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STUDY QUESTION: Can an artificial intelligence (AI) model predict human embryo ploidy status using static images captured by optical
light microscopy?

SUMMARY ANSWER: Results demonstrated predictive accuracy for embryo euploidy and showed a significant correlation between AI
score and euploidy rate, based on assessment of images of blastocysts at Day 5 after IVF.

WHAT IS KNOWN ALREADY: Euploid embryos displaying the normal human chromosomal complement of 46 chromosomes are
preferentially selected for transfer over aneuploid embryos (abnormal complement), as they are associated with improved clinical out-
comes. Currently, evaluation of embryo genetic status is most commonly performed by preimplantation genetic testing for aneuploidy
(PGT-A), which involves embryo biopsy and genetic testing. The potential for embryo damage during biopsy, and the non-uniform nature
of aneuploid cells in mosaic embryos, has prompted investigation of additional, non-invasive, whole embryo methods for evaluation of
embryo genetic status.

STUDY DESIGN, SIZE, DURATION: A total of 15 192 blastocyst-stage embryo images with associated clinical outcomes were
provided by 10 different IVF clinics in the USA, India, Spain and Malaysia. The majority of data were retrospective, with two additional
prospectively collected blind datasets provided by IVF clinics using the genetics AI model in clinical practice. Of these images, a total of
5050 images of embryos on Day 5 of in vitro culture were used for the development of the AI model. These Day 5 images were provided
for 2438 consecutively treated women who had undergone IVF procedures in the USA between 2011 and 2020. The remaining images
were used for evaluation of performance in different settings, or otherwise excluded for not matching the inclusion criteria.

PARTICIPANTS/MATERIALS, SETTING, METHODS: The genetics AI model was trained using static 2-dimensional optical light
microscope images of Day 5 blastocysts with linked genetic metadata obtained from PGT-A. The endpoint was ploidy status (euploid or
aneuploid) based on PGT-A results. Predictive accuracy was determined by evaluating sensitivity (correct prediction of euploid), specificity
(correct prediction of aneuploid) and overall accuracy. The Matthew correlation coefficient and receiver-operating characteristic curves
and precision-recall curves (including AUC values), were also determined. Performance was also evaluated using correlation analyses and
simulated cohort studies to evaluate ranking ability for euploid enrichment.

MAIN RESULTS AND THE ROLE OF CHANCE: Overall accuracy for the prediction of euploidy on a blind test dataset was 65.3%,
with a sensitivity of 74.6%. When the blind test dataset was cleansed of poor quality and mislabeled images, overall accuracy increased to
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77.4%. This performance may be relevant to clinical situations where confounding factors, such as variability in PGT-A testing, have been
accounted for. There was a significant positive correlation between AI score and the proportion of euploid embryos, with very high scoring
embryos (9.0–10.0) twice as likely to be euploid than the lowest-scoring embryos (0.0–2.4). When using the genetics AI model to rank
embryos in a cohort, the probability of the top-ranked embryo being euploid was 82.4%, which was 26.4% more effective than using
random ranking, and �13–19% more effective than using the Gardner score. The probability increased to 97.0% when considering the like-
lihood of one of the top two ranked embryos being euploid, and the probability of both top two ranked embryos being euploid was
66.4%. Additional analyses showed that the AI model generalized well to different patient demographics and could also be used for the
evaluation of Day 6 embryos and for images taken using multiple time-lapse systems. Results suggested that the AI model could potentially
be used to differentiate mosaic embryos based on the level of mosaicism.

LIMITATIONS, REASONS FOR CAUTION: While the current investigation was performed using both retrospectively and prospec-
tively collected data, it will be important to continue to evaluate real-world use of the genetics AI model. The endpoint described was
euploidy based on the clinical outcome of PGT-A results only, so predictive accuracy for genetic status in utero or at birth was not
evaluated. Rebiopsy studies of embryos using a range of PGT-A methods indicated a degree of variability in PGT-A results, which must be
considered when interpreting the performance of the AI model.

WIDER IMPLICATIONS OF THE FINDINGS: These findings collectively support the use of this genetics AI model for the evaluation
of embryo ploidy status in a clinical setting. Results can be used to aid in prioritizing and enriching for embryos that are likely to be euploid
for multiple clinical purposes, including selection for transfer in the absence of alternative genetic testing methods, selection for cryopreser-
vation for future use or selection for further confirmatory PGT-A testing, as required.
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Introduction
Embryo aneuploidy during conception is a leading cause of implanta-
tion failure, pregnancy loss and congenital defects in newborns (Scott
et al., 2012; Schaeffer et al., 2018). During IVF procedures, preimplan-
tation genetic testing for aneuploidy (PGT-A) is used to evaluate the
genetic integrity of embryos and assist in identifying euploid embryos
for transfer (Greco et al., 2020). Owing to the invasive nature of the
biopsy procedure required for PGT-A assessment, only a small sample
of cells, usually from the trophectoderm, can be taken for sequencing.
Aside from the potential for damage during the embryo biopsy proce-
dure (Rubino et al., 2020; Makhijani et al., 2021), one of the recent
concerns raised with PGT-A testing is the reporting of chromosomal
mosaicism in up to 40% of cases, which often results in embryos being
deprioritized for transfer (Cram et al., 2019). Although meiotic errors
originate in the oocyte and uniformly affect the embryo, recent evi-
dence suggests that aneuploidies can also occur during the mitotic divi-
sion process resulting in mosaic embryos that have a mixture of
genetically normal and abnormal cells (Capalbo and Rienzi, 2017).
Importantly, mosaic embryos can still result in normal live births, likely
due to self-correction pathways that limit proliferation of abnormal
cells throughout the embryo (Victor et al., 2019b). Embryos with low
levels of mosaicism in particular have relatively good outcomes com-
pared to those with high levels, including ongoing pregnancy rates,

miscarriage rates and live birth outcomes, and in some cases result in
similar clinical outcomes to that of euploid embryos (Abhari and
Kawwass, 2021). The accuracy of PGT-A sequencing is high; however,
the results are dependent on how representative the biopsy sample is
of the whole embryo.

There is a strong incentive for the development of alternative, less
invasive methods for evaluation of embryo genetic status, to comple-
ment current PGT-A assessment. The main methods currently under
investigation include isolation of DNA from embryonic blastocoel fluid,
or from spent culture medium (Kuznyetsov et al., 2020; Orvieto et al.,
2021). The clinical benefit of these approaches remains largely un-
known, but they are unlikely to be able to account for embryo DNA
damage and self-correction mechanisms that occur with mitotic
aneuploidy.

