
viruses

Review

Applications of the FIV Model to Study
HIV Pathogenesis

Craig Miller 1,* ID , Zaid Abdo 2, Aaron Ericsson 3, John Elder 4 and Sue VandeWoude 2

1 Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
2 Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins,

CO 80523, USA; Zaid.Abdo@colostate.edu (Z.A.); Sue.Vandewoude@colostate.edu (S.V.)
3 Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA;

EricssonA@missouri.edu
4 Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA;

jelder@scripps.edu
* Correspondence: craig.miller@okstate.edu; Tel.: +1-405-744-2219

Received: 31 March 2018; Accepted: 17 April 2018; Published: 20 April 2018
����������
�������

Abstract: Feline immunodeficiency virus (FIV) is a naturally-occurring retrovirus that infects domestic
and non-domestic feline species, producing progressive immune depletion that results in an acquired
immunodeficiency syndrome (AIDS). Much has been learned about FIV since it was first described in
1987, particularly in regard to its application as a model to study the closely related lentivirus, human
immunodeficiency virus (HIV). In particular, FIV and HIV share remarkable structure and sequence
organization, utilize parallel modes of receptor-mediated entry, and result in a similar spectrum of
immunodeficiency-related diseases due to analogous modes of immune dysfunction. This review
summarizes current knowledge of FIV infection kinetics and the mechanisms of immune dysfunction
in relation to opportunistic disease, specifically in regard to studying HIV pathogenesis. Furthermore,
we present data that highlight changes in the oral microbiota and oral immune system during FIV
infection, and outline the potential for the feline model of oral AIDS manifestations to elucidate
pathogenic mechanisms of HIV-induced oral disease. Finally, we discuss advances in molecular
biology, vaccine development, neurologic dysfunction, and the ability to apply pharmacologic
interventions and sophisticated imaging technologies to study experimental and naturally occurring
FIV, which provide an excellent, but often overlooked, resource for advancing therapies and the
management of HIV/AIDS.
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1. Feline Immunodeficiency Virus

Feline immunodeficiency virus (FIV) is a naturally-occurring retrovirus that infects domestic
and non-domestic feline species. In domestic cats, FIV produces progressive immune depletion that
eventually results in an acquired immunodeficiency syndrome (AIDS) [1–10]. As a consequence,
FIV infection is associated with a variety of clinical syndromes, including cachexia, anterior uveitis,
chronic rhinitis, gingivostomatitis and periodontitis, encephalitis and neurologic dysfunction, and
lymphoma [1,4,9,11–21]. The acute phase of FIV infection, lasting approximately 4–8 weeks,
is characterized by a sharp increase in CD4+ T lymphocytes that are accompanied by high levels
of FIV viral RNA and proviral DNA in circulation [4,8,22]. These hematologic changes are typically
accompanied by mild to moderate clinical signs, which include pyrexia, lethargy, and peripheral
lymphadenopathy [4,22,23]. Following a prolonged asymptomatic phase, during which the levels of
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circulating virus remains stable and integrated provirus establishes a reservoir of latently infected
target cells, there is progressive decline of CD4+ T lymphocytes and other immunocytes, resulting in
functional immunodeficiency and susceptibility to opportunistic infections [6,24–26].

During FIV infection, the loss of CD4+ T lymphocytes is directly attributable to a viral-induced
cytopathic effect, in addition to an increase in FIV-specific CD8-mediated programmed cell
death, lack of thymic regeneration, and spontaneous apoptosis in response to decreased cytokine
support [10,25,27,28]. The most frequent clinical disease syndromes that are associated with FIV
infection manifest as a consequence of immune dysfunction, such as oral opportunistic infection
(gingivitis, stomatitis, and periodontitis), immune-mediated glomerulonephritis, chronic rhinitis, and
dermatitis [15,16,19,20,29,30]. Oral opportunistic infections are prevalent in a high proportion of
FIV-infected cats, and frequently present as erythematous, inflammatory lesions along the gingival
margin (gingivitis), multifocal areas of necrotizing inflammation within the gingival sulcus or
periodontal ligament (periodontitis), or ulcerative inflammatory lesions along the buccal mucosa,
hard palate, or soft palate (stomatitis) [20,31–33]. Changes in the salivary/oral microbiota have
been increasingly associated with FIV infection, and shifts in the proportion of opportunistic
pathogens in the saliva of FIV-infected cats have been associated with the development of oral
inflammatory lesions [33,34]. Similarly, FIV-infected cats frequently present with severe, necrotizing,
and/or ulcerative inflammatory lesions (dermatitis) due to opportunistic infection with various
bacterial, fungal, protozoal, and parasitic etiologies, including mycobacteriosis, leishmaniasis,
toxoplasmosis, and dermatophytosis [16,29,35,36]. Upper respiratory disease is also a frequently
finding in FIV-infected cats, and may occur in conjunction with concurrent viral, bacterial, or fungal
infections [4,15,37,38].

