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Abstract

Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at
unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches
currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by
air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is
developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter
concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a
meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian
dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the
Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This
proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in
the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation
framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction
accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of
the effects of pollutants on human health.
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Introduction

Public health studies of air-pollution exposure require accurate

predictions of concentrations at unmonitored locations to mini-

mize the misclassification of exposure levels [1]. Recent studies

have reported that intra-urban-scale variations in air-pollution

concentration may exceed the differences between cities [2,3],

suggesting the potential importance of predicting air-pollution at

fine spatial scales [4,5]. Correspondingly, estimates of exposure to

pollutants on small temporal scales are necessary to study the

short-term or acute impacts of air-pollution [6]. Spatial interpo-

lation models, landuse regression (LUR) models, remote-sensing-

based models and diffusion models are robust tools for intra-urban

air-pollution prediction [7,8]. However, spatial interpolation

techniques, which generate concentration surfaces from in situ

observations, are preferred for the estimation of real-time

concentrations when data availability and software and hardware

costs are taken into account [3,9,10].

Wind is a key meteorological factor that has major impacts on

the movement and distribution of air pollutants in a region. When

the wind-speed is relatively high, local wind-field exert substantial

influence on the horizontal transport of air-pollution; this

phenomenon is known as the wind-flow effect [11,12]. For example,

areas downwind of highways are more heavily exposed to traffic-

related pollutants than are upwind areas. This effect illustrates the

necessity of incorporating wind-field into spatial interpolation. In a

number of recent studies, the consideration of a negative

correlation between air-pollution concentration and wind-speed

has led to the application of the wind-speed as an auxiliary

variable in multi-variable interpolation methods [9,13,14]. Al-

though there have been several attempts to incorporate long-term,

large-scale wind-fields into corresponding air-pollution estima-

tions, short-term, small-scale wind-fields have not been extensively

used for this purpose, because no direct numerical relations exist

between the angle of the wind-direction and the concentration

level in such cases. As a result, these approaches fail to capture the

expected short-term effects of the wind flow.

By including the wind-fields indirectly, some regression-based

methods are able to capture the complex features of pollutant

distributions [2,3,14]. A recent study assessed the use of the wind-

direction in LUR to improve predictions of nitrogen dioxide levels

in Toronto-Hamilton area [11,15]. This method shows great

potential, as it quantifies the influence of the wind-direction with

the downwind distances from highways. However, real-time air-
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pollution assessment using this model is economically infeasible

because of the cost of collecting sufficiently diverse data sets.

Therefore, one objective of the present study is to incorporate

wind-fields directly into interpolation frameworks.

Most interpolation techniques depend on Euclidean or straight-

line distances to compute spatial dependency. However, the

complex features of certain spatial phenomena impede the ability

to obtain accurate dependency descriptions using Euclidean

distances [16,17]. An appropriate non-Euclidean distance may

outperform the Euclidean distance in determining such types of

spatial dependency and in capturing complex features [18]. The

shortest path distance (SPD) is an important subclass of non-

Euclidean distance and has exhibited great potential in diverse

interpolation studies. The hydrological distance, a derivative of the

SPD, has been used to characterize the spatial configurations,

connectivity and directionality of the water temperatures and

chemical pollutants in stream networks [17,19–22]. Accounting

for geological anisotropy has led to the interpolation of deposits in

conjunction with shortest anisotropy path distances [23]. Along-

road continuity has been described in carbon dioxide estimations

after replacing the Euclidean distance with the SPD [24]. The

inclusion of the effect of topographical factors in simulations of the

genetic dispersion path has led to the development of the concept

of effective distance, which is the length of a virtual movement

route. Although the quantitation of these factors remains unclear,

this metric exhibits a greater correlation with genetic variance

than does the straight-line distance and has been used to

characterize the nonlinear features of genetic dispersal [25].

Road-network connectivity has also been incorporated into the

interpolations of urban travel speeds using the approximate road-

network distance, another derivative of the SPD [26]. The works

listed above are important references for the methodology

presented in this paper. However, the characteristics of the

wind-flow effect differ from those investigated in these previous

works. Current SPD techniques are insufficient to successfully

capture such features. To address this shortcoming, another

derivation of SPD, the shortest wind-field path distance (SWPD), is

proposed to determine the spatial dependency effected by a wind-

field and is exploited to integrate wind-fields into interpolation

frameworks.