The aim of the current study was to develop and evaluate a robust
artificial intelligence (AI)-based method for non-invasive analysis of em-
bryo genetic (ploidy) status using static 2-dimensional images. This ap-
proach is designed to assess the embryo as a whole and use the
phenotype or morphology of the embryo as a developmental readout
of severe genetic damage. While one AI-based algorithm for analysis
of embryo images to predict euploidy reports predictive ability on a
test dataset of 84 embryo images from 19 patients (Chavez-Badiola
et al., 2020), the study presented herein describes the development
and testing of an AI for predicting embryo ploidy using datasets
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comprising thousands of images from multiple IVF clinics representing
a range of demographics, including double-blind evaluation of prospec-
tively collected data. The present work represents the first report of
such an AI model that can be used with images taken on a range of
imaging and microscope systems including both standard microscope-
mounted camera types and time-lapse imaging systems.

Materials and methods

Experimental design
This study was designed to collect and analyze data for the develop-
ment of an AI model for the evaluation of embryo genetic (ploidy) sta-
tus during IVF. Subjects included female patients aged at least 18 years
who underwent IVF procedures between 2011 and 2021. Most data
were collected retrospectively, with additional data collected prospec-
tively for double-blind evaluation of the final genetics AI model.
Primary data for analysis included images of embryos taken using opti-
cal light microscopy systems, with matched PGT-A results as the
ground truth outcome (Supplementary Table SI shows PGT-A testing
details). Images were collected of embryos on Day 5, Day 6 and Day
7 of culture, with only Day 5 embryo images used for training and de-
velopment of the AI model. The study was non-interventional and
results were not used to influence treatment decisions in any way.

For inclusion in the study, images were required to be of in vitro
cultured embryos taken using a standard optical light microscopy im-
aging system prior to biopsy or freezing. All images were required
to have a minimum resolution of 480 � 480 pixels with the com-
plete embryo in the field of view and the focus on the inner cell
mass (ICM). This minimum resolution was chosen so that each im-
age contained sufficient details of embryo morphology for machine
learning applications, noting that imaging systems used in this study
typically output images of at least this resolution. Details of imaging
systems used in training and testing the AI model are provided in
Supplementary Table SII.

Collection of retrospective data for this study was exempted
from ethical review and approval, and from the requirement for pa-
tient informed consent, as confirmed by Sterling IRB #7751 for pro-
tocol ID LW-C-004A. Collection of prospective data for this study
was performed in accordance with the Life Whisperer patient pri-
vacy policy, constituting informed consent for research purposes.
This study was conducted according to the guidelines of the
Declaration of Helsinki of 1975, as amended. This study was not
registered as a clinical trial as it did not meet the definition of an ap-
plicable clinical trial as defined by the ICMJE, that is: ‘a clinical trial is
any research project that prospectively assigns people or a group of
people to an intervention, with or without concurrent comparison
or control groups, to study the relationship between a health-
related intervention and a health outcome’.

Statistical analyses
This study involved standard statistical methods used in performance
evaluation of machine learning classifiers, including accuracy, sensitivity,
specificity, positive predictive value (PPV), negative predictive value
(NPV), Matthew correlation coefficient (MCC) and AUC value for

both receiver-operating characteristic (ROC) curves and precision-re-
call curves (PRC; Florkowski, 2008). For binary classification of
embryos, an AI score of at least 5.0/10.0 was considered a normal/
positive prediction, and below 5.0/10.0 an abnormal/negative predic-
tion as follows: normal/positive predictions included euploid embryos,
mosaic-low embryos, embryos without the specific abnormality being
evaluated and embryos predicted to lead to successful clinical preg-
nancy (determined by the presence of a fetal heartbeat at first ultra-
sound scan). Abnormal/negative predictions included aneuploid
embryos, mosaic-high embryos, embryos with the specific abnormality
being evaluated and embryos predicted not to lead to clinical
pregnancy.

Statistical analyses comparing groups were performed using
GraphPad Prism version 9.0.0 (GraphPad Software, Inc., San Diego,
CA, USA). Average AI scores for multiple groups were compared us-
ing ordinary one-way ANOVA with Tukey’s multiple comparisons
post-test, or Students t-test between pairs of groups, where indicated.
Trends in the proportion of euploid embryos were evaluated using
Chi-square test for trend. Error bars indicate SEM where presented,
and P-values of <0.05 were considered significant.

To investigate the correlation of the genetics AI score with euploidy
rate, images were assigned to one of four score brackets (euploid like-
lihood categories) as follows: low likelihood: scores of 0.0–2.4/10.0,
medium likelihood: scores of 2.5–7.4/10.0, high likelihood: scores of
7.5–8.9/10.0 and very high likelihood: scores of 9.0–10.0/10.0. The
percentage of euploid embryos was calculated in each category, and
the correlation evaluated using Chi-square test for trend.

To investigate the ability of the genetics AI model to rank euploid
embryos, a ranking analysis was performed using simulated embryo
cohorts as follows: embryo images drawn from the 1001 blind test
images with known PGT-A outcomes were randomized into
�100 000 unique simulated cohorts for analysis, with an average of 10
embryos per cohort. Cohort sizes were drawn from a distribution of
actual embryo cohort sizes obtained from a prior clinical dataset.
Cohorts consisting of a single embryo, or cohorts with no euploid em-
bryos, were excluded.

Embryos in the simulated cohorts were then ranked according to
likelihood of euploidy separately by the genetics AI score, random
ranking and Gardner score ranking. Two different methods were used
for Gardner score ranking. Firstly, the commonly used 3BB threshold
was applied to define good- versus poor-quality embryos (Kemper
et al., 2021). The second method involved a four-group ranking system
(Irani et al., 2017; Zhao et al., 2018), with rank groups defined as fol-
lows: excellent quality (3-6AA), good quality (3-6AB/BA, 1-2AA), av-
erage quality (3-6BB/AC/CA, 1-2AB/BA) and poor quality (1-6BC/
CB/CC, 1-2BB). For cohorts where multiple embryos were of the
same rank group, these embryos were ordered randomly within their
shared position of the cohort. Note that Gardner scores were only
available for a subset of 918 of the 1001 embryos in the Day 5 blind
test dataset.

Ranking was evaluated using three methods: (i) whether the top-
ranked embryo was euploid, (ii) whether at least one of the top two
ranked embryos was euploid or (iii) whether the top two ranked em-
bryos were both euploid. The result was expressed as a percentage of
the total number of cohorts. Note that in cases (ii) and (iii), cohorts
with only one euploid embryo were also excluded.
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.Computer vision image processing
methods
Prior to analysis, the images underwent multiple preprocessing, as in
VerMilyea et al. (2020), but were updated to include more advanced
computer vision techniques as follows.