Interestingly, FIV is also associated with the occurrence of neoplastic diseases, most frequently
being demonstrated by the development of lymphoma in a large proportion of infected cats [7,39].
This association has been described in both naturally and experimentally infected animals, and
predominately manifests as high-grade B-cell neoplasms that are remarkably similar to HIV-associated
diffuse large B-cell lymphoma (DLBCL) (Figure 1) [7,40–42]. Also similar to HIV, direct viral-mediated
oncogenesis that is related to proviral integration within oncogenes is an uncommon feature of
FIV infection, and neoplastic transformation has been attributed to the indirect consequences of
viral-induced immune dysfunction that arise in response to prolonged viral infection [7,42–44].
Specifically, recent studies have shown that clonal proviral integration sites are not typically detected
during FIV infection and that proviral loads are lower in neoplastic tissues, indicating the neoplastic
growth of cells lacking provirus [7]. Conversely, FIV and other lentiviral infections are strongly
associated with polyclonal B-cell expansion, immunoglobulin production, and cytokine expression of
proliferative mediators in response to immune activation and dysregulation [45,46]. It is proposed that
such infection kinetics provide opportunities for somatic rearrangements that are associated with the
generation of B-cell receptor diversity, or mutations in immunological cells during rapid expansion that
disrupt or activate oncogenes; thus, resulting in neoplastic transformation [7,42]. However, the causal
relationship of FIV and lymphoma has not been fully elucidated, and further studies are necessary to
evaluate the specific role that viral infection and immune function play during tumorigenesis.

FIV-induced renal disease is also observed in both experimentally and naturally infected cats,
and includes pathologic changes that include glomerulonephritis, proteinuria, protein tubular casts,
and tubular microcysts, as well as diffuse interstitial inflammatory infiltrates [30,47]. Mesangial widening
with glomerular and interstitial amyloidosis is also observed in kidneys of FIV-infected cats, and when
evaluated in the context of another frequent finding during FIV infection, hypergammaglobulinemia,
indicate the potential for immune complex deposition to occur within the glomerulus as a result of
chronic antigenic stimulation and immune activation [30,48,49].

Neurologic disease is an important manifestation of FIV infection, and affected cats may present with
either central nervous system (CNS) or peripheral nervous system (PNS) involvement [14,17,18,50,51].
In the PNS, FIV induces significantly increased the numbers of CD3+ T cells and macrophages
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in dorsal root ganglia, and infected cats exhibit pronounced changes in epidermal nerve fiber
densities [50,52]. FIV enters the CNS during the acute stages of infection and it is present within the
brain and cerebral spinal fluid [14,17,53]. The primary neuropathogenic effect of FIV infection within
the CNS manifests as infiltration and accumulation of perivascular lymphocytes and macrophages
(encephalitis), activation of microglial cells and astrocytes (gliosis), and occasional neuronal loss with
myelin degeneration [14,17,18,53,54]. This infiltration of inflammatory cells and the consequences
that are associated with immune activation within the CNS frequently results in clinically apparent
neurologic deficits and a gradual decline in CNS function, functionally manifesting as abnormal
stereotypic motor behaviors, anisocoria, increased aggression, prolonged latencies in brainstem evoked
potentials, delayed righting and pupillary reflexes, decreased nerve conduction velocities, and deficits
in cognitive-motor functions [55–58].
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Figure 1. Immunohistochemistry from a feline immunodeficiency virus (FIV)-infected cat with primary
B cell lymphoma. (A) Mesenteric lymph Node; 40× and 4× (inset). Normal amounts of interlobular
T lymphocytes (arrows) are present throughout the lymph node. Anti-CD3 (IHC) with DAB as
chromogen and hematoxylin counterstain. (B) Mesenteric lymph Node; 40× and 4× (inset). Neoplastic
B lymphocytes (arrows) multifocally expand the normal lymph node architecture. Anti-CD79a IHC
with DAB as chromogen and hematoxylin counterstain.
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2. FIV as a Molecular Analogue to HIV

FIV is a member of the Lentivirus genus within the Retroviridae family, and much has been
learned about FIV since it was first described in 1987, particularly in regard to its application as
a model to study the closely related lentivirus, human immunodeficiency virus (HIV) [8–10,59,60].
The FIV virion is approximately 100 nm in diameter, spherical, and contains two identical strands
of positive-sense RNA in its 9400-base genome, which is tightly associated with the nucleocapsid
protein (NC, p7) and a t-RNAlys bound to each RNA molecule, which serves as a primer for negative
strand transcription [25,59–61]. This protein complex, along with viral enzymes that are involved with
replication and maturation (protease, reverse transcriptase, integrase, and dUTPase), are enclosed
within a core of capsid protein (CA, p24), and are surrounded by a shell of matrix protein (MA,
p14) [25,59,60]. Viral envelope glycoproteins (gp) are embedded within an outer lipid bilayer
surrounding the matrix coat, and include the surface (SU, gp95) and transmembrane (TM, gp40)
subunits, which are cleaved from a 130–150 kDa membrane-bound precursor protein, glycosylated,
and non-covalently anchored within the envelope in a trimeric form [25,59,60,62].