In this study, a new interpolation method based on the SPD is

developed to describe the influence of the wind-field. This

technique is then applied to generate concentration surfaces for

fine particulate matter of less than 2.5mm in diameter (PM2.5) on

the experimental dates in the study area. Comparisons are

performed between this technique and the conventional method-

ology to illustrate the improvements achieved by including the

wind-field.

Materials and Methods

Data collection and processing
Study area and context. Beijing, the capital of the People’s

Republic of China, is an international metropolis and has

experienced a rapid increase in urban population, energy

consumption and vehicle numbers over the past several decades

[27]. An urban area inside the surrounding ring road (Fig. 1) was

selected as the study area (approximately 30630 km) because of

the relatively dense air-pollution monitoring network that is

present in this area. Six non-consecutive days in May 2013 with

major air-pollution in terms of PM2.5 and daily wind-speeds

above 1.5 m/s were selected as the experimental dates because no

accurate wind-direction measurements were available for low-

speed wind conditions.

Observed PM2.5 concentration. To improve air-pollution

monitoring, a network of 35 automated stations has been

established by the Beijing Environmental Protection Bureau

(BJEPB). Each station measures hourly PM2.5 concentrations

and releases real-time data to the public through the Beijing

Municipal Environmental Monitoring Center (www.bjmemc.com.

cn). 13 urban sampling sites compose a dense urban monitoring

subsystem across the study area (Fig. 1). This monitoring network

enables the detection of real-time, small-area variations in the

PM2.5 concentration. We collected an experimental data set from

all 13 sites for six selected dates. The concentration data are given

in units ofmg=m
3
. Daily average concentrations were calculated

from the hourly data.

Observed wind-fields. Hourly wind-field observations were

obtained through the Chinese Meteorological Data Service

Platform (cdc.bjmb.gov.cn). The measurements were collected

over a network of 16 weather stations throughout the study area

operated by the Beijing Meteorological Bureau (Fig. 1). The daily

average wind-speed and wind-direction were calculated from the

hourly real-time data. Influenced by the complex urban morphol-

ogy, the urban wind-fields exhibit dramatic small-scale variations

that cannot be captured by model-simulated fields with overlarge

grid sizes [11].

Methodology
At the heart of the proposed method is the shortest-path

analysis. An appropriate simulation of air-pollution movement

using this method entails the construction of a cost surface, which

lays the foundation for the shortest-path analysis. After the SWPD

between every pair of unmonitored locations and sampling

locations is obtained, this distance metric is used to determine

the spatial dependency. Inverse Distance Weighting (IDW) in

conjunction with SWPD is then implemented to calculate the

concentration surface. Therefore, this method consists of gener-

ating a continuous wind-field, then implementing the shortest-path

analysis and finally creating the estimation surface using SWPD-

based IDW.

Generation of continuous wind-field. The creation of the

cost surface for shortest-path analysis first requires the generation

of continuous wind-field. This process also involves spatial

interpolation. Unlike other scalar weather variables, a wind-field

is a vector quantity whose interpolation is unique in meteorology.

Typically, one wind-vector is decomposed into two Cartesian wind

components (an east-west component and a north-south compo-

nent). Each component is then interpolated separately into a

corresponding surface using multiquadric (MQ) radial basis

functions (RBF) [28]. The wind-field is then constructed backward

from the two Cartesian-component surfaces using trigonometry

(Fig. 2). This methodology has been widely used to interpolate

diverse vector-type data since its proposal and is considered to be a

robust approach for various meteorological studies [28]. In this

study, a continuous wind-field is established using a grid size of

0.5 km, which is an appropriate resolution for urban air-pollution

research [29].

Shortest-path analysis. The shortest-path analysis includes

two stages. First, a continuous wind-field is modeled onto a cost

surface that depicts the movement cost between adjacent cells.

Second, a shortest-path algorithm is implemented to acquire the

SWPDs between locations.