• Step 1: Images were stripped of the alpha channel and encoded in
a three-channel format.

• Step 2: Each image was transformed to a tensor as the appropriate
input for deep learning AI models.

• Step 3: Images were padded to square dimensions to ensure con-
sistent input for the models. The previous method used for pad-
ding in VerMilyea et al. (2020) was replaced with a Region Based
Convolutional Neural Network (R-CNN) deep learning model
called Faster R-CNN, which is known to be robust to background
artifacts in the image (Ren et al., 2015). The training parameters
used for this model included a ResNet50 Feature Pyramid

Network backbone, prediction size ¼ 800 pixels, minimum box
size ¼ 30 pixels, non-maximum suppression threshold ¼ 0.25 and
score threshold ¼ 0.4. Small detected boxes (with at least one
box edge smaller than 30 pixels) that lie completely within another
box were removed to prevent the model from under-fitting the
boundary. In cases where two over-lapping boxes were output, the
larger box encompassing the two boxes was selected.

• Step 4: Each image was cropped to the final detected bounding
box to remove excess background and center the embryo. The
previous elliptical Hough transformation method was replaced by
the Faster R-CNN method described in Step 3.

• Step 5: Segmentation was optionally applied to each image for the
appropriate constituent models. Segmentation is used to divide
each image into respective embryo sections to show either the
zona pellucida region only, or the intra-zonal cavity (IZC) region
only (i.e. the interior of the blastocyst including both the ICM and
trophectoderm). The previous method of snake segmentation (ac-
tive contour models) described in VerMilyea et al. (2020) was

replaced with a faster and more robust semantic segmentation
method called U-Net (Ronneberger et al., 2015).

Note that color normalization and resolution scaling were re-
moved from the preprocessing procedure described in VerMilyea
et al. (2020) to allow the AI model to become more robust to color
offsets and resolution variation. However, during the training pro-
cess, additional image augmentations were applied to anticipate
changes to lighting conditions, rotation of the embryo, focal length,
color bias and different resolutions, so that the final AI is robust to
these conditions in new unseen datasets (Supplementary Materials
and Methods).

Model training and selection process
The final genetics AI model is an ensemble model, consisting of several
constituent CNN models combined according to method described in
VerMilyea et al. (2020). Methods for selecting CNN architectures, AI
model training, model validation and selection of the final ensemble
model were generally performed as described in VerMilyea et al.
(2020). In brief, the training process employed a wide range of model
architectures, learning rates, momentum values and regularization
methods. All models were evaluated on a holdback validation dataset

primarily using confidence metrics designed to measure translatability.
A curated list of models was considered candidates for inclusion in a
distillation training process (Hinton et al., 2014). After distillation train-
ing, the resulting models were considered as candidates for ensem-
bling, based on their performance on the validation dataset including
prediction accuracy, model stability and confidence metrics. The final
ensemble model was evaluated on a blind test dataset, independent of
the validation dataset used for model selection, as well as additional
double-blind test datasets. Throughout the training and selection pro-
cess, the most effective CNN architectures for classifying embryo
ploidy status were found to include ResNet (He et al., 2016) and
DenseNet (Huang et al., 2017) architectures. Refer to Supplementary
Materials and Methods for more information.

There were two key methods applied in training the current genet-
ics AI model that extend beyond the methods employed in VerMilyea
et al. (2020), namely untrainable data cleansing (UDC; Dakka et al.,
2021) and distillation (Hinton et al., 2014). UDC is an AI method for
identifying mislabeled data, removing (cleansing) images that multiple
AI models are unable to correctly label (classify) during the AI training
process, because the images are either: of such poor quality that there
are no distinguishing features that correlate with any label (noisy data);
or highly correlated to the opposite label of what would reasonably be
expected, based on the classification of the majority of images in the
dataset (incorrect or mislabeled data). Noisy or incorrect (mislabeled)
images reduce the overall quality and usefulness of datasets when used
in AI training and can present a misleading estimation of AI perfor-
mance when included in testing datasets. Methods for handling such
data have been shown to improve generalizability of AI models (Dakka
et al., 2021). In this study, UDC was applied to the initial Day 5 data-
set to produce cleansed datasets for AI training (n¼ 3174) and AI vali-
dation (n¼ 300). AI model performance was evaluated on both
uncleansed (n¼ 1001) and cleansed (n¼ 786) versions of the blind
test dataset (Table I). Note that the purpose of UDC is to arrive at a
training and validation dataset with cleaner labels, allowing production
of more stable constituent models, and direct comparisons of their
performance when selecting those to incorporate into the final model.
Therefore, all double-blind datasets obtained prospectively for this
study did not have UDC applied and were representative of real-
world clinical data. Additional details are provided in Supplementary
Materials and Methods.

Development of the genetics AI model also included an emerging
machine learning technique called knowledge distillation (Hinton et al.,
2014). This technique allows for candidate constituent models to act
as ‘teacher’ models during training of the constituent model, which is
ultimately chosen to be part of the final ensemble model. Teacher
models can encompass a diverse range of different architectures and
machine learning parameters. Once specific teacher models have been
selected, the parameters are fixed while they are used to train each
constituent model.

In the current study, individual constituent models were trained and
evaluated separately using a train-validate cycle process, as described
in VerMilyea et al. (2020). A range of optimizers, learning rates, mo-
mentum values, regularization strategies and batch sizes were consid-
ered. In particular, batch-normalization and dropout methods were
employed in order to stabilize the constituent models during training
and prevent against overfitting. The training-validation cycle was car-
ried out for 300 epochs each until a sufficiently stable model was
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Table I Composition of datasets used for development of the Day 5 genetics artificial intelligence model.

Datasets Total Day 5 dataset
(uncleansed)

Day 5 blind test dataset
(uncleansed)

Day 5 blind test dataset
(cleansed)a

Number of embryo images 5050 1001 786

Number of patients 2438 788 658

Dates treated 2011–2020 2011–2020 2011–2020

Number of cycles 2485 798 664

Average cycles per patient (range) 1.0 (1–3) 1.0 (1–2) 1.0 (1–2)

Average embryo cohort size (range)b 2.0 (1–17) 1.3 (1–5) 1.2 (1–4)

Average patient age in years (range) 36.2 (19–53) 35.6 (19–53) 35.2 (19–51)

Number of donor gamete(s) used (%) 1106 (22.0%) 211 (21.1%) 170 (21.6%)

Number of euploid embryos (%) 3251 (64.4%) 645 (64.4%) 613 (78.0%)

Number of aneuploid embryos (%) 1799 (35.6%) 356 (35.6%) 173 (22.0%)

Number of transferred embryos (%) ND 156 (15.6%) 148 (18.8%)

