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Simple Summary: The false codling moth is an indigenous pest of the citrus industry in southern
Africa. It is a major threat as it can cause substantial fruit damage through larval feeding. The
microorganisms associated with insects are often studied for their potential to kill their host instead
of how they could aid them. However, in recent years, this aspect of their interaction has received
much attention. The codling moth has been shown to have a close relationship with the naturally
occurring yeast found within their digestive tract. These beneficial yeasts help the adult female moths
locate a suitable host for egg laying. During their larval phase, these yeasts help them develop faster
and increase their chance of survival. These interactions could be manipulated for the purposes of
biological control, as one might be able to combine these yeasts with existing biological control agents
to improve their effectiveness. These yeasts may also provide additional methods for monitoring
field populations of insect pests. In this study, we identified yeasts that occur naturally in the guts of
false codling moth larvae and investigated whether any of them are beneficial to their host.

Abstract: Thaumatotibia leucotreta is endemic to southern Africa and is highly significant for various
fruit industries, including the South African citrus industry, due to its classification as a phytosanitary
pest. Mutualistic associations between C. pomonella, closely related to T. leucotreta, and yeasts have
previously been described and reported to reduce larval mortality and enhance larval development.
Here, we determined which yeast species occur naturally in the gut of T. leucotreta larvae and
investigated whether any of the isolated yeast species affect their behaviour and development. Navel
oranges infested with T. leucotreta larvae were collected from geographically distinct provinces in
South Africa, and the larvae were processed for analysis of naturally occurring associated yeasts.
Six yeast species were isolated and identified from the guts of these T. leucotreta larvae via PCR
amplification and sequencing of the ITS region of rDNA and D1/D2 domain of large ribosomal
subunit. Larval development and attraction assays were conducted, and T. leucotreta larvae that
fed on Navel oranges inoculated with yeast had accelerated developmental periods and reduced
mortality rates. Neonate T. leucotreta were also attracted to YPD broth cultures inoculated with
yeast for feeding. Oviposition preference assays were conducted with adult T. leucotreta females.
Navel oranges inoculated with yeast were shown to influence the oviposition preference of adult
females. Yeasts harbour the potential for use in biocontrol, especially when combined with other well-
established control methods. This study provides a platform for future research into incorporating
yeast with current biological control agents as a novel option for controlling T. leucotreta in the field.
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1. Introduction

Microbes are the most abundant living organisms on earth, and apart from being found
within the general environment, they are also known to colonise other living organisms
such as insects [1]. The relationships between insects and microorganisms are often not
overtly pathogenic but rather beneficial or even required [2]. They vary considerably and
range from accidental encounters to functional ones, such as locating an attractive food
source or providing essential nutrients missing from their diet [3,4]. Interactions between
insects and microbes with a mutualistic relationship are greater than those that interact
by chance, as they have evolved together [5,6]. Microbes are predominantly localised to
the external cuticle, gut, hemocoel and cells of insects, as these regions offer the most
favourable conditions for establishment [1]. Microbes ingested and hosted within the insect
gut can strongly impact insect survival [7,8]. The makeup of these microbial communities
mainly comprise bacteria, archaea and eukaryotic microorganisms [9,10]. The microbiota
harboured within insects is generally distinct from the microorganisms in the external
environment [2]. Microbial populations are usually concentrated in the digestive tract
of most insects, particularly the hindgut, as it is a benign environment that provides
access to nutrients and protection from the various stresses associated with the external
environment [3]. The role of microbial communities in insect–plant interactions is essential
and can favourably impact their ecology, evolution and behaviour [11–15]. Several insect
orders have been reported to harbour persistent microbial communities [16]. Associations
between Lepidoptera and microbes have rarely been described even though they are the
second-most diverse insect order with some of the most devastating agricultural pests
worldwide [17,18].

Unlike their bacterial counterparts, interactions between insects and yeasts have
been understudied, despite their importance to insect fitness and behaviour [9,19,20].
The search for associations between Lepidoptera and yeasts was ignited by studies con-
ducted on Drosophila melanogaster (Meigen) (Diptera: Drosophilidae) [21]. The presence,
type and amount of yeast within their diet affect their behaviour, development and fit-
ness [14,22,23]. Yeasts were also shown to be primarily responsible for influencing host
locating and ovipositing, not plant cues as once thought [24]. Yeasts have proven to be an
essential nutritional source for insect larval development and to influence neonate larval
feeding and behaviour [25]. For Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae),
commonly known as the codling moth, larvae are closely associated with yeast from the
genus Metschnikowia [26]. These yeasts were reported to be crucial in enhancing the de-
velopment of C. pomonella larvae and reducing mortality. Additionally, the metabolites
produced by yeasts contributed towards adult C. pomonella moths recognising and finding
their host plant [26]. Identifying this mutualistic association between C. pomonella larvae
and yeasts from the genus Metschnikowia has led to the development of novel biocontrol
strategies [27–29].

Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), commonly known as
the false codling moth, is a phytophagous insect, endemic to southern Africa [30]. It is
important to various fruit industries, including the South African citrus industry, due to
its classification as a phytosanitary pest by several international markets [31]. The pest is
capable of causing significant financial loss through larval feeding. However, in recent
years, it has been effectively suppressed, through much improved management [32–34].
There are several biological control agents available for use against T. leucotreta in South
Africa [33,35]. Most notably, however, is the betabaculovirus, Cryptophlebia leucotreta
granulovirus (CrleGV), which is an effective microbial control agent against T. leucotreta [36].
It has previously been demonstrated, in laboratory assays and field trials, that combining
yeast with baculoviruses has resulted in the significant increase in larval mortality [27,28].
This indicates that yeasts harbour the potential for use in biocontrol, especially when
combined with other well-established control methods. This has, however, only been
reported in C. pomonella and not for T. leucotreta.
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Herein, we aimed to determine which yeast species occur naturally in the gut of
T. leucotreta larvae from geographically distinct citrus-producing regions across South
Africa and to examine whether any isolated yeast species affected the behaviour and
development of neonate larvae, as well as the oviposition preference of adult female moths.
These yeasts could potentially represent rich resources of new biological agents for the
control of T. leucotreta when combined with CrleGV.

2. Materials and Methods
2.1. Yeast Isolation and Purification

Ten Navel oranges (Citrus sinensis L. Osbeck) infested with T. leucotreta larvae were
collected from one orchard in each of three geographically distinct citrus-producing regions
in South Africa, namely Stellenbosch (Western Cape), Addo (Eastern Cape) and Nelspruit
(Mpumalanga), between March and June of 2018 (Figure 1).
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Figure 1. Citrus-producing regions across South Africa where T. leucotreta larvae were collected:
(A) Stellenbosch in Western Cape, (B) Addo in Eastern Cape and (C) Nelspruit in Mpumalanga.

The extracted larvae (n = 10) were surface-sterilised by rinsing in 10% NaOCl, followed
by a rinse in 70% ethanol solution (v/v) and finally double-distilled H2O (ddH2O). Yeasts
were isolated from the digestive tract of T. leucotreta larvae according to Witzgall et al. [26].
Larvae were stored at 4 ◦C for 2 hours (h) to immobilise them. They were then dissected
with a sterile razor blade in a fume hood. A sterilised inoculating loop was used to collect
the gut content, which was then homogenised with a glass rod in an Eppendorf tube. The
homogenate was then streaked onto a Yeast extract Peptone Dextrose (YPD) agar (Sigma-
Aldrich, St. Louis, MO, USA) plate containing 40 units/mL of penicillin (Pen) and 40 µg/mL
of streptomycin (Strep) (Thermo Fisher Scientific, Waltham, MA, USA). Additionally, the
homogenate was diluted in ddH2O, filtered through muslin cloth and spread onto a
Pen/Strep YPD agar plate. Plates were incubated at 27 ◦C for 48 h under aerobic conditions,
with emerging yeast colonies being selected and discontinuously streaked on Pen/Strep
YPD agar plates. This process was conducted twice to obtain pure colonies.