Creating a cost surface using wind-field data. The

movement of PM2.5 from one location to another may be

facilitated or impeded by the local wind-field. A cost surface must

be well defined based on the properties of the air-pollution

movement to ensure that each shortest path acquired represents
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the true movement trajectories and thus reveals the path along

which the two locations are related.

The grid-based representation of field data is sufficient to depict

the cost of traversing each cell but is incapable of representing the

movement cost associated with not only the distance between cells

but also the relative positions of adjacent cells. An alternate

methodology is to reform the grid raster (Fig. 3A) into a graph

(Fig. 3C) with pixels as vertices and virtual connecting lines as

edges, where each edge has an associated cost value that indicates

the cost of traveling along this edge.

The calculation of the edge cost that depicts the movement

difficulty between adjacent cells is performed based on Gaussian

dispersion model, which is the standard model for the study of the

transport of airborne contaminants under the influence of wind-

field. This model simulates a cross section of the air-pollution

dispersion and assumes that both the horizontal and vertical

concentration distributions are normal [30,31]. The basic formula

for this model can be written as follows:

C0 x,y,z,uð Þ~ Q

pusysz

exp({
y2

2s2
y

{
z2

2s2
z

) ð1Þ

where C0 x,y,z,uð Þ is the concentration at ground level, x is the

downwind distance, y is the horizontal distance between the point

of interest and the centerline, z is the height of the emission source,

u is the horizontal wind-speed, sy is the standard deviation of

horizontal dispersion and sz is the standard deviation of vertical

dispersion.

The Cartesian coordinates (x and y) in the model can be

transformed into polar coordinates (c andh) as shown below [32]:

C0 c,h,z,uð Þ~ Q

pushsz

exp({
z2

2s2
z

{
c2h2

2s2
h

{V
h2

2
) ð2Þ

where V is a correction term given by

V~a cð Þzb(c)
z2

s2
z

ð3Þ

with

a cð Þ~{2z
pc

azc
z

qc

azc
ð4Þ

b cð Þ~1{
qc

azc
ð5Þ

where a, pand qare dispersion parameters that depend on the

atmospheric stability. Further information can be found in the

cited references. When the focus is placed only on horizontal

diffusion and downwind advection, the formula can be written as

Figure 1. Study area and locations of PM2.5 monitoring stations and meteorological sites with daily wind roses for May 18th.
doi:10.1371/journal.pone.0096111.g001
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C0 c,h,uð Þ~ Q

push
exp({

c2h2

2s2
h

{V
h2

2
) ð6Þ

which indicates that the concentration will decrease with

increasing downwind distance (c) and azimuth (h), both of which

are used to determine the movement cost in the following steps.

However, this formula is too complicated to be directly used in

calculation, and the following simplified version is applied instead:

Cost(EAB)~½F DA,DMð ÞzF DB,DMð Þ�|LAB ð7Þ

where A and B are two points in the wind-field, EABis the edge

connecting these two points, DA and DB are the wind-directions at

these two points and DM is the direction of EAB, namely, the

potential movement direction. LAB is the length of EAB, which is

functionally equivalent toc. The function F is used to calculate the

azimuth which is functionally identical toh. It is important to note

that the Gaussian dispersion model is designed to simulate the

diffusion of contaminants from definite sources and cannot be

directly applied in this study because there are no stable emission

sources. However, this model illustrates the origin of the

movement cost, which serves as the foundation of this section.

Implementing shortest-path analysis. Based on the estab-

lishment of the cost surface, shortest-path algorithms can be used

to calculate the paths with the minimum accumulated movement

cost between point pairs, indicating the most likely path along

which the two points are related (Fig. 3d). In this study, the classic

Dijkstra algorithm [33] is employed. The shortest paths and their

associated costs are computed as the output of this step. However,

SWPD is not measured as a summation of movement costs but as

the total length of the shortest path segments between location

pairs.

Interpolation based on SWPD. After the SWPD between

each pair of prediction locations and measurements is acquired,

SWPD-based interpolation can be used to generate estimation

surfaces. IDW in conjunction with the SWPD was selected as the

technique used to incorporate wind-field in this study. Although

the total sample size in this study is small, the density of the

observation network permits the estimation of small-area varia-

tions in the air-pollution concentration using the proposed method

[34]. The feasibility of the method is confirmed by the low mean

squared error and mean absolute error in the following sections.