The genomic structure of FIV consists of three primary open reading frames (ORFs), gag, pol,
and env, which are flanked by two long-terminal repeats (LTR) and are accompanied by numerous
small ORFs containing regulatory and accessory genes, such as vif, rev, and orfA (Figure 2). FIV gag
encodes the Gag polyprotein, which is cleaved by the protease to form the three mature proteins
(MA, CA, and NC) and is necessary to achieve formation of mature virus particles [59,63,64].
Pol polyprotein, which is the primary product of the FIV pol gene, contains four important enzymes
that are involved in virus replication and maturation: protease, reverse transcriptase (RT), integrase
(IN), and dUTPase (DU) [59]. Viral protease (PR) facilitates the cleavage of Gag and Pol polyproteins
into functional enzymatic or structural proteins; DU catalyzes the hydrolysis of dUTP to dUMP in
effort to minimize misincorporation of potentially mutagenic dUTP into host DNA [59,65,66]; FIV RT
is an RNA-dependent DNA polymerase involved in the reverse transcription of viral genomic RNA
into a double-stranded copy of proviral DNA (cDNA). Once synthesized, cDNA is integrated into the
host genome by a mature IN containing three functional domains: an N-terminal domain, a central
catalytic core, and a C-terminal domain [67–69]. The FIV Env polyprotein, which is a 130–150 kDa
product of the env gene, is glycosylated and trimmed within the Golgi apparatus, and proteolytically
cleaved into two mature, glycosylated proteins prior to virion budding at the cell surface: SU (gp95)
and TM (gp40), both of which play critical roles in virion attachment and entry into target cells [59,60].

The structural and sequence organization of FIV is very similar to HIV, which is also a member of
the lentivirus genus [59]. HIV is morphologically characterized by a spherical virion that is roughly
120nm in diameter, and contains a diploid genome that is composed of two copies of single stranded,
positive-sense RNA that is packaged with nucleocapsid (p7) and accessory proteins (protease, reverse
transcriptase, integrase) [70]. Like FIV, the ribonucleoprotein complex at the heart of the HIV virion is
contained within a dense core of Capsid protein (CA, p24) and is surrounded by a spherical shell of
Matrix protein (MA, p17) [70]. Mature Env glycoproteins, SU (gp120), and TM (gp 41), are anchored
within the external lipid bilayer, and play a significant role in cell entry through binding to host
cell receptors.

FIV requires an initial interaction with a primary binding receptor for infection, and binds
to host cells through a high-affinity interaction of the envelope SU protein (gp95) with the CD134
surface molecule present on CD4+ lymphocytes and monocytes/macrophages [71–75]. This interaction
induces a conformational change in the SU protein, which then exposes a cryptic epitope in the V3 loop
of Env; the binding site that is necessary for binding with the entry (co-) receptor CXCR4 [26,74,75].
Binding of the V3 loop exposes the serpentine region of TM (gp40), which results in the formation of a
hairpin structure that allows the fusion with the cell membrane and subsequent cell entry [26,75,76].
However, as infection progresses, the production of neutralizing antibodies by the host increases the
need for FIV to escape selective pressures. New viral variants arise that exhibit a decreased dependence
on CD134 and an increased ability to infect cells that express CXCR4 with limited CD134 expression,



Viruses 2018, 10, 206 5 of 26

such as naïve B cells, macrophages, and CD8+ T cells [2,3,60,77–80]. This expanded cell tropism results
in an increase in the number of target cells that are susceptible to infection, which subsequently causes
immunodepletion and clinical manifestations that are associated with AIDS-induced disease.
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Figure 2. Genomic organization of FIV and human immunodeficiency virus (HIV). The genomic
structure of FIV consists of three primary open reading frames (ORFs), gag, pol, and env, which are
flanked by two long-terminal repeats (LTR) and accompanied by numerous small ORFs containing
regulatory and accessory genes such as vif and orfA. Potential short ORFs (antisense ORFs—ASP,
shown in red) may be translated from a negative strand message. The genomic structure of HIV
consists of three similar primary ORFs (gag, pol, and env), as well as numerous small ORFs containing
regulatory and accessory genes, such as vif, vpr, vpu, tat, rev, and nef. Similar to FIV, the antisense ORF,
ASP (shown in red) may be translated from a negative strand message.

HIV also requires an initial interaction with a primary binding receptor for infection, and utilizes
analogous modes of receptor-mediated entry as FIV utilizing chemokine co-receptors [81–83]. However,
in lieu of CD134, HIV utilizes CD4 as the primary binding receptor and CCR5 as its primary entry
receptor, although HIV is also able to utilize CXCR4 [81,82]. Much like FIV, HIV binds to CD4+
target cells through a high-affinity interaction with the CD4 receptor that induces a conformational
change in the envelope glycoprotein gp120, subsequently exposing the binding sites necessary for
chemokine co-receptor binding (CXCR4 or CCR5) and subsequent fusion with the cell membrane.
In HIV infection, the expression of CCR5 or CXCR4 chemokine receptors on target cells is the primary
determinant of cell tropism, with CCR5-mediated infection of CD4+ T cells predominating early in
infection [84–86]. However, over the course of infection, the preference of HIV for CCR5 co-receptor
usage changes to CXCR4 in up to half of infected individuals, and these CXCR4-utilizing strains exhibit
a broader tropism for different T-cell subpopulations [84,87]. Furthermore, differences in CD4 and
CCR5 expression levels can affect the CCR5-mediated infection of macrophages, resulting in a shift in
cell tropism that is similar to what is observed during FIV infection [84,86,87].

