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Abstract: Both hypernatremia and an abnormal immune response may increase hospital mortality in
patients with sepsis. This study examined the association of hypernatremia with abnormal immune
response and mortality in 520 adult patients with sepsis in an intensive care unit (ICU). We compared
the mortality and ex vivo lipopolysaccharide (LPS)-induced inflammatory response differences
among patients with hyponatremia, eunatremia, and hypernatremia, as well as between patients
with acquired hypernatremia on ICU day 3 and those with sustained eunatremia over first three
ICU days. Compared with eunatremia or hyponatremia, hypernatremia led to higher 7 day, 14 day,
28 day, and hospital mortality rates (p = 0.030, 0.009, 0.010, and 0.033, respectively). Compared
with sustained eunatremia, acquired hypernatremia led to higher 7, 14, and 28 day mortality rates
(p = 0.019, 0.042, and 0.028, respectively). The acquired hypernatremia group nonsignificantly trended
toward increased hospital mortality (p = 0.056). Day 1 granulocyte colony-stimulating factor (G-CSF)
and tumor necrosis factor (TNF) α levels were relatively low in patients with hypernatremia (p = 0.020
and 0.010, respectively) but relatively high in patients with acquired hypernatremia (p = 0.049 and
0.009, respectively). Thus, in ICU-admitted septic patients, hypernatremia on admission and in
ICU-acquired hypernatremia were both associated with higher mortality. The higher mortality in
patients with hypernatremia on admission was possibly related to the downregulation of G-CSF
and TNF-α secretion after endotoxin stimulation. Compared to sustained eunatremia, acquired
hypernatremia showed immunoparalysis at first and then hyperinflammation on day 3.

Keywords: hypernatremia; granulocyte-colony stimulating factor; tumor necrosis factor α;
inflammatory cytokine release downregulation; mortality outcome

1. Introduction

Hypernatremia is frequently observed in hospitalized patients [1]; the proportion of
patients with hypernatremia is generally higher in the intensive care unit (ICU) than in
other hospital departments [2,3]. According to a Dutch study, hypernatremia incidence has
increased from 13% to 24% over the past two decades [2]. Hypernatremia can cause a series
of neurological manifestations, including delirium, stupor, and even coma [4]. It has been
reported to be associated with a longer length of mechanical ventilation [5]. More seriously,
mortality outcome in septic patients with hypernatremia tends to be higher than in those
with eunatremia [6,7].
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Many recent studies have focused on abnormal immune responses and the related
increase in mortality among septic patients [8–10]. We speculate that abnormal immune
responses may be the key to increased mortality in hypernatremic sepsis patients. In
fact, some studies in the past revealed that hypernatremia may cause inflammation or be
associated with inflammation in sepsis [11–13]. However, the detailed mechanism remains
unclear, such as whether hypernatremia causes immune paralysis or which cytokines
participate.

In this combined prospective and retrospective pilot study, we aimed to analyze
the hypernatremia–mortality association and determine immune-related differences in
ICU patients with hypernatremia. Hence, we compared the mortality outcomes between
ICU patients with and without dysnatremia. The effect of ICU-acquired hypernatremia
on mortality outcomes was also surveyed. Furthermore, we analyzed the percentage
of monocytes expressing HLA-DR to identify whether immune paralysis developed. In
addition, we measured cytokine responses in peripheral blood mononuclear cells (PBMCs)
following lipopolysaccharide (LPS) stimulation, in order to simulate the cytokine response
after exposure to LPS on the outer membrane of Gram-negative bacteria in sepsis.

2. Materials and Methods
2.1. Patient Enrollment

This study was part of an integrated research program and included a prospective
observation study and retrospective medical chart review [14–24]. It was conducted at
Kaohsiung Chang Gung Memorial Hospital, a 2700-bed tertiary teaching hospital in south-
ern Taiwan, and included patients with severe sepsis or septic shock who had been admitted
to the medical ICU of the hospital between August 2013 and June 2016. The patients were
enrolled only if they consented to undergo blood sampling during ICU hospitalization.
However, they were excluded if they met any of the following criteria: (1) age <18 years,
(2) sepsis developing >24 h before ICU admission, and (3) granulocyte colony-stimulating
factor administration ≤1 week before ICU admission.