The IDW approach aims to predict the pollutant concentration

at a given location based on a weighted average of the

measurements obtained at surrounding stations. As a direct

application of Tobler’s First Law (TFL), the relations between

the point of interest and the nearby stations are determined by the

distances between them. The method takes the following form:

z� uð Þ~
Xn

a~1

laz uað Þ ð8Þ

wherez� uð Þis the estimate at locationu, z uað Þis the measurement at

Figure 2. Observed wind-field and continuous wind-field generated from the monitoring data of May 28th.
doi:10.1371/journal.pone.0096111.g002
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locationua, n is the number of stations used for the estimation

andlais the interpolation weight of the measurement atua. The

calculation oflatakes the following form:

la~

1
�
Dv

aPn
a~1

1
�
Dv

a

ð9Þ

where Dais the distance between the monitoring station number-

edaand the point of interest; v is the exponent of the distance and

is set to 2 by default. The incorporation of the SWPD can be

achieved by replacing the distances with the SWPD values, as

demonstrated below:

la~
1=SWPDa

v

Pn
a~1

1=SWPDa
v

ð10Þ

whereSWPDais the shortest path distance in the wind-field

between the monitoring station numberedaand the point of

interest.

Figure 3. Steps for calculating SWPDs using a wind-field. (A) Grid-based representation of a wind-field. (B) Computing the cost associated
with the edge between adjacent cells. (C) Reforming a grid-based wind-field into a graph. (D) SWPD calculated between starting point A and ending
point F.
doi:10.1371/journal.pone.0096111.g003
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Results

Here, comparisons are made on various temporal scales

between IDW based on the SWPD (IDWS), as proposed in this

paper, and IDW based on the Euclidean distance (IDWE). First, a

cross-validation by ‘‘leaving one out’’ is performed to assess the

estimation accuracy, as described below. Second, the abilities of

the two methods to visually reproduce the wind-flow effect in the

interpolation results are also compared. The method used in cross-

validation involves temporarily removing one PM2.5 measurement

from the data set and then predicting the concentration at this

location based on the remaining measurements using the same

methodology.

The three comparison criteria below are used to assess the

performance of the interpolations:

MSE~
1

n

Xn

a~1

z uað Þ{z�(ua)½ �2 ð11Þ

MAE~
1

n

Xn

a~1
Dz uað Þ{z�(ua)D ð12Þ

MRE~
1

n

Xn

a~1

z(ua){z�(ua)

z(ua)
ð13Þ

The mean squared error (MSE) measures the average squared

difference between the removed true PM2.5 measurementz uað Þand

its estimatez�(ua). The mean absolute error (MAE) measures the

average absolute difference betweenz uað Þandz�(ua). The mean

relative error (MRE) measures the average relative deviation

betweenz uað Þandz�(ua). In the case of reasonably accurate

estimation, the values of all three statistics should be close to zero

[26,34,35].

Interpolation of the daily PM2.5 concentration
Daily estimation surfaces for the PM2.5 concentration on the

experimental dates were calculated using IDWS and IDWE. The

local prediction is improved when wind-fields are incorporated, as

evidenced by the average decrease of 15.66% in the MSE, the

average decrease of 6.46% in the MAE and the evident decline in

the MRE obtained for the IDWS estimation compared to the

IDWE estimation (Table 1). The spatial distributions of the

relative errors are presented in Table 2.

In addition to the benefit of lowering these three statistics,

improvements are evident when the estimation surfaces obtained

using two methods are compared visually (Fig. 4). The two

methods produce different distributions when the PM2.5 value

measured at a single location is much higher than those measured

at surrounding stations. In the results obtained using IDWS,

greater continuity is apparent on the downwind side of the

downtown area and there is a shorter dispersion distance on the

upwind side, as would be expected from the wind-flow effect

(Fig. 4A). IDWE methods always produce an eye-shaped pattern

in such cases, which is commonly considered to be a major

shortcoming of this interpolation method (Fig. 4B). Under the

complex local wind-field northwest of the urban area, the results of

the interpolation method proposed in this paper also exhibit an
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accordingly complex anisotropy (Fig. 4A). However, the estima-

tion surface obtained using IDWE fails to capture this feature

(Fig. 4B).

