model e.d. [100]

Environmental

Predict total carbon and
nitrogen in soil samples PXRF; VIS-NIR LLDF RF; PSR - DF-individual

model comparison
LLDF > individual

model e.d. [207]

On-line mineral
identification of tailing
slurries of an iron ore

concentrator

LIBS; NIR; XRF LLDF PLS - DF-individual
model comparison

LLDF > individual
model / [208]

Predict soil texture PXRF; NIR MLDF PLSR; SMLR PCA DF-individual
model comparison

MLDF >
individual model e.d. [127]
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Table A1. Cont.

Domain Objective Data Source Data Fusion
Level

Modeling
Method

Variable Selection/Feature
Extraction

Complementarity
Evaluation

Performance
Results

Robustness/
Validation Reference

Food

Age time prediction of
wine

FT-IR; UV-VIS;
Colorimetry LLDF PLS - DF-individual

model comparison
LLDF ≈

individual model e.d. [209]

Determination of micro
and macroelements in

Brachiaria forages
vegetal samples

NIR; LIBS LLDF PLS rPLS DF-individual
model comparison

LLDF > individual
model e.d. [106]

Predict the K, Mg, and P
concentration in bean

seeds
LIBS; WDXRF LLDF MLR - DF-individual

model comparison
LLDF > individual

model

e.d. +
interfering

factors
[210]

Characterization of
crude oil products IR; Raman; NMR LLDF PLS - DF-individual

model comparison
LLDF > individual

model e.d. [98]

Prediction of quality
indices

Dielectric
spectroscopy;

Computer Vision
MLDF ANN; SVM; BN;

MLR

CFS; image processing—red,
green, blue, hue, saturation,

intensity, lightness, a∗ and b∗
chromatic components

/ MLDF >
individual model e.d. [189]

Predict the yield of
drought stressed spring

barley

NIR; thermal and
distance

measurements
MLDF PLS; MLR Calculation of spectral indices / MLDF >

individual model / [211]

Predict the freshness of
pork meat

Spectral and
textural data

extracted from
Hyperspectral

images

MLDF PLS
Spectral waveband extraction;

SPA; texture
extraction—GLCM

DF-individual
model comparison

MLDF >
individual model e.d. [97]

Predict the water
holding capacity of
chicken breast fillets

Spectral and
textural data

extracted from
Hyperspectral

images

MLDF PLS RC based wavelength selection;
GLCM—texture variables;

DF-individual
model comparison

MLDF >
individual model e.d. [212]

Predict the total volatile
basic nitrogen level in

fish fillet

Spectral and
textural data

extracted from
Hyperspectral

images

MLDF PLS; LS-SVM PN-GA DF-individual
model comparison

MLDF >
individual model e.d. [141]
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Table A1. Cont.

Domain Objective Data Source Data Fusion
Level

Modeling
Method

Variable Selection/Feature
Extraction

Complementarity
Evaluation

Performance
Results

Robustness/
Validation Reference

Food

Predict tenderness of
porcine muscle

NIR; Computer
Vision MLDF PLS

Discrete wavelength
transformation (computer

vision)

DF-individual
model comparison

MLDF >
individual model e.d. [213]

Predict pH for salted
meat

Spectral and
textural data

extracted from
Hyperspectral

images

MLDF PLS PCA (spectral data); GLCM
(textural features)

DF-individual
model comparison

MLDF ≈
individual model e.d. [214]

Qualitative identification
and quantitative

prediction (amino acids,
caffeine, polyphenols,

catechins) of tea quality

E-nose; E-eye;
E-tongue MLDF PLS; SVM; RF PCA DF-individual

model comparison
MLDF >

individual model e.d. [215]

Quantitative evaluation
of pesiticide residue in

tea

Confocal Raman
microspec-
troscopy;
E-nose

MLDF* PLS; SVM; ANN VIP; iPLS; rPLS; GA; CARS;
SPA

DF-individual
model comparison

MLDF >
individual model;
ANN> PLS/SVM

e.d. [216]

Quantify the
composition of roasted

and ground coffee
NIR; TXRF LLDF; MLDF PLS SVPII -> PLS; GA -> PLS; OPS

-> PLS
DF-individual

model comparison
LLDF > MLDF;

SVPII > GA/OPS

e.d. +
trueness,
precision,
linearity,

working range

[77]

Predict total volatile
basic nitrogen content in

chicken meat

Colorimetric
sensor; optical

sensor
LLDF; MLDF PCA-BPANN

ILA; LLA-(hyperspectral data);
Pearson’s correlation

coefficient based variable
selection;

Pearson
correlation

analysis

MLDF > LLDF;
removing

uncorrelated data
improved results

e.d. [114]

Olive leaf analysis and
crop nutritional status FT-NIR; EDXRF LLDF; MLDF PLS PCA

DF-individual
model

comparison; X-Y
correlated
variability
estimated

MLDF >
individual model;

LLDF >/<
individual model;

e.d. [124]

Moisture content
prediction in the

processing of green tea

Computer vision;
NIR LLDF; MLDF PLS; SVR

RFg; CARS; VCPA-IRIV; color
and texture features for

images/CV

DF-individual
model comparison MLDF > LLDF e.d. [81]



Molecules 2022, 27, 4846 31 of 41

Table A1. Cont.