2.2. Study Design

We determined baseline cytokine levels and analyzed cytokine level trends in our
patients with hyponatremia, eunatremia, and hypernatremia. Moreover, the 7 day, 14 day
28 day, and hospital mortality rates were compared among patients with hyponatremia,
eunatremia, and hypernatremia and then specifically between patients with sustained
eunatremia on ICU day 3 and those with hypernatremia acquired on ICU day 3.

Some of the enrolled patients were also participants of another prospective immune-
related study. We extracted and compared their cytokine data, including their G-CSF,
interleukin (IL)-10, IL-6, and tumor necrosis factor (TNF)-α levels.

The study design was approved by the Institutional Review Board of Chang Gung
Memorial Hospital without any conflict of interest.

2.3. Definitions

The enrolled patients fulfilled the definition for “severe sepsis” established (for the
first time) by the 2001 International Sepsis Definitions Conference and the Surviving
Sepsis Campaign [25], that for “sepsis” provided by the Third International Consensus
Definitions for Sepsis and Septic Shock (Sepsis-3) [26], or both. For hypernatremia and
hyponatremia, we adopted the following definitions: serum sodium concentration of >145
and <135 mEq/L, respectively.

2.4. PBMC Preparation

Whole-blood samples (20 mL) were obtained from each patient and stored in a heparin
tube (BD, Franklin Lakes, NJ, USA). The first day of blood sampling was identified as
day 1. In a Ficoll-Paque tube (Amersham Biosciences, Uppsala, Sweden), whole blood was
centrifuged at 400× g for 30 min to separate plasma from PBMCs. These PBMCs were
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collected and analyzed immediately, and the plasma samples were stored at −80 ◦C until
use. The fresh PBMCs were aliquoted into two parts; one was used for HLA-DR-expressing
monocyte percentage measurement, and the other was used for cell culture.

2.5. HLA-DR-Expressing Monocyte Percentage Measurement through Flow Cytometry

We measured the percentage of HLA-DR-expressing monocytes through flow cytome-
try on Cytomics FC500 (Beckman Coulter, Fullerton, CA, USA). Staining and cell acquisition
were performed within 1 h of blood sample collection. Monoclonal antibodies were used as
follows: CD14-PerCP/Cy5.5 (clone: HCD14; Biolegend, San Diego, CA, USA) and HLA-DR
FITC (clone: L243; Biolegend) per 100 µL of PBMC blood. Negative controls were mouse
monoclonal antibodies IgG1 per CP/Cy5.5 (MOPC-21), IgG2a FITC (MOPC-173), and
IgG2a PE (MOPC-173), all of which were isotype-matched according to the manufacturer’s
recommendations. The monocytes were identified on the basis of their CD14 expression. A
minimum of 30,000 PBMCs were analyzed from each sample; the results are expressed as
percentages of HLA-DR-positive monocytes in the total monocyte population.

2.6. Cell Culture and LPS-Stimulated Cytokine Response

PBMCs were added at a density of 1 × 106 to a 5 mL round-bottom polystyrene test
tube (BD Falcon, Bedford, MA USA) in which 2 mL of sterile Dulbecco’s modified Eagle’s
medium (Gibco, Grand Island, NY, USA) containing 1% heat-inactivated fetal bovine serum
(Gibco), 1 mM L-glutamine, and 1 mM sodium pyruvate was present. Inflammation was
induced using 100 ng/mL LPS (Sigma, St. Louis, MO, USA). All tubes were incubated at
37 ◦C in 5% CO2 for 4 h. Samples of the conditioned media were analyzed for cytokine
expression levels.

The LPS-stimulated cytokine response was considered to be the fold elevation in the
level of cytokines released by stimulated PBMCs in the conditioned media. It was, thus,
calculated by dividing the cytokine level after LPS stimulation with that before stimulation.

2.7. Milliplex Assay

We next quantified levels of G-CSF, IL-10, IL-6, and TNF-α in the conditioned media
using a Human Cytokine/Chemokine Magnetic Bead Panel-equipped Milliplex MAP kit
(#HCYTOMAG-60K, EMD Millipore, Darmstadt, Germany) according to the manufac-
turer’s instructions. The standards and samples were analyzed on a MAGPIX System de-
vice (Millipore) using the software program MILLIPLEX Analyst 5.1 with a five-parameter
logistic curve-fitting model.