Interpolation of the hourly PM2.5 concentration
Here, we consider the process of interpolating the PM2.5

concentration on a smaller temporal scale. Although IDWS

outperforms IDWE on most experimental dates, the improvement

in the MSE on the 26th of May is only 4.93%, and the MAE of

IDWS is larger than that of IDWE (Table 1). On May 26th, the

PM2.5 concentration increased gradually during the diurnal hours,

reached a peak at approximately 4 pm and then decreased

dramatically because of the washout caused by a moderate rainfall

event that offset the impact of increasing traffic volume during the

evening rush hour (Fig. 5). The hourly measured PM2.5

concentrations were interpolated from 6 am to 8 pm. Twelve of

the 15 experimental hours exhibit smaller MSE values in the

IDWS estimation than in the IDWE estimation, whereas the

remaining three hours exhibit larger MSE values, suggesting that

the incorporation of the wind-fields had a negative influence on

the interpolation accuracy during these three hours. The hours

immediately preceding and immediately following these three

hours also exhibit a limited improvement of less than 10%.

Moreover, the improvement-ratio curve of the MAE follows a

similar trend. Thus, two valleys appear in the curves: at noon and

at sunset.

The prevailing wind-direction was approximately 65u NE in the

morning (Fig. 6A) and changed to 120u SE in the afternoon

(Fig. 6C). From 11 am to 1 pm, corresponding to the first valley in

both improvement-ratio curves, the prevailing direction experi-

enced dramatic variations from northeast to southeast (Fig. 6B),

which limited the accuracy of the wind-field measurements.

Because modest direction errors on the order of 10 degrees can

lead to large errors in the estimation of air-pollution trajectories,

the effectiveness of the proposed methodology no longer holds in

cases of strongly varying wind-direction [36]. As is also indicated

by the meteorological data set, the study area experienced rainfall

from 4 pm to 6 pm, corresponding to the second valley. Because

Table 2. Distributions of the relative errors of the two methods for the daily PM2.5 estimation on 21st May.

PM station Number Estimation of IDWS Estimation of IDWE
Measured
value Relative error of IDWS Relative error of IDWE

A 100.9 100.2 129 221.78% 222.33%

B 116.8 115.9 100 16.80% 15.90%

C 115.7 121.6 104 11.25% 16.92%

D 113.7 112.6 95 19.68% 18.53%

E 100.7 106.1 104 23.17% 2.02%

F 106.2 107.6 98 8.37% 9.80%

G 101.3 103.2 179 243.41% 242.35%

H 123.8 136.3 98 26.33% 39.08%

I 111.2 117.5 112 20.71% 4.91%

J 111.9 113.6 118 25.17% 23.73%

K 111 118.4 100 11.00% 18.40%

L 105.6 112.5 91 16.04% 23.63%

M 94.9 95.6 113 216.02% 215.40%

doi:10.1371/journal.pone.0096111.t002

Figure 4. Comparison between the daily PM2.5 (May 21st) estimations obtained using IDW based on the SWPD and the Euclidean
distance. (A)Interpolation results obtained using IDWS. (B) Interpolation results obtained using IDWE.
doi:10.1371/journal.pone.0096111.g004
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precipitation accelerates the deposition of particulate matter, the

transport effects of the wind-field were reduced (Fig. 6D).

However, under weather conditions with fewer or weaker

variations, the methodology proposed in this paper yielded better

results on an hourly temporal scale than did the conventional

interpolation method.

Discussion

This study demonstrates the potential of incorporating wind-

field into interpolation using the IDWS approach. In addition to

minimizing estimation errors, a major advantage of this approach

stems from its ability to reproduce complex nonlinear features

caused by the wind-flow effect. This capability deserves further

investigation for its potential use in studies of air-pollution and the

negative health effects thereof. As shown in Fig. 4A, the

asymmetric distribution of PM2.5 on the two sides of the

downtown area suggests that residents living east of downtown

were exposed to higher concentrations, whereas those living to the

west were protected by the wind. By contrast, the symmetric

distribution predicted by IDWE (Fig. 4B) may overestimate the

PM2.5 exposure of upwind residents. Furthermore, the estimation

surface obtained using IDWS exhibits greater downwind conti-

nuity. Ignoring the wind-flow effect will lead to the underestima-

tion of downwind dispersion distance and the overestimation of

dispersion distances in other directions. The IDWS technique also

enables the modeling of smaller-scale variations, which can reduce

prediction uncertainties in exposure assessments.