2.2. Yeast Identification

Yeast isolates were grown overnight in YPD medium containing 40 units/mL of Pen
and 40 µg/mL of Strep at 27 ◦C while shaking (180 rpm). Genomic DNA (gDNA) was
extracted using the YeaStar™ Genomic DNA Kit (Zymo Research, Irvine, CA, USA) per
the manufacturer’s instructions. The concentration of gDNA was determined using a
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NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). The
amplicons of the intended targeting region were amplified using 50 ng of gDNA template
with the site-specific primers (Table S1) for the internal transcribed spacer (ITS) region and
D1/D2 domain of the LSU of ribosomal DNA (rDNA) [37]. PCR amplification was carried
out using a SimpliAmp™ Thermal Cycler (Thermo Fisher Scientific, Waltham, MA, USA)
under the following cycle parameters: 94 ◦C for 5 min followed by 30 cycles of 95 ◦C
for 30 s, 55 ◦C for 45 s and 72 ◦C for 45 s. A final elongation cycle of 72 ◦C for 10 min
was used [26]. Amplicons were sequenced by Inqaba Biotechnical Industries (Pty) Ltd.
(Johannesburg South Africa). Sequences were assembled and analysed in MEGA X [38],
with any ambiguous nucleotides being corrected before the sequences were identified by
comparison to the GenBank database of nonredundant sequences using BLAST.

2.3. Thaumatotibia leucotreta Culture

Eggs and pupae were obtained from the heterogeneous T. leucotreta culture, known
as “Mixed Colony”, held at Rhodes University’s Department of Zoology and Entomology,
South Africa. The colony was established in 1996 using T. leucotreta collected from Citrusdal
(Western Cape Province), Zebediela (Limpopo Province) and the Eastern Cape [39]. The
larvae were reared and maintained on an artificial diet consisting of maize meal, wheat
germ, casein, Brewer’s yeast, nipagin, sorbic acid and distilled water [40].

2.4. Larval Development Assays

A modified version of the larval development assay described by Witzgall et al. [26]
was used to determine the effect that yeasts had on the development of T. leucotreta larvae.
Navel oranges were collected from orchards in the Sundays River Valley in the Eastern
Cape Province of South Africa and stored in a 4 ◦C cold room to preserve the fruit until use.
Oranges were sterilised in a 0.5% bleach solution, rinsed twice in ddH2O and allowed to air
dry in a controlled-environment (CE) room at 25 ◦C overnight. Yeast cultures were grown
in YPD medium containing 40 units/mL of Pen and 40 µg/mL of Strep for 20 h at 27 ◦C
while shaking; cell counts were adjusted to 2 × 106 cells mL−1 with ddH2O. Sterilised
Navel oranges were dipped three times into a specific yeast culture, placed on a platform
and allowed to air-dry in a 25 ◦C CE room. Five newly hatched T. leucotreta neonates were
then placed onto each Navel orange and maintained in a 25 ◦C CE room for 35 days (d).
Cotton wool was placed between the Navel oranges 10 d later to provide emerging 5th
instars with a pupation site. Thereafter, the cotton wool was checked daily, and the number
of pupated T. leucotreta larvae was recorded. After 35 d, each Navel orange was dissected
to check for any remaining T. leucotreta larvae. Assays were conducted on four dates, with
nine Navel oranges per treatment.

2.5. Larval Feeding Assay

Two-choice bioassays were used to assess neonate T. leucotreta yeast feeding and
behaviour, adapted from Ljunggren et al. [41]. Yeast cultures were grown as previously
described, with cell counts adjusted to 1.5 × 107 cells mL−1 with ddH2O. Two-choice
bioassays were conducted whereby two 50 µL drops of yeast culture and YPD medium were
pipetted across from one another, approximately 1 cm from the edge of a plastic petri dish.
Red and blue colourants (Pioneer Foods, Paarl, South Africa) were used at 1:25 dilution
to colour the yeast and YPD medium to distinguish between neonate T. leucotreta that fed
on yeast culture, blank medium, or both. Preliminary tests did not show a bias in neonate
T. leucotreta attraction to either the red or blue colourants (Figure S1) (p > 0.05; t = 0.2133;
df = 27 (Student’s t-test)). Neonate T. leucotreta were starved for 24 to 48 h after hatching
before being placed in the centre of a petri dish using a fine paintbrush. A glass lid was
used to cover the petri dish to prevent the neonates from escaping and was left for 2 h to
allow the larvae to feed. The colouration of the neonate’s gut was then observed under a
dissecting microscope. Twenty-two independent replicates with 10 T. leucotreta neonates
were performed for each yeast.
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2.6. Oviposition Preference Assays