2.8. Statistical Analyses

Statistical analysis was performed using SPSS (version 21.0; IBM Corp., Armonk, NY,
USA). Categorical variables were compared using the chi-square test or Fisher’s exact
test as appropriate, whereas continuous variables were analyzed using Student’s t-test or
Mann–Whitney U test as appropriate. Multivariate analysis for independent prognostic
factor selection was performed using logistic regression. The Kaplan–Meier estimator and
the log-rank test were used to determine the effects of the different immune dysfunction
scores on patient survival. The Kruskal–Wallis test was used to determine the correlation
of LPS-stimulated cytokine release and HLA-DR-expressing monocyte percentage with
dysnatremia. A p-value < 0.05 was considered to indicate statistical significance.

3. Results
3.1. Patient Characteristics

Of the 2744 patients admitted to the ICU of Kaohsiung Chang Gung Memorial Hospital
between August 2013 and June 2016, 520 sepsis patients with available baseline serum
sodium data were included in our final analysis (Figure 1). Of these patients, 164 (31.5%)
had hyponatremia, 51 (9.8%) had hypernatremia, and 305 (58.7%) had eunatremia.
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3.2. Baseline Clinical Parameters and Immune Profiles of Patients with Sepsis

Patients with hypernatremia were considerably older than patients with eunatremia
or hyponatremia (p = 0.036; Table 1). However, the differences in body mass index, sex,
history of diabetes mellitus, hypertension, coronary artery disease, chronic obstructive
airways disease, cirrhosis, stroke, chronic renal disease, and baseline Acute Physiology
and Chronic Health Evaluation (APACHE II) scores between patients with and without
dysnatremia were nonsignificant.

Table 1. Baseline clinical parameters and plasma cytokine levels in patients with and without
dysnatremia on admission.

Clinical Parameters All
(n = 520)

Hyponatremia
(n = 164)

Eunatremia
(n = 305)

Hypernatremia
(n = 51) p-Value

Age, mean (SD) 66.6 (15.3) 66.2 (14.9) 65.9 (15.7) 71.8 (12.9) 0.036 *
BMI, mean (SD) 22.8 (5.0) 22.8 (4.8) 22.8 (5.1) 22.4 (4.5) 0.912

Gender (male), n (%) 212 (40.8) 77 (47.0) 112 (36.7) 23 (45.1) 0.080
Diabetes mellitus, n (%) 232 (44.6) 81 (49.4) 128 (42.0) 23 (45.1) 0.304

Hypertension, n (%) 276 (53.1) 87 (53.0) 160 (52.5) 29 (56.9) 0.844
CAD, n (%) 130 (25.0) 38 (23.2) 78 (25.6) 14 (27.5) 0.775

COPD, n (%) 62 (11.9) 14 (8.5) 39 (12.8) 9 (17.6) 0.165
Cirrhosis, n (%) 40 (7.7) 8 (4.9) 28 (9.2) 4 (7.8) 0.249
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Table 1. Cont.

Clinical Parameters All
(n = 520)

Hyponatremia
(n = 164)

Eunatremia
(n = 305)

Hypernatremia
(n = 51) p-Value

Stroke, n (%) 109 (21.0) 31 (18.9) 64 (21.0) 14 (27.5) 0.424
CKD, n (%) 138 (26.5) 41 (25.0) 85 (27.9) 12 (23.5) 0.700

APCHE II score, mean (SD) 25.0 (8.8) 24.3 (8.6) 24.8 (8.8) 27.6 (9.1) 0.088

Abbreviations: BMI, body mass index; CAD, coronary artery disease; CKD, chronic kidney disease; COPD,
chronic obstructive pulmonary disease; OI, oxygenation index; APACHE, Acute Physiology and Chronic Health
Evaluation; SD, standard deviation. * p < 0.05.