Clinical pregnancy outcomes

Number of successful pregnancies (%) ND 92 (59.0%) 87 (58.8%)

Number of unsuccessful pregnancies (%) ND 64 (41.0%) 61 (41.2%)

Origin of images

Ovation—Austin (TX, USA) 3328 (65.9%) 671 (67.0%) 522 (66.4%)

San Antonio IVF (TX, USA) 538 (10.7%) 103 (10.3%) 78 (9.9%)

Midwest Fertility Specialists (IN, USA) 236 (4.7%) 45 (4.5%) 37 (4.7%)

California Fertility Partners (CA, USA) 943 (18.7%) 182 (18.2%) 149 (19.0%)

Ovation—Baton Rouge (LA, USA) 5 (0.1%) 0 (0.0%) 0 (0.0%)

Chromosomal abnormalities involvedc

Monosomy—n (%)d 483 (26.8%) 80 (22.5%) 39 (22.5%)

Trisomy—n (%)d 466 (25.9%) 88 (24.7%) 35 (20.2%)

Full gains or losses—n (%)e 1217 (67.6%) 237 (66.6%) 119 (68.8%)

Segmental duplications or deletions—n (%)e 382 (21.2%) 86 (24.2%) 33 (19.1%)

Single chromosomal abnormalities—n (%) 1093 (60.8%) 219 (60.6%) 101 (58.4%)

Multiple abnormalities (complex)—n (%) 657 (36.5%) 137 (39.4%) 72 (41.6%)

Chromosome 1—n (%) 83 (4.6%) 23 (6.6%) 9 (5.2%)

Chromosome 2—n (%) 120 (6.7%) 19 (5.5%) 12 (6.9%)

Chromosome 3—n (%) 77 (4.3%) 20 (5.8%) 10 (5.8%)

Chromosome 4—n (%) 111 (6.2%) 27 (7.8%) 8 (4.6%)

Chromosome 5—n (%) 102 (5.7%) 27 (7.8%) 11 (6.4%)

Chromosome 6—n (%) 86 (4.8%) 17 (4.9%) 10 (5.8%)

Chromosome 7—n (%) 99 (5.5%) 21 (6.1%) 6 (3.5%)

Chromosome 8—n (%) 110 (6.1%) 24 (6.9%) 11 (6.4%)

Chromosome 9—n (%) 104 (5.8%) 27 (7.8%) 10 (5.8%)

Chromosome 10—n (%) 86 (4.8%) 11 (3.2%) 5 (2.9%)

Chromosome 11—n (%) 98 (5.4%) 14 (4.0%) 7 (4.0%)

Chromosome 12—n (%) 71 (3.9%) 16 (4.6%) 7 (4.0%)

Chromosome 13—n (%) 140 (7.8%) 36 (10.4%) 20 (11.6%)

Chromosome 14—n (%) 121 (6.7%) 25 (7.2%) 12 (6.9%)

Chromosome 15—n (%) 196 (10.9%) 33 (9.5%) 20 (11.6%)

Chromosome 16—n (%) 255 (14.2%) 49 (14.1%) 26 (15%)

Chromosome 17—n (%) 75 (4.2%) 17 (4.9%) 10 (5.8%)

Chromosome 18—n (%) 127 (7.1%) 31 (8.9%) 17 (9.8%)

(continued)
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..developed with low loss function. At the conclusion of the series of
training-validation cycles, the highest-performing models, selected
using log loss and tangent score as metrics, were chosen as teacher
models for distillation, and the training-validation cycle was re-
peated, but this time using distillation training. The highest-perform-
ing models were then selected as candidates for ensembling based
on log loss, tangent score, AUC, total accuracy, sensitivity and spe-
cificity. Details regarding specific machine learning methods and eval-
uation metrics are provided in Supplementary Materials and
Methods.

The final ensemble model developed in the current study includes
three deep learning models selected using a majority-mean-based vot-
ing strategy. Every constituent model in the final ensemble model was
a binary classification model, used cosine annealing as a learning rate
scheduler, a stochastic gradient descent optimizer and uniform image
normalization RGB ¼ (0.5, 0.5, 0.5) for each input image. Note that
the knowledge distillation method used a Kullback–Leibler divergence
to modify the loss function while training, with a weighting, alpha, as
reported below. The final model configuration used in this study was
as follows:

• Model 1: One full (no segmentation) DenseNet-161 model, trained

on a dataset of images with UDC applied using full (no segmenta-

tion) training, learning rate ¼ 1.0e�4, momentum ¼ 0.95, dropout

value ¼ 0.25 and batch size ¼ 16 images. This model was not a

distilled model.

• Model 2: One full (no segmentation) ResNet-50 model, trained on

a dataset of images with UDC applied using full (no segmentation),

learning rate ¼ 3.0e�4, momentum ¼ 0.90, dropout value ¼
0.10, batch size ¼ 32 images and distillation alpha ¼ 0.2. Two

teacher models were used as follows:

• One DenseNet-161 model, learning rate ¼ 1.0e�4, momentum

¼ 0.95, dropout value ¼ 0.25 and batch size ¼ 16 images.

• One ResNet-50 model, learning rate ¼ 1.0e�4, momentum ¼
0.90, dropout value ¼ 0.10 and batch size ¼ 32 images.

• Model 3: One IZC DenseNet-121 model, trained on a dataset in-

cluding images with UDC applied using IZC, learning rate ¼

1.0e�4, momentum ¼ 0.90, dropout value ¼ 0.15 and batch size

¼ 16 images. This model was not a distilled model.

The ensemble method has recently been shown to sometimes over-
fit data, leading to poor performance of the ensemble AI model on
test datasets (poor generalizability). Overfitting of the genetics AI
model in the current study was tested for by comparing the perfor-
mance of the final ensemble model to that of the individual constituent
AI models making up the final model. Results demonstrated a similar
or superior performance of the final ensemble model compared to
constituent models, as described in Supplementary Materials and
Methods.

Results

Datasets used in development of a genetics
AI model for predicting the likelihood of
embryo euploidy
A total of 15 192 embryo images with associated metadata were pro-
vided by 10 different clinics in the USA, India, Spain and Malaysia. Of
these images, a total of 5050 images from 2438 patients treated at five
clinics in the USA were used for development of the Day 5 genetics
AI model. The following images were excluded from model training
and validation:

• PGT-A result was inconclusive or missing: 228 images.

• Technical issues (duplicate images, unmatched images/metadata,

etc.): 836 images.

• Day 6 embryos: 5574 images (excluded from training but used to

evaluate model performance, as described).

• Days other than Day 5 or Day 6 (or day not recorded): 2584

images.