The HIV genome encodes three primary polyproteins, Gag, Pol, and Env, as well as the regulatory
protein, Rev, and accessory protein, Vif—all of which exhibit similar functions to FIV [59,60,70].
However, in addition to these, HIV also contains genes that encode additional accessory proteins
that are involved in viral maturation, replication, and survival [70]. These accessory proteins include:
Tat (p16/p14), a viral transcriptional activator; Vpr (p10–15), a promoter of nuclear localization and
inhibitor of cell division (cell cycle arrest at G2/M); Vpu (p16); a promotor of extracellular release of
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viral particles; Nef (p27–25), a downregulator of CD4 and MHC I expression; Vpx (p12–16), a Vpr
homolog present in HIV-2 (absent in HIV-1); and, Tev (p28), a tripartite tat-env-rev protein [70].

The FIV genome contains one regulatory gene (rev) and two accessory genes (vif and orfA). FIV rev
encodes Rev, which is a nucleolar polyprotein that binds to the Rev Response Element (RRE) to
allow for export of partially spliced and unspliced viral RNA transcripts out of the nucleus with
the help of the nuclear export protein, exportin-1 [59,60,88]. The FIV Vif protein is crucial to FIV
replication and is involved in the counteraction of host defense mechanisms, such as APOBEC3,
which is a cellular protein that exerts an antiviral effect by deamination of cytosine to uracil during
viral replication, resulting in the degradation of synthesized minus-strand DNA [59,60,89]. FIV Vif
counteracts APOBEC3 by targeting the host protein to the E3 ubiquitin ligase complex, which is
subsequently degraded by the proteasome [59,60,89].

The FIV OrfA protein is encoded by the accessory gene orfA (Figure 2), and was originally
considered to be a transactivator of transcription due to a role in increasing the net translation
of proteins that were expressed from genes under the transcriptional control of the FIV LTR.
The localization of the orfA gene in the viral genome also roughly coincides with the location of
the gene encoding the HIV transactivator, Tat [90]. However, studies have failed to show an increase in
transcription directed by OrfA, and there is no trans-activation response (TAR) element, as acted on by
HIV Tat. Thus, an increase in net protein translation that is facilitated by OrfA must be by other means
and may be involved in late steps of virion formation and the early steps of virus infectivity, although
the precise role of OrfA is still undetermined [59,60,91–94]. OrfA localizes in the nucleus and causes
cell cycle arrest at G2 in infected cells, reminiscent of effects that are caused by the Vpr protein in HIV-1.
Also, OrfA has been shown to downregulate expression of the viral receptor for FIV (CD134) on the
surface of cells, as well as E2 ubiquitin-conjugating enzymes and an ubiquitin-protein ligase [60,90,95],
which is similar to the effects that are ascribed to the Nef protein on CD4 downregulation during HIV-1
infection. These potential functions of OrfA may have implications that aid in viral dissemination by
preventing surface interactions with budding virions, and limit the degradation of viral proteins by
host cell ubiquitin ligase mechanisms.

In 1988, Miller [96] made the observation that there was also potential to encode a peptide product
from an RNA transcribed from the minus strand of the provirus. Since then, there have been a number
of reports providing evidence for predicted RNA and protein products from the minus strand in
HIV-1 [97–106], SIV [107], FIV [108], and in the deltaretrovirus, BLV [109]. In FIV, there are several
potential short open reading frames that may be translated from a negative strand message. However,
the major potential reading frame in the negative strand of both FIV and HIV, antisense protein
(ASP), coincides with the Env coding region in the plus strand RNA, in the region underlying the Rev
Responsive Element (RRE) encoded on the plus strand (Figure 2). A recombinant protein that has been
transcribed and translated from the ASP open reading frame has been used to screen both naturally
and experimentally FIV infected cats for antibodies to the protein and a small percentage (<10%) do
show some level of positivity (manuscript in preparation) (Figure 2). Furthermore, knocking out the
putative start codon for ASP resulted in a dramatic reduction in viral protein production, suggesting
a critical role in the virus life cycle. Immunohistochemistry shows a non-nuclear localization of the
protein, which is suggestive of some post-transcription event. Further studies will be required to
define the role of ASP, but it may contribute to the ability of the virus to replicate by counteracting
some innate anti-viral response in the cell.

3. FIV as a Model to Study HIV Pathogenesis

3.1. Immune Dysfunction

The primary immunodeficiency of FIV, which is a gradual and progressive decline in CD4+
T lymphocytes, is a hallmark feature of both natural and experimental infection, and the most obvious
fundamental feature to parallel HIV infection. During both FIV and HIV infection, CD4+ lymphocyte
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numbers decline over an extended asymptomatic phase, and are associated with an increase in
activated CD8+ lymphocytes that have antiviral activity [110–113]. The net effect of this event is a
decrease in the ratio of CD4+ cells to CD8+ cells (CD4:CD8), and is used as a clinical indicator of
immunosuppression in both FIV and HIV infected patients [112–114]. Additionally, several studies
have shown that FIV induces defects in immune function that are similar to HIV, such as a decreased
proliferation response of T lymphocytes in response to mitogens, a deficit in the humoral immune
response, and the dysregulation of cytokine expression [10,24,59].