Baseline plasma cytokine levels of only 160 of the 520 included patients were available.
However, the differences in baseline IL-6, IL-10, G-CSF, and TNF-α levels between patients
with and without dysnatremia were nonsignificant (Table S1)

3.3. Effects of Dysnatremia on Clinical Outcomes

All 520 patients were divided into three groups on the basis of their sodium levels
on ICU day 1: hyponatremia (n = 164), eunatremia (n = 305), and hypernatremia (n = 51).
All three groups demonstrated significant differences in 7 day, 14 day, 28 day, and hospi-
tal mortality rates (p = 0.030, 0.009, 0.010, and 0.033, respectively; Table 2). Specifically,
compared with the eunatremia group, the hypernatremia group demonstrated higher
7 day, 14 day, 28 day, and hospital mortality rates (p = 0.014, 0.004, 0.003, and 0.014, re-
spectively). Although the Kaplan–Meier hospital survival curve revealed no significant
differences (overall p = 0.251), the hypernatremia group demonstrated a significant differ-
ence in survival compared with the hyponatremia (p = 0.003) and eunatremia (p = 0.029)
groups (Figure 2a).

Table 2. Mortality outcomes of patients with sepsis.

All
(n = 520)

Hyponatremia
(n = 164)

Eunatremia
(n = 305)

Hypernatremia
(n = 51) p-Value

7 day mortality, n (%) 77 (14.8) 22 (13.4) 41 (13.4) 14 (27.5) 0.030 *
14 day mortality, n (%) 115 (22.1) 34 (20.7) 61 (20.0) 20 (39.2) 0.009 *
28 day mortality, n (%) 153 (29.4) 49 (29.9) 80 (26.2) 24 (47.1) 0.010 *

Hospital mortality, n (%) 225 (43.3) 74 (45.1) 121 (39.7) 30 (58.8) 0.033 *

All
(n = 249)

Sustained Eunatremia
(n = 197)

Acquired Hypernatremia
(n = 52) p-Value

7 day mortality, n (%) 25 (10.0) 15 (7.6) 10 (19.2) 0.019 *
14 day mortality, n (%) 43 (17.3) 29 (14.7) 14 (26.9) 0.042 *
28 day mortality, n (%) 60 (24.1) 41 (20.8) 19 (36.5) 0.028 *

Hospital mortality, n (%) 99 (39.8) 72 (36.5) 27 (51.9) 0.056

The 7 day (p = 0.014), 14 day (p = 0.004), 28 day (p = 0.003), and hospital (p = 0.014) mortality rates were significantly
higher in the hypernatremia group than in the eunatremia group. * p < 0.05.

Of all the patients with eunatremia on ICU day 1, we divided those with sustained
eunatremia on ICU day 3 (n = 197) and those with acquired hypernatremia on ICU day 3
(n = 52) into two groups. The acquired hypernatremia group had higher 7, 14, and 28 day
mortality rates (p = 0.019, 0.042, and 0.028, respectively; Table 2). Although nonsignif-
icant, patients with acquired hypernatremia exhibited a trend toward a high mortality
rate (p = 0.056). However, the Kaplan–Meier curve revealed nonsignificant differences in
hospital survival (p = 0.009; Figure 2b) (Figure S1).

The multivariate analysis using a binary logistic regression model confirmed that
hypernatremia is an independent risk factor for hospital mortality (odds ratio = 2.300;
95% confidence interval = 1.179–4.487; p = 0.015; Table 3).
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Table 3. Multivariate binary regression analysis for hospital mortality risk factors.

Parameter Odds Ratio 95% Confidence Interval p-Value

Age 1.001 0.986–1.016 0.882
BMI 0.957 0.916–1.000 0.048 *

Gender (male) 0.956 0.634–1.441 0.830
Diabetes mellitus 0.814 0.533–1.242 0.340

Hypertension 0.823 0.524–1.293 0.399
CAD 1.186 0.725–1.941 0.496

COPD 0.996 0.543–1.828 0.991
Cirrhosis 1.441 0.680–3.053 0.340

Stroke 0.686 0.405–1.162 0.161
CKD 1.227 0.771–1.954 0.388

APCHE II score 1.037 1.014–1.060 0.002 *
Hypernatremia 2.300 1.179–4.487 0.015 *

Abbreviations: BMI, body mass index; CAD, coronary artery disease; CKD, chronic kidney disease; COPD,
chronic obstructive pulmonary disease; OI, oxygenation index; APACHE, Acute Physiology and Chronic Health
Evaluation. * The parameter “hypernatremia” represents patients with hypernatremia on admission versus all
patients without hypernatremia but with eunatremia or hyponatremia on admission. * p < 0.05.