Domain Objective Data Source Data Fusion
Level

Modeling
Method

Variable Selection/Feature
Extraction

Complementarity
Evaluation

Performance
Results

Robustness/
Validation Reference

Food

Predict the composition
of coffee blends ATR-FTIR; PS-MS LLDF; MLDF PLS GA-> PCA; OPS -> PCA DF-individual

model comparison
LLDF > MLDF;

OPS > GA; e.d. [78]

Prediction of olive oil
sensory descriptors

FT-MIR; UV-VIS;
HS-MS LLDF; MLDF PLS PLS DF-individual

model comparison

DF > individual
model (f.
response)

e.d. [125]

Quantification of Ca in
infant formula FT-IR; Raman LLDF; MLDF PLS VIP -> PLS

DF-individual
model

comparison;
individual data
characterisation

MLDF > LLDF e.d. [84]

Quantitative
estimation of

10-hydroxy-2-decenoic
acid in royal jelly

samples

ATR-FTMIR; NIR LLDF; MLDF PLS SI-PLS -> PCA; SI-PLS -> ICA DF-individual
model comparison MLDF > LLDF e.d. [75]

Predict the total
antioxidant activity and
total phenolic content of

Chinese rice wine

ATR-IR; Raman LLDF; MLDF PLS; SVM SiPLS -> PCA DF-individual
model comparison

MLDF >
individual model

> LLDF (more
redundant info)

e.d. [85]

Predict the sensory
attributes of rice wine

samples

E-nose; E-eye;
E-tongue LLDF; MLDF MLR; BP-ANN;

SVM
PCA; MLR (crossperception

DF)
DF-individual

model comparison

Cross-perception
DF >

LLDF/MLDF/
individual models

e.d. [217]

Age time prediction of
wine

SFE-GC-MS;
HPLC-DAD;

LC-DAD; UV-VIS
LLDF; MLDF*

Concatenated PLS;
MB-PLS; HPLS;
NI-SL; SO-PLS

- Block importance
evaluation

multiblock DF >
single block LV

methods
e.d. [162]

Quantitation of rapeseed
oil as contaminant in
adulterated olive oil

NIR; MIR LLDF; MLDF;
HLDF

PLS/bi-linear
regression for

HLDF
SPA DF-individual

model comparison

HLDF > LLDF >
Individual model

> MLDF
e.d. [79]
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Table A1. Cont.

Domain Objective Data Source Data Fusion
Level

Modeling
Method

Variable Selection/Feature
Extraction

Complementarity
Evaluation

Performance
Results

Robustness/
Validation Reference

Pharmaceutical

Predict quality model for
HSWG process-based

formulations

Literature data;
Process data in

HSWG
LLDF PLS - /; complementary

univariate sources
LLDF > individual

model e.d. [159]

Predict Beta-carotene,
Riboflavin, ferrous

fumarate, ginseng, and
ascorbic acid content in

powder blends; quantify
powder flow behavior

Light-induced
fluorescence

spectroscopy; NIR;
RGB color
imaging

LLDF MB-PLS - MB-PLS LLDF > individual
model e.d. [134]

Predict the thickness of
microsphere coating and

API dissolution
performance

Raw material data;
Process data; NIR;

Raman; FBRM
MLDF MB-PLS - MB-PLS MLDF ≈ Raman

individual model* / [135]

Predict meloxicam
content in nanofibers

NIR; Raman;
Colorimetry;

Image analysis
MLDF PLS; ANN PCA/OPLS scores from raw or

preprocessed data OPLS MLDF >
individual model

Accuracy
profiles [104]

Dissolution prediction Univariate Process
Parameters; NIR MLDF PLS PCA DF-individual

model comparison
MLDF >

individual model / [91]

Predict dissolution
profile for sustained

release tablets

NIR; compression
force; PSD data MLDF ANN; SVM; ERT PLS (tablet composition

prediction)
DF models
comparison

MLDF >
individual model;
ANN> SVM/ERT

e.d. [145]

Predict dissolution
profile for modified

release tablets

Reflection and
transmission NIR;

reflection and
transmission

Raman

MLDF ANN; PLS PCA DF-individual
model comparison

MLDF >
individual model;

ANN > PLS
e.d. [105]

Predict dissolution
profile for immediate

release tablets

NIR; formulation-
material-process

variables
MLDF PLS PCA DF-individual

model comparison

MLDF >
individual model

(f. response)
e.d. [102]
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