Large granular lymphocytes (LGLs) are a lymphoid subset comprising 10–15% of peripheral
mononuclear blood cells (PBMCs) (Figure 3), and consist of either CD3− NK cells or CD3+ T-cells that
mediate antibody-dependent cytotoxicity [115–118]. Analysis of LGL populations during HIV infection
have been hampered by the low percentage of these cells in circulation, and has typically only been
reported in association with neoplasia [118–120]. However, recent studies have shown that LGLs are
detectable and are elevated during HIV infection in humans, and may represent viral-suppressive CD8+
T cells [118,121]. Interestingly, studies in FIV-infected cats have determined that similar elevations in
LGL phenotypes may represent polyclonal T-cells with viral suppressive properties, as indicated by
increased interferon-γ (IFN-γ) expression and decreased PBMC proviral loads in correlation with LGL
lymphocytosis [118,122].
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Conversely, recent studies have shown that CD4+ CD25+ T regulatory (Treg) cells are responsible
for the inhibition of CD8+ IFN-γ production during both FIV infection [123] and HIV infection [124],
highlighting the potential mechanisms by which these viruses exhibit an immunosuppressive effect
on the CD8+ immune response. Furthermore, additional studies have shown that FIV directly infects
and activates CD4+ CD25+ Treg cells, which are then able to suppress CD4+ CD25− T helper (Th)
cells [125]. While this relationship and the potential mechanisms of Treg cell activation during HIV
infection is still unclear, such comparative studies in FIV may offer potential to help our understanding
of CD8+ T cell function in HIV infection.

3.2. Neurologic Dysfunction

Previous studies have shown that both FIV and HIV enter the central nervous system (CNS) at
acute stages of infection, either via the trafficking of infected monocytes and lymphocytes, or by the
penetration of free virus across the blood-brain or blood-CSF barriers [17,126–131]. Once present in the
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CNS, both FIV and HIV infection spread to microglia and astrocytes, which then serve as a reservoir for
latent viral persistence [13,17,130–132]. Although multinucleated giant cells are rarely observed in the
CNS during FIV infection, the fundamental neuropathologic finding of encephalitis is well-documented
in both HIV and FIV infected patients, and the resultant proliferation and activation of these cells
(gliosis) is associated with neurodegenerative processes, such as myelin degradation and neuronal
injury/loss [14,17,51,54,133]. Thus, the clinical manifestations that are associated with neuropathology
of FIV are likewise observed in HIV infection, and because of this, FIV has been repeatedly used as a
model to investigate the pathogenesis of dementia and cognitive-motor processing deficits in AIDS
patients. In vitro models of FIV have been useful to expand our understanding of role of calcium
dysregulation and neural dysfunction during lentiviral infection, and have provided a unique system
for the development neuroprotective treatments, such as neurotrophin ligands, which prevent the
delayed accumulation of intracellular calcium and the decreased cytoskeletal damage of neuronal
dendrites [17,134]. Furthermore, because of the low natural prevalence and the slow clinical course that
is associated with lentiviral-induced neurologic dysfunction, experimental in vivo studies have been
developed in the FIV model, which accelerate neuropathogenesis (neonatal inoculation, inoculation
with neurovirulent strains, direct intracranial inoculation), allowing for increased opportunity to
evaluate the viral kinetics of CNS infection, neurovirulence determinants, and the potential for novel
treatments that are designed to decrease neurocognitive defects during HIV infection [53,57,134,135].

The use of neurovirulent strains of FIV has also allowed for the investigation of neuropathogenic
effects on the peripheral nervous system (PNS) as a model of HIV distal symmetric polyneuropathy
(DSP), demonstrating the rapid onset of peripheral neuropathy in FIV infected cats with axonal injury,
macrophage activation, and detection of the virus within the nerve [50,136]. Indeed, FIV infection
results in pathological events in the PNS that are very similar to HIV, including increased numbers
of CD3+ T lymphocytes and activated macrophages in skin and dorsal root ganglia (DRGs) that
are associated with increased expression of the pro-inflammatory cytokines, as well as changes in
epidermal nerve fiber densities, which is indicative of axonal and myelin degeneration [50,52]. FIV has
also been useful in the evaluation of the neurotoxicity of antiretroviral toxic neuropathy (ATN), due to
mitochondrial dysfunction that is associated with nucleoside analogue reverse transcriptase (NRTI)
inhibitor treatment. Thus, FIV has the potential to expand our understanding of the role of the
immunopathology and progression of neuropathy in FIV-infected cats.