3.4. LPS-Stimulated Cytokine Release and HLA-DR-Expressing Monocyte Percentage

The differences in day 1 G-CSF and TNF-α response after LPS stimulation among
patients with hyponatremia, eunatremia, and hypernatremia were significant (p = 0.020 and
0.010, respectively). The hypernatremia group demonstrated higher day 1 G-CSF and TNF-
α responses than the eunatremia group (p = 0.019 and 0.046, respectively;
Figure 3a). Moreover, the differences in LPS-stimulated cytokine release among pa-
tients with hyponatremia, eunatremia, and hypernatremia in day 3 were nonsignificant
(Figure 3b).

Patients with sustained eunatremia and those with acquired hypernatremia demon-
strated nonsignificant differences in day 1 LPS-stimulated cytokine release (Figure 3c).
However, compared with patients with sustained eunatremia, those with acquired hyper-
natremia had significantly higher day 3 G-CSF and TNF-α responses (p = 0.049 and 0.009,
respectively; Figure 3d).

Day 1 HLA-DR-expressing monocyte percentages demonstrated significant differences
among the hyponatremia, eunatremia, and hypernatremia groups (p = 0.025); moreover,
the hypernatremia group demonstrated the lowest mean HLA-DR-expressing monocyte
percentage (p (hypernatremia vs. hyponatremia) = 0.050; Figure 3e). However, day 1 or day
3 HLA-DR-expressing monocyte percentages revealed nonsignificant differences between
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patients with sustained eunatremia and those with acquired hypernatremia (Figure 3f).
Medians and interquartile ranges of each cytokine response and HLA-DR-expressing
monocyte percentage are listed in Table 4.
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charts for LPS-stimulated cytokine response (unit: fold) in patients with hyponatremia, eunatremia,
and hypernatremia on ICU days 1 (a) and 3 (b) and in patients with sustained eunatremia and
acquired hypernatremia on days 1 (c) and 3 (d). Error bars represent 95% confidence intervals. The
LPS-stimulated cytokine response was calculated by dividing the cytokine level after LPS stimulation
with that before stimulation. (e,f) Bar charts of day 1 and 3 HLA-DR-expressing monocyte percentage
in patients with hyponatremia, eunatremia, and hypernatremia (e) and in patients with sustained
eunatremia and acquired hypernatremia (f). Abbreviations: IL, interleukin; LPS: lipopolysaccharide;
TNF-α: tumor necrosis factor-α; G-CSF, granulocyte colony-stimulating factor. * p < 0.05.
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Table 4. Immune stimulation response and HLA-DR-expressing monocyte percentage in patients
with sepsis.

All Hyponatremia Eunatremia Hypernatremia p-Value

Day 1 (n = 128) (n = 42) (n = 75) (n = 11)
G-CSF 2.4 (4.8) 2.4 (5.6) 2.6 (4.7) 1.0 (2.6) 0.020 *
TNF-α 2.6 (6.0) 2.1 (4.8) 2.8 (28.2) 1.9 (3.1) 0.010 *

IL-6 3.4 (18.8) 2.8 (6.6) 3.9 (62.4) 2.8 (2.6) 0.071
IL-10 1.7 (1.0) 1.7 (1.1) 1.6 (1.2) 1.4 (0.9) 0.758

HLA-DR expression, % 92.2 (15.0) 95.5 (8.2) 90.0 (18.9) 87.3 (35.4) 0.025 *

Day 3 (n = 115) (n = 39) (n = 67) (n = 9)

G-CSF 2.4 (4.4) 2.3 (4.9) 2.6 (3.9) 1.0 (3.4) 0.899
TNF-α 2.3 (4.5) 2.0 (4.5) 2.7 (28.2) 1.9 (2.4) 0.724

IL-6 3.2 (12.5) 2.8 (5.8) 3.6 (62.4) 2.8 (2.4) 0.729
IL-10 1.7 (0.9) 1.7 (1.0) 1.6 (1.0) 1.4 (0.8) 0.910

HLA-DR expression, % 92.4 (16.0) 95.6 (7.9) 90.0 (19.4) 87.3 (35.8) 0.336

All Sustained Eunatremia Acquired Hypernatremia p-Value

Day 1 (n = 60) (n = 49) (n = 11)
G-CSF 2.6 (6.0) 2.4 (3.8) 4.7 (21.6) 0.184
TNF-α 2.8 (51.5) 2.6 (28.4) 16.8 (95.4) 0.248