As demonstrated in the previous sections, the proposed method

produced relatively inaccurate estimates on certain experimental

dates. A combination of the dramatically changing wind-direction

at noon and the precipitation that occurred at sunset led to poor

performance on May 26th. The daily PM2.5 on May 20th was also

interpolated, and the improvement in the MSE with respect to the

results obtained using IDWE was only 3.31%. Although the daily

average wind-speed was greater than 1.5 m/s on May 20th, the

major pollutant was dust particles caused by blowing sand, which

was assumed to be the major source of the prediction uncertainty.

These results suggest the need for careful evaluation of the specific

weather conditions prior to including the wind-field using IDWS.

The basic version of IDW was applied to test the feasibility of

the novel distance metric proposed in this study. Neither the

problem of the influence radius nor the problem of zero distance

was considered. Some variants of the classic method may be used

to verify the validity of the SWPD or even to achieve more

accurate estimations. Although it offers a number of advantages,

IDW always achieves poorer performance than kriging or other

more sophisticated interpolation methods. Thus, now that the

effectiveness of the SWPD has been demonstrated and the metric

has been shown to offer improved accuracy and realistic visual

representation, a need exists to combine this distance metric with a

more robust technique to obtain prediction surfaces with higher

accuracy [23].

The incorporation of secondary information, instead of relying

solely on station measurements, enables the estimation surfaces

obtained to reflect localized variations and thus improves the

predictive capacity of the analysis [34]. Most currently used

auxiliary data are scalar, and little weight is given to vector data.

One objective of this paper is to propose a methodology for

incorporating vector-type secondary information into interpola-

tion. Now that the feasibility of this methodology has been

confirmed, a more general method that is capable of including

both scalar-type data and vector-type data is desirable.

The primary intent of this study was to verify the effectiveness of

the proposed method, so little attention was directed toward

improving the computing efficiency. All algorithms were imple-

mented using C++ with no optimization, and the visualization was

performed using ArcGIS (ESRI). At the current stage of

Figure 5. Temporal variation in the hourly PM2.5 concentration and the improvement ratio of IDWS with respect to IDWE on May
26th.
doi:10.1371/journal.pone.0096111.g005
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development, the time required to generate one estimation surface

for the study area is approximately 10 minutes. Further research is

necessary to accelerate the calculation and to allow this technique

to be used for real-time estimation.

The results of cross-validation and visual assessment have

demonstrated that including wind-field in the interpolation of the

PM2.5 concentration improves the predictive performance. How-

ever, the experiments were conducted only in the core area of

Beijing during six selected days in May. The method should be

assessed over much longer monitoring periods spanning all four

seasons to confirm its year-round effectiveness. Additional

measurements are also required to confirm the usefulness of the

SWPD or even to discover a better distance metric. The

interpolation of other types of air-pollution, such as nitrogen

dioxide and coarse particulate matter, should also be performed to

verify that the model has general applicability. Furthermore, wind-

fields with higher resolution may have the potential to improve the

predictive capability of the technique and deserve further research.

Conclusions

Three major conclusions can be drawn from this study:

(1) Wind-fields are of great importance to studies of the negative

effects of airborne pollutants. Incorporating wind-fields into

the spatial interpolation of air-pollution distributions serves to

enhance the predictive capability of such interpolation.

(2) The shortest wind-field path distance (SWPD) shows great

potential for determining the spatial dependence and enables

SWPD-based interpolations to capture complex features of

air-pollution distributions with higher accuracy than methods

based on the Euclidean distance.

(3) The workflow proposed in this paper, which consists of wind-

field generation, shortest-path analysis and IDW in conjunc-

tion with the SWPD, has been demonstrated to be a robust

technique for predicting urban-scale PM2.5 concentrations.

Supporting Information

Movie S1 The spatial-temporal variance of PM2.5

concentrations obtained by IDWE in the study area on
May 26th.
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