A modified version of the ovipositional preference trials described by Love et al. [42] was
used to determine the oviposition preference of adult T. leucotreta females. Thaumatotibia leucotreta
female and male pupae were kept in separate vials. Once moths had eclosed, they were
paired together, within 24 h, and allowed to copulate for 48 h in a 25 mL glass vial, plugged
with cotton wool moistened in a 10% sugar water solution. Pairs were kept in a 25 ◦C CE
room with 30–60% relative humidity (RH) under light conditions. Trials were conducted in
a 25 ◦C CE room with 30–60% RH under a day/night light cycle of 12 h of light and 12 h of
dark. Navel oranges were collected and stored as previously described and removed from
cold storage 1 d prior to being used in the ovipositional preference trial. The fruits were
checked for T. leucotreta eggs, those with eggs being discarded, before being thoroughly
washed in a 0.5% NaOCl solution, rinsed twice in ddH2O and allowed to air dry in a CE
room at 25 ◦C overnight. Yeast cultures were grown as previously described, with counts
adjusted to 2 × 106 cells mL−1 with ddH2O. Sterilised Navel oranges were dipped three
times into a specific treatment and allowed to air-dry in a 25 ◦C CE room. Treated Navel
oranges were then placed onto 4 cm tall plastic platforms 15 cm apart in a plastic container
(60 × 40 × 40 cm) covered with muslin cloth. A single pair of mated adults was then
released into the container. The eggs oviposited on the Navel oranges were counted after
48 h. Ten ovipositional preference trials were conducted per yeast species.

2.7. Statistical Analysis

All statistical analyses were performed using GraphPad Prism version 9.0.0 (GraphPad
Software, San Diego, CA, USA). Thaumatotibia leucotreta larval development assays were
analysed using a Fisher’s exact test [26]. The larval feeding of T. leucotreta on yeasts was
compared using a Student’s t-test, with the level of significance set to p = 0.05 [41]. The
ovipositional preference trials were analysed using a Student’s t-test, with a significance
level of p = 0.05 [42].

3. Results
3.1. Yeast Isolation and Identification

The guts of 30 T. leucotreta larvae were screened for yeast, which resulted in the
isolation of six yeast species. The isolated yeast species were successfully identified via
the gene sequence analysis of the ITS region and D1/D2 domain of the LSU (Table 1). The
occurrence of the isolated yeast species was not consistent, and the isolated species were
not uniformly found in all larvae.

Three yeast species were isolated only from T. leucotreta larvae collected from Addo,
viz. Meyerozyma guilliermondii, Hanseniaspora uvarum and Clavispora lusitaniae. Kluyveromyces
marxianus was only isolated from a larva collected in Stellenbosch, and the remaining two
yeast species, Pichia kudriavzevii and P. kluyveri, were common in larvae collected from
each region.

3.2. Larval Development Assays

Navel oranges treated with yeast significantly decreased the larval development
period and increased the larval pupation rate compared to sterilised fruit with no yeast
treatment (Table 2). Pichia kluyveri (p = 0.0001), H. uvarum (p = 0.0092) and S. cerevisiae
(p = 0.0024) performed the best out of all the applied yeast treatments, as not only was
development significantly faster than that of the control at a 99% probability level, but
pupation success was highest for these three species. Although P. kudriavzevii (p = 0.0586),
K. marxianus (p = 0586) and C. lusitaniae (p = 0.002) also significantly decreased the larval
development period at the same probability level, the number of pupated larvae was similar
to that of the control. Additionally, although not recorded, it was noted that the occurrence
of mould was lower on yeast-inoculated Navel oranges compared to the untreated control.
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Table 1. BLAST analysis of the ITS region and D1/D2 domain for each isolated yeast species.

Sample Amplicon Yeast Species Accession Number Identity

Addo “One”
ITS Meyerozyma guilliermondii MN537824.1 100%

D1/D2 Meyerozyma guilliermondii EU285513.1 100%

Addo “Two”
ITS Hanseniaspora uvarum MN371907.1 98.28%

D1/D2 Hanseniaspora uvarum AY305681.1 99.64%

Addo
“Three”

ITS Clavispora lusitaniae KP765042.1 99.52%
D1/D2 Clavispora lusitaniae MG871742.1 99.82%

Stellenbosch
ITS Kluyveromyces marxianus KX376261.1 99.70%

D1/D2 Kluyveromyces marxianus CP009307.2 100%

Common
“One”

ITS Pichia kluyveri KM982973.1 99.75%
D1/D2 Pichia kluyveri MN464128.1 99.64%

Common
“Two”

ITS Pichia kudriavzevii LC389027.1 100%
D1/D2 Pichia kudriavzevii MF461295.1 100%

Table 2. The pupation rate of T. leucotreta larvae before or after 25 d, during 35 d detached fruit bioassays.
Sterilised Navel oranges (n = 36) were inoculated with yeast or left untreated. * and ** indicate significant
differences from the control according to a Fisher’s exact test (p < 0.05 and p < 0.01, respectively).