SIV models of neuropathogenesis have been used to study HIV-associated neurologic dysfunction
(HAND), and have resulted in the elucidation of many mechanisms of neuroAIDS development,
such as acute CNS infection and the importance of monocyte/macrophage activation in driving
CNS lesions [137–140]. Recently, the SIV model of neuroAIDS has been adapted to study peripheral
neuropathy, and significant advances have been made that implicate macrophages within dorsal root
and trigeminal ganglia as a source of viral maintenance, in addition to their role in neuronal loss
and neuronophagia [141,142]. These findings are coupled with additional studies that have defined
impaired mitochondrial function in distal axons, which are more pronounced in ART-treated animals,
indicating the potential for antiretroviral-mediated mitochondrial toxicity [143]. However, the SIV
model of HAND is most commonly employed in rhesus macaques using SIV strains that arose via
nosocomial infections or a lab adaptation of African monkey strains [144]. SIV neurologic disease is
therefore chiefly manifested as a rapid progression to AIDS with the hallmarks of CNS inflammation
that amplify pathology when compared to HIV-infected humans [139,140]. Furthermore, NHP studies
are also limited by increased zoonotic risk to researchers, high cost associated with animal care and
housing, the low number of animals available for research, and the potential for co-infection with a
wide array of other pathogens, including rhesus rhadinovirus (RRV), lymphocryptovirus (LCV), simian
cytomegalovirus (CMV), simian foamy virus (SFV), simian virus 40 (SV40), and rhesus papillomavirus
(RhPV) [145,146].

In mechanistic studies of HIV-associated neurologic dysfunction, the interaction of CXCR4 with
viral envelope has been shown to enhance neuronal apoptosis via Ca2+-regulating systems and NMDA
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receptors (NMDARs) in the synaptic membrane [147–153]. This neurotoxic pathway is known to
involve Ca2+ influx through NMDARs, nitric oxide (NO) production, and subsequent activation
cGMP-dependent protein kinase II, however, the precise cellular mechanisms by which this occurs are
unknown and are difficult to assess in chronically infected human patients [154–159]. Because FIV binds
to CXCR4 on the neuronal membrane in a similar non-infectious interaction as HIV, the feline model
may provide answers, particularly in regard to the viral envelope-receptor interaction and synaptic
activity-mediated neurotoxicity in HAND [160,161]. Given these similarities (and limitations of the
SIV model), FIV represents an adjunct lentiviral model that can accurately recapitulate neuroAIDS
progression in HIV-infected humans for applications, such as evaluation of ART-induced neurotoxicity,
neurofibrillary tangle development, and calcium homeostasis during viral infection [14,17].

3.3. Vaccine Development

Considerable effort has been directed at the development of an anti-HIV vaccine strategy that
can produce protective immunity in humans, and this effort has been paralleled in regard to FIV.
A commercially available, whole inactivated virus vaccine containing two FIV subtypes (Fel-O-Vax
FIV®) is currently licensed for use in the United States, and various reports have described virus
neutralization and cellular immunity in a significant proportion of study animals [162–164]. However,
the efficacy of this vaccine is still under debate, as recent studies and field evaluations have reported
that the vaccine does not confer immunity against certain FIV strains (i.e., FIVGL8), and that the
neutralizing antibody response and the protective rate may be low in certain cat populations (i.e.,
protection is not conferred to certain virulent recombinant strains of FIV) [165–168]. Other attempts
at FIV vaccine development have either failed to induce protective immunity against FIV infection,
or have resulted in an increased susceptibility to infection via antibody-dependent enhancement or
general immune activation [169–174].

The development of an anti-HIV vaccine has been impeded by a wide variety of similar
complications, such as lack of efficacy or unanticipated side effects, as well as increased susceptibility
to infection via the analogous mechanisms of FIV vaccine enhancement (antibody-dependent viral
enhancement or general immune activation) [175–181]. Indeed, vaccine-induced enhancement of
viral infection has been previously reported in a large number of HIV studies [182–185], and it has
been shown to occur via antibody-dependent or antibody-independent mechanisms of complement
activation [186–193], as well as an increase in general immune activation and/or the expansion
of lymphoid target cells [194–198]; features that have also been observed in FIV studies [169–174].
However, despite these setbacks in lentiviral vaccine development, there are many similarities in
the disease course of HIV and FIV infection, and the use of the FIV model to circumvent these
roadblocks may have great potential to provide a translational model for the development of novel
immunotherapies to protect from HIV infection in humans.

Traditionally, non-human primate (NHP) models have been at the forefront of anti-HIV vaccine
development due to the similarities of SIV and HIV, and have revealed several promising vaccine
targets, such as nef -deleted SIV (which protects from wild-type SIV infection) and broad neutralizing
antibodies utilizing chimeric SHIVs that express the HIV-1 envelope glycoprotein [199–202]. However,
the successful outcome of these methods to prevent HIV infection in humans has been significantly
impeded by various causes, such as restrictions on the use of live-attenuated HIV-1 in humans, as well
as difficulty in producing a sufficiently efficacious neutralizing antibody response by vaccination [200].
Alternatively, various humanized mouse models have played a vital role in elucidating key aspects
of the immune response to HIV, primarily through the use of generally immunocompromised mice
that were engrafted with reconstituted human immune system tissues, such as human fetal thymus
and liver (scid-hu-Thy/Liv), or peripheral blood lymphocytes (scid-hu-PBL) [203]. These models
have been used for key studies in HIV immunopathogenesis, including mechanisms of CD4+ T-cells
loss, antiretroviral therapy response, and passive immunization with monoclonal antibodies to HIV
envelope protein (and testing of Env-based vaccines) [146,203–207]. However, because only certain
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parts of the human immune system can be reconstituted in humanized mouse models, interactions
between the introduced human cells and the murine immune system cannot be evaluated in these
hosts, nor the effects of HIV infection in non-hematopoietic tissues [203]. Although FIV lacks certain
molecular similarities to HIV, it induces similar immunopathologies in its natural host, and therefore
represents an important yet underutilized animal model for fully evaluating the immune response
during natural lentiviral infection. Furthermore, the availability of a commercially-available vaccine in
cats with efficacy against at least a subset of FIV may provide important clues to improving the efficacy
of anti-HIV vaccines, and the elucidation of the mechanisms that are associated with vaccination
failure in analogous FIV and HIV models of immunotherapy may provide key insights into improving
the efficacy of lentiviral vaccines.