• Mosaic embryos: 403 images (excluded from training but used to

evaluate model performance, as described).

• Double-blind test dataset images (datasets from independent clinics

in India, Spain and Malaysia): 517 images (images were collected

............................................................................................................................................................................................................................

Table I Continued

Datasets Total Day 5 dataset
(uncleansed)

Day 5 blind test dataset
(uncleansed)

Day 5 blind test dataset
(cleansed)a

Chromosome 19—n (%) 113 (6.3%) 25 (7.2%) 15 (8.7%)

Chromosome 20—n (%) 78 (4.3%) 21 (6.1%) 12 (6.9%)

Chromosome 21—n (%) 221 (12.3%) 46 (13.3%) 19 (11.0%)

Chromosome 22—n (%) 323 (18.0%) 52 (15.0%) 28 (16.2%)

Sex chromosomes—n (%) 161 (8.9%) 34 (9.8%) 15 (8.7%)

aThe Day 5 blind test dataset of 1001 images was cleansed by the UDC method to remove poor quality and mislabeled images (remaining n¼ 786).
bSome cohorts consisted of a combination of Day 5 and Day 6 embryos—these were separated according to dataset (see Supplementary Table SI).
cPercentage calculated as proportion of aneuploid embryos in dataset. Embryos could have multiple chromosomes involved.
dNumber of embryos with monosomic/trisomic changes include those with single abnormalities only and those with a single full gain or loss accompanied by segmental changes.
eNumber of embryos with full/segmental changes include those with single or multiple abnormalities of the same type.
ND, not determined; UDC, untrainable data cleansing.
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.after development of the Day 5 genetics AI model and were used

for double-blind testing and analysis of time-lapse images, as

described).

Note that no images were excluded because of image quality (e.g.
poor focus, low resolution, etc.). One thousand and one of the 5050
US-based images were held back for blind testing the genetics AI
model. The composition of the total Day 5 dataset, as well as constit-
uent blind test datasets used for evaluating performance (cleansed and
uncleansed versions), is shown in Table I. Average age of women for
the complete Day 5 dataset was 36.2 years, and the proportion of eu-
ploid and aneuploid embryos was 64.4% and 35.6%, respectively.

Over one-third of all aneuploid embryos displayed a complex karyo-
type, consisting of abnormalities in multiple chromosomes, and �9%
of aneuploid embryos displayed an abnormality in one of the sex chro-
mosomes. The frequency of individual autosomal abnormalities ranged
from 3.9% (chromosome 12) to 18.0% (chromosome 22) for individ-
ual chromosomes.

Additional datasets used in evaluating performance of the genetics
AI model are shown in Supplementary Table SIII, including the Day 6
dataset, the mosaic dataset and the prospectively collected double-
blind test datasets to evaluate translatability and performance on time-
lapse imaging systems.

A complete list of AI scores and relevant metadata is provided in
Supplementary Table SIV.

The genetics AI model is predictive of
embryo ploidy status for Day 5 embryos in
a blind test dataset
The overall accuracy of the genetics AI model for predicting euploid
embryos on the uncleansed Day 5 blind test dataset was 65.3%, with a
sensitivity of 74.6% and a specificity of 48.6%. Figure 1A shows the con-
fusion matrix. PPV and NPV were 72.4% and 51.3%, respectively, and
the MCC value was 0.235. Removal of poor quality and mislabeled
images using UDC considerably improved overall accuracy on the
cleansed dataset as expected, to 77.4%, with a corresponding MCC
value of 0.491. This was largely due to improvement in specificity
(80.3%). ROC are shown in Fig. 1B for both the uncleansed and
cleansed test datasets, with AUC values of 0.68 and 0.87, respectively,
and PRC are similarly presented in Fig. 1C, with AUC values of 0.78
and 0.96 for uncleansed and cleansed data. While evaluating AI perfor-
mance on the cleansed blind test dataset is not strictly representative
of real-world clinical performance, it is, however, informative for evalu-
ating performance in the absence of poor-quality or potentially misla-
beled images. In this way, it represents a cleaner measure of
performance that is generalizable across clinics when accounting for the
presence of potential confounding variables (see Dakka et al., 2021).

The genetics AI score showed a significant positive correlation with
an increasing percentage of euploid embryos on the uncleansed data-
set (Fig. 1D). For this evaluation, a random sampling of 80 mosaic em-
bryos was taken from the Day 5 mosaic test dataset (Supplementary
Table SIII) and added to the blind test dataset (overall ratio of �7%
mosaic embryos, similar to the proportion of mosaic embryos in the
full dataset of images originally provided). Results showed that the pro-
portion of euploid embryos doubled from the lowest to the highest
euploid likelihood category, with the proportion increasing from 30.8%

to 75.8%. These results suggest that embryos of higher scores may be
ranked over those of lower scores to aid in selection of euploid em-
bryos during IVF procedures.

A significant positive correlation was also observed between euploid
likelihood categories and the proportion of euploid embryos in sub-
groups based on patient age (<35 and �35 years, Supplementary
Fig. S1A), and Gardner expansion Grades 3, 4 and 5 (non-significant
trend for Grade 6, Supplementary Fig. S1B). Accuracy for binary pre-
diction ranged from 60.0% to 75.4% based on age or expansion grade
subgroup (Supplementary Fig. S1).

Enrichment for euploid embryos was investigated using ranking anal-
yses with simulated embryo cohorts, as described in Materials and
methods section. When embryo cohorts in the uncleansed dataset
were ranked using the genetics AI model, the proportion of cohorts
with a euploid embryo as the top-ranked embryo was 82.4%
(Table II). This was a 26.4% improvement over randomly ranked
cohorts (65.2% cohorts with euploid top-ranked embryo). On the
subset of images with an associated Gardner score (n¼ 918), the AI
model showed a 19.3% improvement in identification of a euploid em-
bryo as the top-ranked embryo compared to the commonly used 3BB
threshold for defining good- versus poor-quality embryos according to
the Gardner method (81.1% and 68.0% of cohorts for the AI model
and Gardner ranking, respectively). The AI model maintained an im-
provement of 12.8% over the Gardner score for identification of a
top-ranked euploid embryo when further subdividing embryos accord-
ing to four Gardner quality rank groups (81.1% and 71.9% of cohorts,
respectively). At least one of the top two embryos was found to be
euploid in 97.0% of cohorts when ranked by the AI model, and both
of the top two ranked embryos were euploid in 66.4% of cohorts. In
all cases, the genetics AI model showed an improvement in the ability
to rank and enrich for euploid embryos within a patient cohort com-
pared to random ranking and the Gardner ranking method (Table II).