Treatments Total Pupated Pupated Percentage
before 25 d

p-Value
Before 25 d After 25 d

Control 41 15 26 37%
M. guilliermondi 59 35 24 59% 0.0414 *

P. kluyveri 78 58 20 74% 0.0001 **
P. kudriavzevii 58 35 23 60% 0.0253 *

H. uvarum 63 40 23 63% 0.0092 **
C. lusitaniae 42 30 12 71% 0.0020 **
K. marxianus 58 38 20 66% 0.0075 **
S. cerevisiae 62 42 20 68% 0.0024 **

The mortality rate of T. leucotreta larvae was significantly lower on Navel oranges
treated with M. guilliermondii (p = 0.0452), P. kluyveri (p < 0.0001), H. uvarum (p = 0.0144) and
S. cerevisiae (p = 0.0194) (Figure 2). Clavispora lusitaniae (p > 0.9999), P. kudriavzevii (p = 0.0586)
and K. marxianus (p = 0.0586) did not decrease larval mortality. Overall, P. kluyveri provided
the most benefit to T. leucotreta larvae, as the yeast decreased larval mortality by 20.55%
and 74% of larvae pupated before 25 d.

3.3. Larval Feeding Assay

The feeding preference of neonate T. leucotreta was influenced by four yeasts, viz.
P. kluyveri (p = 0.0043), H. uvarum (p = 0.0037), P. kudriavzevii (p = 0.0001) and K. marxianus
(p = 0.0005) (Figure 3). Two yeast species, M. guilliermondii (p = 0.0606) and S. cerevisiae
(p = 0.2579), had no significant effect on larval feeding. The only time larvae preferred the
YPD medium was in the case of C. lusitaniae (p = 0.5907).

3.4. Oviposition Preference Assays

Significantly more eggs were oviposited on Navel oranges inoculated with M. guilliermondii
(p = 0.0090), P. kudriavzevii (p = 0.0471) and H. uvarum (p = 0.0013) compared to the untreated
control fruit during the two-choice tests (Figure 4). Pichia kluyveri (p = 0.3768), C. lusitaniae
(p = 0.5729), K. marxianus (p = 0.2838) and S. cerevisiae (p = 0.0517) did not influence the
oviposition preference of adult T. leucotreta females.
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4. Discussion

Most interactions between insects and microorganisms have been studied for their
potential use as insect pathogens and not for their role as mutualists [43]. Yeasts play an es-
sential role in the nutrition physiology and host attraction of many insects [19]. The volatile
profiles produced by yeasts have also been shown to elicit strong behavioural responses in
both lepidopteran larvae and adults [26,41,44]. The potential value of incorporating mutu-
alistic yeast into current strategies to control insect pests has only recently been explored,
leading to new pest management strategies [27–29]. As this is still a developing area of
research, little is known about the influence of naturally occurring yeasts on T. leucotreta.

Meyerozyma guilliermondii, P. kudriavzevii, P. kluyveri and H. uvarum are widely dis-
tributed in the environment and often associated with citrus fruits or fermented food [45–48],
so their association with T. leucotreta is not unexpected. Hanseniaspora uvarum is also
thought to have a mutualistic relationship with Drosophila suzukii (Matsumura) (Diptera:
Drosophilidae), a significant pest of soft summer fruits elsewhere in the world [49–52].
Larval development assays demonstrated that the isolated yeasts have a beneficial effect on
T. leucotreta larvae by reducing their development periods and mortality. There is growing
support that the vast majority of insects feed and benefit from yeast in their diet. Yeast
multi-cultures have been shown to improve insect development [19]. The composition
of an insect’s diet has been shown to affect their adult life traits, including food prefer-
ence and host locating [53,54]. During larval development, a limited yeast supply can
negatively affect adult food preference, copulation, fecundity and longevity [14,53]. In
Drosophila species, larval diets containing mixed yeast cultures provide more significant
development speed and survivability benefits than single yeast cultures [55]. The yeast diet
of juvenile insects directly influences their fitness and development and indirectly affects
adult life traits [14,53].