3.4. HIV-Induced Oral Disease

Oral manifestations of HIV are exhibited through various disease syndromes, such as Oral
Candidiasis (OC, “thrush”), Linear Gingival Erythema (LGE), Necrotizing Ulcerative Gingivitis (NUG),
and Necrotizing Ulcerative Periodontitis (NUP) [208–210]. Despite the success of combinational
antiretroviral therapy (cART) in diminishing HIV viral replication and prolonging immune function,
lesions that are associated with systemic and local immune activation and opportunistic oral infections
persist in HIV-infected patients [208,211–213]. Previous studies have demonstrated that CD4+
T-cells are rapidly and severely depleted from the intestinal mucosa following HIV infection due
to the direct effects of targeted virus infection and virus-induced Fas-mediated apoptosis, resulting
in a loss of mucosal integrity and a reduced capacity to control potential pathogens at mucosal
surfaces—thereby triggering local and systemic pro-inflammatory responses [214–217]. Based upon the
analogous microenvironments of the oral and gastrointestinal mucosa, the same effects of viral-induced
immunosuppression is predicted to occur in the oral cavity, resulting in a chronic cycle of immune
stimulation, leukocyte recruitment, and target cell infection that produces HIV-induced oral disease
lesions [208,218].

The FIV model is particularly well suited for studies of HIV-associated oral disease, as it
not only parallels HIV in its structural, biochemical, and immunological properties, but it is also
the only naturally occurring lentivirus to predictably induce oral lesions in its natural host, the
domestic cat [1,4,9,10,31,32]. Non-human primate (NHP) models of HIV do not reliably cause oral
disease and are limited by zoonotic risk to researchers, high cost associated with animal care and
housing, and low number of animals that are available for research, while humanized mouse models
of HIV lack both the prevalence of oral lesions and the presence of tonsillar structures that are
similar to humans [146,219–221]. In contrast, FIV oral manifestations are common in naturally and
experimentally-infected cats [20,32,33], and the range of lesions seen include gingivitis, periodontitis,
and feline chronic gingivostomatitis [32], with striking similarities to LGE, NUG, and NUP lesions
noted in untreated HIV patients [1,4,111,208,222–225]. Furthermore, opportunistic infections that were
detected in HIV-positive individuals are paralleled in feline oral disease syndromes [35,226–235],
and feline tonsillar tissues (palatine, pharyngeal, and lingual tonsils) are analogous to those in
humans [220]. Coupled with recent advances in new generation cART protocols that have potential
for adaption in cat studies [236–240], the domestic cat model of FIV presents an easily manipulated
animal model to evaluate the drivers of immune dysfunction and microbial dyscrasias during HIV
infection using a controlled in vivo study design.

Thus, in order to assess in vivo mechanisms contributing to oral disease during lentiviral infection,
we collected saliva from the sublingual area and ventral cheek pouches from juvenile SPF cats
(12–14 month-old) and examined samples by 16S rRNA metagenomics analysis to detect differences in
the oral microbiota of naïve and age-matched cats that were infected with FIV (PPR strain) of eight
months duration (n = 5/group). FIVPPR is a relatively apathogenic strain of FIV that typically results
in mild self-limiting gingivitis and/or periodontitis during acute infection [241], and animals did not
have overt, visual signs of clinical periodontitis at the time of sampling. FIV-infected and naïve SPF
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animals were maintained on a similar diet, and similar anatomic regions were swabbed from all of the
animals at the same time of day. DNA was extracted [242], and amplicon sequencing was performed
using illumina MiSeq to generate paired-end 2 × 250 bp sequences of the hyper-variable region 4 (V4)
of the 16S rDNA. Data were normalized using cumulative sum scaling [243], and used to construct a
nonmetric multidimensional scaling three-dimensional (3D) plot (Figure 4A).
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Figure 4. Salivary microbiome alterations during FIV infection. (A) Three-dimensional (3D) Nonmetric
Multidimensional Scaling (NMDS) separates clusters of FIV− and FIV+ cat microbiome samples. Ovals
represent the 90% confidence ellipsoids around the centroid of the clusters (FIV+ = red; FIV− = blue).
(B) Operational taxonomic units (OTUs) with significant log-fold change in abundance between FIV+
and FIV− cats at the 0.1 level of significance (after correcting for multiple testing). The list on the left
shows the genera of each of these OTUs. Red indicates over representation of that OTU in the FIV+
cats. (C) FIV+ cat with clinical gingivitis/periodontitis with near monoculture of Moraxellaceae (outer
circle) as compared to the mean microbial community structure of cats that are FIV + (middle circle)
and cats that are FIV negative (inner circle).
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Significant differences were detected in the oral microbiota composition of FIV-infected cats
relative to naïve animals (Figure 4A). Normalized data were tested using the Zero Inflated Gaussian
model implemented in the R package metagenomeSeq [244] to identify the putative OTUs driving
differences between FIV+ and FIV− cats. Significant log-fold change in abundance in 12 genera was
noted between groups at the 0.1 level of significance after correction for multiple testing (Figure 4B).
One FIV-positive cat developed moderate to severe erythematous gingivitis during the course of
infection and saliva was collected and analyzed as described above. Upon analysis of saliva, this
individual demonstrated a dramatically altered microbiome population with >95% operational
taxonomic units (OTUs), corresponding to the genus Moraxellaceae as compared to the FIV+ cats
with no lesions and the FIV− cats (Figure 4C).