Studies have demonstrated improved clinical outcomes, such as
pregnancy rates, for euploid embryos (Scott et al., 2012). As such, it
might be expected that the genetics AI model, trained to evaluate the
likelihood of euploidy, would also demonstrate predictive ability for
clinical outcomes. A subset of 156 transferred embryos from the
uncleansed Day 5 blind test dataset was utilized to evaluate the perfor-
mance of the AI model for predicting clinical pregnancy outcome, as
measured by the presence of a fetal heartbeat at first ultrasound scan.
The accuracy of the AI model for predicting a successful clinical preg-
nancy on these embryos was 57.1%, indicating some predictive ability,
although this was lower than the accuracy of 65.3% for predicting eu-
ploidy. This outcome is not unexpected, as a euploid result on PGT-A
test is not a definitive marker of clinical success.

The genetics AI model is effective for use
with images of mosaic embryos and Day 6
embryos, and can predict monosomic
abnormalities
Mosaicism occurs when there are two or more cell populations with
different karyotypes present within an individual embryo, including
both euploid and aneuploid cell types. Consistent with this, the aver-
age AI score for mosaic embryos fell between the average scores for
full aneuploid and euploid embryos (Fig. 2A; Day 5 mosaic test dataset
described in Supplementary Table SIII). When subdividing mosaic
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..embryos according to the level of mosaicism, mosaic-low embryos
were found to have similar average scores to euploid cells, whereas
mosaic-high embryos had similar average scores to aneuploid cells
(Fig. 2B). Predictive accuracy of the genetics AI model on a dataset in-
cluding mosaic embryos (uncleansed Day 5 blind test dataset þ Day 5
mosaic dataset) was evaluated by treating mosaic-low embryos as a
euploid classification and mosaic-high embryos as an aneuploid classifi-
cation. Accuracy in this situation was 64.5%, which was similar to the
predictive accuracy on the original Day 5 blind test dataset (65.3%)
consisting of full euploid and aneuploid embryos only.

The Day 5 genetics AI model was also evaluated on Day 6
blastocyst-stage embryo images for comparison (Day 6 dataset

described in Supplementary Table SIII). Accuracy on Day 6 images was
59.6% with a sensitivity of 74.9% for prediction of euploid embryos,
and a corresponding MCC of 0.184. Euploid likelihood category analy-
sis demonstrated a significant positive correlation of AI score with per-
centage of euploid embryos, with twice as many euploid embryos in
the very high category compared to the low category (Fig. 2C).
Collectively, these results suggest that, while the accuracy is marginally
reduced for Day 6 embryos, the Day 5 genetics AI model can be used
to rank Day 6 embryos according to the likelihood of euploidy if
desired.

The genetic complement of a human embryo is complex and can
have myriad influences on morphology that are as yet unknown.

Figure 1. Performance of the Day 5 artificial intelligence (AI) algorithm for predicting the likelihood of human embryo euploidy
on uncleansed and cleansed blind test datasets. (A) Confusion matrices depicting true positives (TP), false positives (FP), false negatives
(FN) and true negatives (TN) for the Day 5 AI model predicting embryo euploid status. Matrices are shown for uncleansed (top panel) and cleansed
(bottom panel) blind test datasets. (B) Receiver-operating characteristic (ROC) curves for uncleansed (top panel) and untrainable data cleansing
(UDC)-cleansed (bottom panel) Day 5 blind test datasets. The AUC values are depicted. (C) Precision-recall curves (PRC) for uncleansed
(top panel) and UDC-cleansed (bottom panel) Day 5 blind test datasets. The AUC values are depicted. (D) The correlation between the genetics
AI score and the proportion of euploid embryos was evaluated using four defined euploid likelihood categories as depicted. The statistical method
used was Chi-square test for trend (df, degrees of freedom).
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..While the genetics AI model was trained simply to detect euploidy in
general, the ability of the AI model to detect different types of abnor-
malities was also of interest. Performance of the AI model was evalu-
ated for predicting monosomic versus trisomic changes, full
chromosomal gains or losses versus segmental duplications or dele-
tions, and for single versus multiple (complex) chromosomal abnormal-
ities on the original Day 5 blind test dataset of 1001 embryos
(Supplementary Fig. S2). Of these analyses, it was found that there
was a significant difference in average AI score between embryos with
monosomic versus trisomic changes (Fig. 2D). Accuracy for predicting
monosomic changes was slightly higher than predicting euploidy in gen-
eral, at 67.3% compared with 65.3%, respectively. This accuracy in-
creased to 72.6% when predicting embryos with monosomic changes
compared to euploid embryos only. Analysis of correlation demon-
strated that monosomic changes were almost 8-fold more likely to be
found in the lowest AI score category than in the very high euploid
likelihood category (Fig. 2E).

The genetics AI model generalizes well to
different demographics and to images
taken using time-lapse systems
Three additional datasets were collected prospectively through the
course of clinical use for evaluation of performance in different demo-
graphics. These data were collected from independent clinics that did
not contribute data to model training, and therefore represent double-

blind test datasets. The first of these was a dataset of 178 Day 5
embryo images taken using a standard microscope-mounted camera
system for 31 patients treated between June and August 2021 at an
IVF clinic in India. A total of 74% of embryos were euploid and 26%
were aneuploid. Results showed a significant positive correlation be-
tween genetics AI score and euploidy rate on these images, with the
proportion of euploid embryos increasing 4.7-fold from the lowest
likelihood category (19.0%) to the highest likelihood category (90.0%,
Fig. 3A). Overall accuracy was 81.5% and sensitivity for prediction of
euploid embryos was 90.9%. Corresponding MCC was 0.488.

The second double-blind test dataset was of 182 embryo images
taken using the GERI time-lapse imaging system (Supplementary Table
SIII). Data were provided for 63 patients treated between May and
September 2021 at three IVF clinics in Spain, with 62% of embryos be-
ing euploid and 38% aneuploid. Results again showed a significant posi-
tive correlation between genetics AI score and euploidy rate on these
time-lapse images, with the proportion of euploid embryos increasing
�4-fold from the lowest likelihood category (16.7%) to the highest
likelihood category (68.7%, Fig. 3B). Overall accuracy was 65.4% and
sensitivity 97.3% (MCC of 0.219).

To evaluate the generalizability of the genetics AI model to addi-
tional time-lapse imaging systems, a third double-blind test dataset of
141 embryo images taken using the EmbryoScope time-lapse system
was studied (Supplementary Table SIII). The dataset consisted of
images for 65 patients treated at a single clinic in Malaysia between
November 2019 and October 2020. The ratio of euploid to aneuploid

............................................................................................................................................................................................................................