IL-6 4.3 (83.8) 3.7 (81.3) 59.2 (103.4) 0.344
IL-10 1.6 (1.2) 1.6 (0.9) 2.2 (5.9) 0.240

HLA-DR expression, % 89.9 (20.9) 90.5 (20.2) 81.5 (20.3) 0.136

Day 3 (n = 58) (n = 47) (n = 11)

G-CSF 2.6 (4.8) 2.3 (3.8) 4.7 (21.6) 0.049 *
TNF-α 2.7 (4.4) 2.6 (28.4) 16.8 (95.4) 0.009 *

IL-6 3.8 (78.7) 3.6 (76.3) 59.2 (103.4) 0.077
IL-10 1.6 (1.1) 1.5 (0.8) 2.2 (5.9) 0.293

HLA-DR expression, % 90.0 (21.3) 90.8 (20.8) 81.5 (20.3) 0.413

Abbreviations: G-CSF, granulocyte colony-stimulating factor; IL, interleukin; LPS, lipopolysaccharide; TNF, tumor
necrosis factor; HLA, human leukocyte antigen; IQR, interquartile range. All data are presented as medians
(IQRs). Day 1 G-CSF and TNF-α levels were higher in the eunatremia group than in the hypernatremia group
(p = 0.019 and 0.046, respectively); HLA-DR-expressing monocyte percentage was higher in the hypernatremia
group than in the hyponatremia group (p = 0.050). * p < 0.05

3.5. Validation Using a Validation Cohort

Next, we validated our prediction model. The validation cohort database contained
515 adult patients with sepsis in ICUs recruited prospectively between December 2019
and March 2021 in Kaohsiung Chang Gung Memorial Hospital. In this cohort, sepsis was
defined using the definition of Sepsis-3. Immune cytokines data were unavailable for this
validation cohort database.

The validation cohort included 187, 280, and 48 patients with hyponatremia, euna-
tremia, and hypernatremia, respectively. The differences in 7, 14, and 28 day mortality rates
among these three groups were nonsignificant (p = 0.870, 0.725, and 0.786, respectively)
but that of hospital mortality rate was significant (p = 0.019). Specifically, patients with
hypernatremia demonstrated the highest mortality rate (54.2%), followed by those with
hyponatremia (38.0%) and then those with eunatremia (33.2%).

The validation cohort included 187 patients with sustained eunatremia and 44 patients
with acquired hypernatremia. Compared with patients with sustained eunatremia, those
with acquired hypernatremia had nonsignificantly higher 7 day (2.7% vs. 9.1%), 14 day
(6.4% vs. 25.0%), 28 day (15.5% vs. 31.8%), and hospital (28.3% vs. 50.0%) mortality rates
(p = 0.070, 0.001, 0.018, and 0.007, respectively).

4. Discussion

Hypernatremia affects many aspects of clinical outcome. Hypernatremia can cause
neurological manifestations [4] and is associated with multiple systemic adverse effects,
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including increased insulin resistance [27], decreased lactate clearance [28], impaired left-
ventricular contractility [29], and prolonged mechanical ventilation days [30]. Moreover,
hypernatremia at ICU admission has been reported to be an independent risk factor for poor
sepsis prognosis [31]. Acquired hypernatremia after ICU admission is also associated with a
higher mortality rate [32]. Our study revealed that hypernatremia, whether developed upon
ICU admission or acquired after ICU admission, can worsen sepsis prognosis, possibly due
to immune paralysis.

In patients with sepsis, hypernatremia etiology is complex and remains unclear; it can-
not be completely explained by inappropriate fluid balance or sodium intake alone [33,34].
We analyzed the fluid input or input–output profiles of different groups in the first 3 days
in our study. Although there was no statistically significant difference (Table S2), a trend of
higher fluid input presented on the first ICU day in hypernatremia group (hyponatremia
versus eunatremia versus hypernatremia: 1703.7 mL versus 1735.8 mL versus 2034.2 mL;
p = 0.066). Here, we do not deny the influence of excessive infusion on serum sodium; we
believe that the causes of hypernatremia in sepsis are complex but go beyond excessive
infusion only. Clinicians need to consider different factors to explore the causes driving
hypernatremia, e.g., drugs or insensible water loss.