Collectively, these results demonstrate that similar to HIV, FIV infection of domestic cats
is associated with oral microbiota dysbiosis and a marked loss of microbial diversity during
lentiviral-associated periodontitis. The persistence of HIV infection and periodontitis in patients
on cART indicates that ancillary treatments that are specifically directed at restoring the normal oral
microbiota in conjunction with cART may improve HIV periodontal progression and decrease systemic
immune activation [229,245–247]. Feline dental disease is currently managed by comprehensive
dental treatment consisting of hand and ultrasonic scaling, identical to techniques that are used in
humans [248,249]. Probiotic supplementation has been successful in early studies as an adjuvant for
treating periodontitis in people, and similar commercial oral probiotics products are available for
the management of feline oral conditions [250–252]. Thus, the application of comprehensive dental
cleaning with probiotic treatments in the feline model has the potential to assess the impact of local
therapy for restoring oral homeostasis during lentiviral infection, and may increase our understanding
of the progression and/or resolution of FIV-induced oral lesions and oral microbiome in the presence
and absence of cART.

4. Conclusions

Our understanding of FIV infection of cats has progressed remarkably over the last three decades,
yet much remains to be learned from this widespread lentiviral infection. Correspondingly, many
aspects of HIV pathogenesis and the mechanisms of immune dysfunction are still poorly understood.
Most notably, the complete elimination of HIV from the host and the restoration of immune function
has not yet been achieved, nor has the means to provide protective immunity from infection. In regard
to the future of HIV research, a precise understanding of the mechanisms for immunodeficiency,
especially in the face of co-infections, viral-associated disease, and in the presence and absence of
antiretroviral therapy will be necessary for the development of restorative or immuno-protective
therapies and prophylaxis.

While being genetically divergent, FIV shares remarkable overlap with HIV in regard to
molecular biology and function. Coupled with the flexibility of working with a small animal model,
FIV represents a useful system to assess the in vivo aspects of lentiviral pathogenesis. As noted
above, comparative pathogenesis of lentiviral immune dysfunction, neurologic, and oral disease in
the feline model could aid in an understanding of HIV AIDS. Further, the successful deployment of
an FIV vaccine provides great opportunities for the evaluation of lentiviral prophylaxis leading to
sterilizing immunity.

The application of investigations in the molecular biology and function of genetic elements is
another area that affords great potential to understand the mechanisms of lentiviral infection via the
FIV model. For example, contemporary studies in FIV have recently used the 3D structure of FIV
reverse transcriptase to uncover the mechanistic basis of viral resistance to non-nucleoside inhibitor
drugs [253]. These studies are now uncovering crucial elements in RT structure that can be used as a
template for the development of novel compounds that target conventional sites of drugs resistance,
providing increased efficacy against drug-resistant strains of HIV [253].
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Finally, the FIV model holds significant potential as a tractable vehicle to assess the efficacy
of novel anti-retroviral therapies. Recent studies employing a progressive cART regimen that is
composed of nucleoside reverse transcriptase inhibitors (emtricitabine, tenofovir) and integrase
inhibitors (dolutegravir) have demonstrated the significant efficacy in FIV studies in vitro [236–240],
and immuno-restorative therapies employing recombinant feline interferon omega (rFeIFN-ω) have
resulted in the improvement of clinical symptoms in FIV-associated oral disease and feline chronic
gingivostomatitis [254–256]. IFN-ω has also been reported to be a potent inhibitor of HIV infection
in vitro, but in vivo therapeutic potential in human patients has not been evaluated [257]. Because
IFN-ω exerts strong immunomodulatory effects by stimulating Natural Killer cell activity, enhancing
the expression of MHC-I, and inhibiting lymphocyte proliferation, testing outcomes of IFN-ω therapy
on FIV-associated disease may therefore elucidate anti-inflammatory mechanisms and offer significant
potential for adoption as an agent to treat HIV-associated diseases [258].

Improvements in molecular technology and available diagnostic analyses for domestic cats, as
well as the ability to apply pharmacologic interventions and sophisticated imaging technologies to the
study of experimental and naturally occurring FIV provide an excellent, but often overlooked resource
for advancing the therapies and management of HIV/AIDS.
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