Table II Results of simulated cohort ranking analyses to evaluate the ability of the genetics artificial intelligence model to en-
rich for euploid embryos over random ranking and the Gardner score.

Measurement Proportion of cohorts with
top one ranked
embryo euploid

Proportion of cohorts with
one of top two ranked

embryos euploid

Proportion of cohorts with
both top two ranked

embryos euploid

Compared to random ranking

Genetics AI model 82.4% 97.0% 66.4%

Random 65.2% 88.9% 43.2%

Improvement 26.4% 9.1% 53.7%

Compared to Gardner ranking—3BB thresholda

Genetics AI model 81.1% 96.3% 63.7%

Gardner 68.0% 90.6% 46.6%

Improvement 19.3% 6.3% 36.7%

Compared to Gardner ranking—four-group systemb

Genetics AI model 81.1% 96.3% 63.7%

Gardner 71.9% 92.2% 50.2%

Improvement 12.8% 4.4% 27.4%

aA subset of 918 of the 1001 images in the Day 5 blind test dataset had associated Gardner grades. Gardner ranking was performed using a 3BB threshold as described in Materials
and methods section.
bA subset of 918 of the 1001 images in the Day 5 blind test dataset had associated Gardner grades. Gardner ranking was performed using a four-group system as described in
Materials and methods section.
AI, artificial intelligence.
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.
embryos was from 59% to 41%. The correlation of genetics AI score
with proportion of euploid embryos was similar to that observed for
the GERI system, with the likelihood of euploidy increasing just under
3-fold from lowest to highest score categories (25.0% and 68.8%, re-
spectively, Fig. 3C). Accuracy was 61.0% and sensitivity 94.0% (MCC
of 0.132). These results collectively support use of the genetics AI
model in multiple ethnic demographics, and with images obtained using
time-lapse systems.

Time-series data were available for a subset of 89 of the 141
EmbryoScope images for investigation of the optimal Day 5 time-point
for evaluation (110, 115 and 120 h post-insemination). Note that the
120-h time-point included embryos at 117.5–122.5 h post-
insemination, representing the latest time-point evaluated prior to bi-
opsy. Performance of the genetics AI model was found to increase
over time, with the highest overall accuracy and sensitivity observed at
the latest time-point. Accuracy values were 56.2%, 58.4% and 62.9%
for 110, 115 and 120 h, respectively, and sensitivity values for

detection of euploid embryos were 70.0%, 86.0% and 96.0%, respec-
tively. These results suggest that the optimal time-point for evaluation
is the latest time-point possible on Day 5, with imaging performed im-
mediately prior to biopsy for PGT-A.

A novel machine learning method may be
identifying mislabeled aneuploid embryo
images associated with variability in PGT-A
testing
The UDC method can be used to identify images that may have been
mislabeled, which in this case could be the result of inherent variability
in the PGT-A method related to sampling bias of the trophectoderm
(Victor et al., 2019b; Abhari and Kawwass, 2021). To evaluate PGT-A
variability with regards to the performance of the Day 5 genetics AI
model, a dataset of 16 embryo images classified as either mosaic or
aneuploid at first PGT-A test was rebiopsied at a later date and PGT-

Figure 2. Correlations between the Day 5 genetics artificial intelligence (AI) score and level of mosaicism, monosomic abnor-
malities, and performance on Day 6 human embryos. (A) Correlation between average genetics AI score and embryos based on ploidy sta-
tus, including euploid, aneuploid, or mosaic status. (B) Correlation between average AI score and embryo ploidy status, separating mosaic embryos
according to level of mosaicism. (C) The correlation between the AI score and the proportion of euploid embryos was evaluated using euploid likeli-
hood categories on a dataset of images taken of blastocyst-stage embryos on Day 6 of in vitro culture. (D) Average genetics AI score in embryos with
monosomic or trisomic changes compared to euploid embryos. (E) Correlation between AI score and the proportion of embryos with monosomic
changes in different AI score categories. Average AI scores were compared using one-way ANOVA with Tukey’s multiple comparisons post-test
(Student’s t-test was used to compare monosomic with trisomic changes), and Chi-square test for trend was used where indicated (df ¼ degrees of
freedom). P-values are represented as follows: *P <0.05, ***P <0.001.

Artificial intelligence for predicting euploidy 1755
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..A testing repeated. A list of these embryos and associated results is
presented in Supplementary Table SV.

In this dataset, 13/16 (81%) embryos showed a similar outcome on
PGT-A retest (euploid/mosaic-low or aneuploid/mosaic-high).
Variability between tests was 19%, with 3/16 embryos switching classi-
fications. Two of five embryos initially classified as aneuploid/mosaic-
high switched to euploid/mosaic-low, demonstrating 40% variability in
PGT-A for embryos initially labeled as aneuploid or mosaic-high.
These preliminary data support the UDC results suggesting that a sig-
nificant proportion of aneuploid embryos in the original dataset could
have been mislabeled and might have been euploid or mosaic-low on
retest.

Performance of the genetics AI model was also evaluated on both
sets of test results. Accuracy for predicting whether embryos were
euploid/mosaic-low or aneuploid/mosaic-high using the results of the
first PGT-A test was 50.0% for Day 5/6 embryos and 50.0% for Day
5 embryos only. Accuracy improved considerably on the second set of
PGT-A outcomes to 68.8% for Day 5/6 embryos and 75.0% for Day
5 only.

Discussion
An AI model trained on Day 5 embryo images and PGT-A outcomes
were found to be predictive of ploidy status in both Day 5 and Day 6
blastocyst images. The genetics AI model generalized well to datasets
from independent clinics representing different demographics, including
prospectively collected data, and images taken using time-lapse sys-
tems. Overall accuracies ranged from �60% to 80% based on the
dataset, with sensitivity for predicting euploid embryos ranging be-
tween �75% and 95%. In all cases, there was a significant positive cor-
relation between the genetics AI score and the proportion of euploid
embryos, providing support for the intended clinical application of

ranking and selecting embryos that are more likely to be euploid within
a patient cohort.

The ability of the genetics AI model to enrich for euploid embryos
within a patient cohort was further evaluated using simulated cohort
ranking studies, which showed that the probability of the top-ranked
embryo being euploid was significantly higher (26.4%) than when
ranked randomly. Random ranking is an appropriate comparison, as
there is no recognized procedure for visually detecting genetic status.
However, the ranking ability of the AI model was also compared to
ranking using the Gardner score as a proxy for embryologist selection
in the absence of any invasive genetic testing methods. Ranking using
the AI model was also superior to ranking using two different Gardner
ranking methods, although the improvement was somewhat lower
than the improvement over random ranking (19.3% and 12.8% for the
two Gardner methods). This is consistent with research demonstrating
some limited correlation of the Gardner score with embryo euploidy
(Capalbo et al., 2014; Minasi et al., 2016). Improvements compared to
random ranking and Gardner ranking also held true when considering
the proportion of cohorts with at least one of the top two embryos
being euploid, and the proportion with both top two embryos being
euploid.