Detrimental fungal infections were observed less frequently on Navel oranges treated with
yeast than those without, during larval development assays. Kluyveromyces marxianus has been
reported to be an effective biological control agent against Penicillium digitatum, a fungus that
causes green mould in citrus fruit, in combination with sodium bicarbonate (NaHCO3) [56].
Hanseniaspora uvarum, in combination with phosphatidylcholine, has also shown great potential
as a biological control agent against P. digitatum [57]. Meyerozyma guilliermondii has also exhibited
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potential as a biological control agent against fungi responsible for postharvest spoilage
of fruit and vegetables [58]. Thaumatotibia leucotreta-infested fruit often do not rot, or
rotting is delayed, particularly when compared to Ceratitis capitata (Wiedemann) (Diptera:
Tephritidae) (Mediterranean fruit fly) infestations, indicating that T. leucotreta larvae may
feed on secondary fungal infections, preventing, or delaying, the fruit’s decay. A similar
observation has been made in the case of C. pomonella larval feeding galleries, which rarely
become infested with mould [26]. This stands to reason, as the standard artificial diet for
laboratory rearing of T. leucotreta used to be a Mucor or Rhizopus fungal species-inoculated
maise meal diet [59,60].

Integrated pest management programmes in South Africa successfully use both semio-
chemicals and pathogens to manage T. leucotreta populations [33,36,61]. Combining semio-
chemicals with pathogens in attract-and-kill strategies could significantly increase the
efficacy of currently used biological control agents [62,63]. The behaviour of neonate
T. leucotreta was influenced by H. uvarum, P. kluyveri, P. kudriavzevii and K. marxianus.
Volatiles produced by yeasts are thought to stimulate larval feeding [27]. Insect larvae have
been shown to prefer specific yeast species over others during the early stages of devel-
opment [54,64]. In larval feeding assays, it has been demonstrated that Spodoptera littoralis
(Boisduval) (Lepidoptera, Noctuidae) larvae preferred phyllosphere yeasts over yeasts
associated with fruit and frugivorous insects [41]. Increasing larval feeding with yeast
increases the probability that a simultaneously applied biopesticide will be ingested by the
insect [27–29].

Meyerozyma guilliermondii, P. kudriavzevii and H. uvarum were shown to significantly
affect adult T. leucotreta females’ oviposition preference. Both H. uvarum and P. kudriavzevii
have now been shown to influence T. leucotreta neonate and adult female behaviour. They
are known to be associated with citrus; thus, their influence on T. leucotreta is not unexpected.
To date, the behavioural influences of these yeasts on lepidopteran moths have not been
well documented. However, their influence on other agriculturally important pests has
been reported. Hanseniaspora uvarum has been shown to affect the ovipositional behaviour
of drosophilid flies, acting as both an attractant and repellant [50,65,66]. Using H. uvarum
as a live yeast bait for a selective lure against D. suzukii has been suggested [67]. The odour
profiles of host plants are comprised of numerous volatile organic compounds in a specific
blend ratio [68]. Microorganisms can modify this odour profile produced by plants [44].
Moreover, the metabolites produced by gut-associated microbes can affect insects foraging
and oviposition behaviour [25]. Volatiles produced by yeasts can elicit a strong response in
neonates and adult insects [14,26,41,53]. Host finding and discrimination for C. pomonella
are mediated by the yeasts’ volatile signatures [26]. In contrast to vision and contact,
olfactory cues can be detected at a considerable distance from the source [66,69].

Six yeast species were successfully isolated and identified from T. leucotreta larvae
collected from geographically distinct citrus-producing regions. Larval feeding and ovipo-
sition assays demonstrated that the isolated yeast species elicit behavioural responses in
T. leucotreta neonates and adult females. The results generated from this work may help
further the development of environmentally safe semiochemicals for population monitor-
ing and control of T. leucotreta in South Africa. Future work arising from this study would
involve conducting detached fruit bioassays and semi-field trials to evaluate the efficacy of
a combination with biological control agents currently used against T. leucotreta.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects13030243/s1, Figure S1: Feeding response of neonate T. leucotreta (n = 29) to YPD
medium containing either (A) red or (B) blue food colourant (P > 0.05; t = 0.2133; df = 27 (Students t-
test)). Images captured by David Taylor, Table S1: Oligonucleotides used to amplify and sequence the
internal transcribed spacer (ITS) region and D1/D2 domain of large subunit (LSU) on yeast genomes.
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