Recent evidence has linked hypernatremia to the persistent inflammation and immune
suppression in septic patients [13]. Understanding the relationship between hypernatremia
and inflammation in sepsis can provide a clearer picture of the high mortality causes.
According to the literature, sodium stored in local tissue, such as skin, plays an important
role in inflammation and defense against infection [35]. Skin infection drives local salt
accumulation, and the skin tissue sodium levels reduce upon antibiotic treatment [36].
Infection protection mechanisms may include both osmotic protection and inflammatory
responses. Experts studied this phenomenon and simulated the inflammatory response
under high salt conditions with LPS stimulation in vitro. The result showed that high
salt condition, with a 40 mM increase in culture medium NaCl concentration, augments
LPS-mediated and IL-1α or IL-1β + TNF-induced macrophage activation [36]. Therefore,
acquired hypernatremia may cause hyperinflammation.

In addition, there is currently other evidence that high salt can affect the adaptive
immunity, such as activating T-cell proliferation, which forms an essential part of the
antigen-specific adaptive immune system [37,38]. Available studies suggest that high-salt
conditions favor T-cell proliferation and drive these cells toward a proinflammatory phe-
notype, while impairing the tolerogenic function of these cells [35]. T cells differentiate
into cytotoxic, helper, and regulatory T cells. High salt conditions boost the develop-
ment of IL-17-producing CD4+ T helper cells (Th17 cells) specifically via NFAT5- and
serum/glucocorticoid-regulated kinase 1 (SGK1)-dependent signaling. [39,40] The stud-
ies addressing the effects of high salt on B cells are currently limited. One reported that
increased osmolality boosts B-cell activation and differentiation, but increased cell death
and impaired plasma blast differentiation were also observed after 72 h exposure to high-
salt conditions [13,41].

In the current study, day 1 G-CSF and TNF-α responses after LPS stimulation were
significantly lower in the hypernatremia group than in the eunatremia group. Therefore,
G-CSF and TNF-α release might be downregulated in patients with hypernatremia. G-CSF,
a proinflammatory cytokine, stimulates the bone marrow to produce neutrophils and
aids in mobilizing hematopoietic stem cells from the bone marrow into the blood [34].
Moreover, TNF-α, another proinflammatory cytokine produced by activated macrophages
and monocytes, can enhance macrophage production from progenitor cells and promote
macrophage activation and differentiation [42,43]. Decreased TNF-α secretion after LPS
stimulation has also been noted in sepsis non-survivors [8]. Because the hypernatremia
group demonstrated G-CSF and TNF-α downregulation, as well as a lower HLA-DR-
expressing monocyte percentage, the potential for immune paralysis should be considered.
With regard to the ICU-acquired hypernatremia, an upregulation of day 3 G-CSF and TNF-
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α release was observed, suggesting that patients with acquired hypernatremia demonstrate
a hyperinflammatory status.

The current study revealed no correlation between dysnatremia and LPS-stimulated
IL-6 or IL-10 response. Thus far, only a few studies have discussed the relationship of
hypernatremia with IL-6 and IL-10. In one study, enhanced IL-6 release was observed after
LPS stimulation after preincubation of PBMCs with glucose (1000 mg/dL) or mannitol
(1000 mg/dL) [44]. A mouse study revealed significant increases in IL-6 in intestinal
epithelial cells exposed to 627 mOsm dextran sulfate sodium solution [45]. However, the
hyperosmotic stress in both the aforementioned studies was not induced by hypernatremia.
By contrast, an ex vivo human whole blood study reported that increased IL-6, TNF-α,
and IL-10 were observed after LPS-induced inflammation in a high-salt medium [46]. In
that study, the authors concluded that salt could increase monocyte CCR2 expression and
inflammatory responses in humans.

Our subsequent validation cohort study revealed a significant association of hyper-
natremia or acquired hypernatremia with hospital mortality. Both hypernatremia and
acquired hypernatremia were not associated with the 7 day mortality, while hypernatremia
and 14 or 28 day mortality rate were nonsignificantly associated. These validation results
indicated that hypernatremia is associated with hospital mortality rate, but the association
of hypernatremia with short-term mortality remains under debate. In practice, clinicians
should consider multiple aspects to predict mortality rather than relying solely on a single
risk factor.