The performance of the genetics AI model for selecting a euploid
embryo in the top-ranked position was somewhat higher than that of
the ERICA algorithm (Chavez-Badiola et al., 2020; 82.4% for the cur-
rent study and 78.9% for ERICA), although the overall accuracy
quoted for ERICA on a set of 84 images was somewhat higher than
the value quoted for genetics AI on the blind test dataset of 1001
images (70% and 65.3%, respectively). It is noted, however, that the
generalizability of ERICA has not yet been evaluated on a substantial
number of patients, IVF clinics or double-blind datasets, and its perfor-
mance on time-lapse images remains to be determined.

In the current study, genetics AI scores were also positively corre-
lated with the proportion of euploid cells when evaluating embryo

Figure 3. Performance of the Day 5 genetics artificial intelligence (AI) model in different demographics and using time-lapse
images. (A) The correlation between the AI score and the proportion of human euploid embryos was evaluated using euploid likelihood categories
on a double-blind test dataset of images from a clinic in India. (B) The correlation between AI score and the proportion of euploid embryos evaluated
on a double-blind test dataset of images taken using the GERI time-lapse imaging system by three clinics in Spain. (C) The correlation between AI
score and the proportion of euploid embryos evaluated on a blind test dataset of images taken using the EmbryoScope time-lapse imaging system by
a clinic in Malaysia. The statistical method used was Chi-square test for trend (df, degrees of freedom).
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classifications of aneuploid, mosaic-high, mosaic-low or euploid.
Historically, mosaic embryos were treated clinically as aneuploid em-
bryos and generally not used for transfer. However, recent evidence
suggests that mosaic embryos have improved clinical outcomes com-
pared to full aneuploid embryos, and depending on the proportion of
abnormal cells present, can even have outcomes similar to that of eu-
ploid embryos (Abhari and Kawwass, 2021). Mosaic embryos were
therefore excluded from development of the genetics AI model, as
they were expected to confound model training owing to the unclear
biological classification of these embryos. Subsequent evaluation of
mosaic embryos in this study supported a biological distinction be-
tween mosaic-low and mosaic-high embryos, as suggested by previous
research groups (Spinella et al., 2018; Munn�e et al., 2020), and thus
supported the hypothesis that the genetics AI model would correctly
generalize to evaluating mosaic embryos. Predictive accuracy of the AI
model was not affected when considering mosaic-low embryos as eu-
ploid, and mosaic-high embryos as aneuploid, suggesting that the AI
model might be useful in differentiating mosaic embryos based on their
level of mosaicism. This finding could be of marked clinical significance,
as multiple educational societies have published recommendations for
transfer of mosaic-low embryos over mosaic-high embryos in situa-
tions where there are no euploid embryos available (CoGEN, 2017;
Cram et al., 2019).

While the genetics AI model was developed solely to detect the
likelihood of overall embryo euploidy, subanalyses demonstrated a
higher performance for identifying monosomic abnormalities than for
predicting euploidy in general. Monosomic abnormalities are mostly
non-viable, with only monosomy X carrying through to live birth
(O’Conner, 2008). Studies have shown that autosomal monosomies
are more detrimental to blastocyst development than other abnormal-
ities, causing arrest earlier during blastocyst formation (Rubio et al.,
2003). These observations are consistent with the genetics AI model
being able to differentiate a more severe genetic phenotype, further
validating its performance and potential clinical utility. It would be of in-
terest to explore production of an AI algorithm specifically for detec-
tion of monosomic changes.

Development of the genetics AI model utilized a novel machine
learning method, namely UDC (see Dakka et al., 2021), which identi-
fied a high proportion of embryos that appeared morphologically eu-
ploid to the AI model but were actually aneuploid based on PGT-A
test results (false positives). There are a number of factors that could
contribute to the occurrence of false positive predictions, including
mosaicism, where the different proportions of normal and abnormal
cells could conceivably interfere with evaluation of ploidy status (Viotti,
2020); embryo self-correction, where mosaic embryos containing a
proportion of abnormal cells exclude these cells during further devel-
opment to become euploid embryos (which could similarly interfere
with evaluation of ploidy status; Orvieto et al., 2020); and lastly, there
is variability in the PGT-A process itself. Studies have shown that the
biopsied trophectoderm sample is not necessarily representative of
the full trophectoderm, nor the ICM (Victor et al., 2019a). PGT-A
testing results presented here demonstrated a relatively high variability
for embryos initially classified as aneuploid or mosaic, which is consis-
tent with previously published reports demonstrating that for mosaic
embryos in particular there can be a very low concordance between
trophectoderm biopsies (�5–30% concordance, Navratil et al., 2020;
Sachdev et al., 2020). These observations suggest that the UDC

technique may be identifying euploid/mosaic-low embryos that were
mislabeled as aneuploid/mosaic-high by PGT-A testing. However, fur-
ther direct evaluation of the embryos identified by UDC would be
necessary to confirm this finding.

The genetics AI model was also able to predict clinical pregnancy,
to a degree, amongst transferred embryos all recorded as euploid by
PGT-A. While this could simply represent a correlation between em-
bryo ploidy status and overall embryo quality (Capalbo et al., 2014),
on another level it might also support the hypothesis that some of
these embryos were mislabeled as euploid owing to PGT-A sampling
bias, and/or embryo self-correction. In this scenario, it is conceivable
that the genetics AI model was in fact differentiating embryos that ac-
tually displayed a level of mosaicism, and therefore had a reduced like-
lihood of pregnancy, even though the PGT-A result was recorded as
euploid. However, as with the previous observation on UDC label
identification, additional direct evidence would be needed to support
this conclusion. Nevertheless, these findings highlight the impact of
PGT-A variability on performance evaluation of alternative, non-
invasive procedures for predicting embryo ploidy status and, consistent
with recent discussions, suggest that early embryonic ploidy status may
be a dynamic process that could one day be better assessed using al-
ternative methods to PGT-A (Bouba et al., 2021).

In conclusion, this study collectively supports the use of the genetics
AI for non-invasive evaluation of embryo ploidy to aid in selection of
euploid embryos for use in IVF procedures. It also poses broader con-
siderations for the use of AI in comparison with PGT-A in embryo as-
sessment for IVF, highlighting the challenges with current approaches
and potential complementary solutions.

Supplementary data
Supplementary data are available at Human Reproduction online.
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