Our current results reconfirmed the relationship between hypernatremia and mortality.
We also made some findings regarding cytokine responses in hypernatremia. Significant
differences in TNF-α and G-CSF between hypernatremia patients and other groups are
evidence that hypernatremia is associated with inflammation in sepsis. However, we cannot
tell from this article whether inflammation causes hypernatremia, whether hypernatremia
worsens inflammation, or both. We also cannot know whether prolonged hypernatremia
increases mortality from sepsis. Regardless, the role of hypernatremia in sepsis has recently
become increasingly accepted; the use of balanced crystalloids or albumin instead of
0.9% saline during fluid resuscitation in sepsis is also more appreciated [47].

The results of this article prompt a follow-up question: Should we actively correct the
hypernatremia in septic patients after volume-resuscitated shock? Although one article
reported that not resuscitating severe hypernatremia (serum sodium ≥155 mEq/L) in the
first 24 h could lead to higher 30 day mortality [48], it was retrospectively designed and
did not address septic patients in the ICU. To our knowledge, there are no large and well-
designed studies discussing active hypernatremia correction in shock or septic patients [49].
There are also no globally recognized guidelines for the hypernatremia correction strategies
in sepsis. How severe should the hypernatremia be to initiate correction, and what range
should the correction rate be controlled within? These are important things that clinicians
need to think about since an inappropriate serum sodium correction might disrupt body
fluid balance and worsen the burden on the renal and cardiopulmonary system in septic
patients.

In this article, we looked at the immune status of different groups in two ways: by
measuring HLA-DR to see if immunosuppression occurred, and by stimulating PBMCs
with lipopolysaccharide to simulate the cytokine response in sepsis; we analyzed both day
1 and day 3 data in the ICU. This is one of the strengths of our article. We also validated the
relationship between mortality and serum sodium in the article, which is another strength
of the article. To our knowledge, only a few studies have explored these inflammatory
responses in septic patients with hypernatremia and acquired hypernatremia. Here, we
discussed both hypernatremia on admission and ICU-acquired hypernatremia.

Compared with two other studies with larger case numbers presented by Cecilia Chi et al.
(>155 mEq/L: 35.3%) [50] and Amit Akirov et al. (>150 mEq/L: 52.2%) [51], our study revealed
a higher hospital mortality rate in patients with hypernatremia on admission (>145 mEq/L:
58.8%). The differences in the ICU patient severity, medical equipment, or treatment modalities
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may have led to the differences in mortality rates. Another important reason is that our study
focused on “septic patients” in the ICU, whereas the other two articles considered patients
in ICUs and medical wards, respectively. Another recent prospective observational study
in a single center, similarly focused on ICU sepsis patients [6], had a similar 7 day mortality
rate (>145 mEq/L: 29.3%) to ours (>145 mEq/L: 27.5%). That article analyzed the 7 day
mortality and length of ICU stay, rather than hospital mortality. As far we know, mortality
rates in our article were not found to be significantly different from other studies under
comparative conditions.

This pilot study had several limitations owing to its design. Our data were extracted
from “Internal Medicine” ICU patients over the age of 18 with severe sepsis (or sepsis
defined by Sepsis-3 criteria) or septic shock; therefore, the current results may not be
generalizable to all types of ICUs or patients. Furthermore, the cytokine data were available
only for some of the included patients, and no cytokine data could be extracted in the
validation cohort. Validation would be even more important in studies with small case
numbers; moreover, the case number also limited the further subsequent group analysis
(e.g., the cytokine response between mild hypernatremia and severe hypernatremia). A
larger study with a high case number and well-documented experimental design to confirm
the association of hypernatremia with inflammatory cytokines is warranted. Lastly, similar
to problems faced by other ex vivo trials, the ex vivo LPS-stimulated response might not be
totally representative of the cytokine presentation in real septic human beings.

5. Conclusions

Hypernatremia on admission is associated with increased hospital mortality and
abnormal immune response in sepsis, as demonstrated by the downregulation of G-CSF
and TNF-α release after LPS stimulation of cells ex vivo. Moreover, hypernatremia acquired
in the ICU can increase hospital mortality, probably linked to immunoparalysis, and then
hyperinflammation on day 3 compared to the sustained eunatremia.
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each group.
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