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Abstract
Meta-analysis of multiple genome-wide association studies (GWAS) has become an effec-

tive approach for detecting single nucleotide polymorphism (SNP) associations with com-

plex traits. However, it is difficult to integrate the readily accessible SNP-level summary

statistics from a meta-analysis into more powerful multi-marker testing procedures, which

generally require individual-level genetic data. We developed a general procedure called

Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and path-

way meta-analysis that uses only SNP-level summary statistics in combination with geno-

type correlation estimated from a panel of individual-level genetic data. We demonstrated

the validity and power advantage of sARTP through empirical and simulated data. We con-

ducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes

(T2D) by integrating SNP-level summary statistics from two large studies consisting of

19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate

pathways from which genes in neighborhoods of 170 GWAS established T2D loci were

excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-

values < 0.05), which included the insulin signaling pathway and T2D pathway defined by

KEGG, as well as the pathways defined according to specific gene expression patterns on

pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using sum-

mary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we

showed 7 out of the 43 pathways identified in European populations remained to be signifi-

cant in eastern Asians at the false discovery rate of 0.1. We created an R package and a

web-based tool for sARTP with the capability to analyze pathways with thousands of genes

and tens of thousands of SNPs.
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Author Summary

As GWAS continue to grow in sample size, it is evident that these studies need to be utilized
more effectively for detecting individual susceptibility variants, and more importantly, to
provide insight into global genetic architecture of complex traits. Towards this goal, identify-
ing association with respect to a collection of variants in biological pathways can be particu-
larly insightful for understanding how networks of genes might be affecting pathophysiology
of diseases. Here we present a new pathway analysis procedure that can be conducted using
summary-level association statistics, which have become the main vehicle for performing
meta-analysis of individual genetic variants across studies in large consortia. Through simu-
lation studies we showed the proposed method was more powerful than the existing state-of-
art method. We carried out a comprehensive pathway analysis of 4,713 candidate pathways
on their association with T2D using two large studies with European ancestry and identified
43 T2D-associated pathways. Further examinations of those 43 pathways in 8 Asian studies
showed that some pathways were trans-ethnically associated with T2D. This analysis clearly
highlights novel T2D-associated pathways beyond what has been known from single-variant
association analysis reported from largest GWAS to date. We also identify a novel locus for
T2D in the European populations at chromosome 17q21 (rs1058018, p = 3.06 × 10−8).

Introduction
Genome-wide association study (GWAS) has become a very effective way to identify common
genetic variants underlying various complex traits [1]. The most commonly used approach to
analyze GWAS data is the single-locus test, which evaluates one single nucleotide polymor-
phism (SNP) at a time. Despite the enormous success of the single-locus analysis in GWAS,
proportions of genetic heritability explained by already identified variants for most complex
traits still remain small [2]. It is increasingly recognized that the multi-locus test, such as gene-
based analysis and pathway (or gene-set) analysis, can be potentially more powerful than the
single-locus analysis, and shed new light on the genetic architecture of complex traits [3, 4].

The pathway analysis jointly tests the association between an outcome and SNPs within a
set of genes compiled in a pathway according to existing biological knowledge [4]. Although
the marginal effect of a single SNP might be too weak to be detectable by the single-locus test,
accumulated association evidence from all signal-bearing SNPs within a pathway could be
strong enough to be picked up by the pathway analysis if this pathway is enriched with out-
come-associated SNPs. Various pathway analysis procedures have been proposed in the litera-
ture, with the assumption that researchers could have full access to individual-level genotype
data [5–9]. In practice, pathway analysis usually utilizes data from a single resource with lim-
ited sample size, as it can be challenging to obtain and manage individual-level GWAS data
from multiple resources. As a result, pathway analysis often fails to identify new findings
beyond what have already been discovered by the single-locus tests. To maximize the chance of
discovering novel outcome-associated variants by increasing sample size, a number of consor-
tia have been formed to conduct single-locus meta-analysis on data across multiple GWAS
[10–14]. The single-locus meta-analysis aggregates easily accessible SNP-level summary statis-
tics from multiple studies. Similarly, the pathway-based meta-analysis [15–21] that integrates
the same type of summary data across participating studies could provide us a greater opportu-
nity for detecting novel pathway associations. Future association studies focusing on identified
pathways would have a much-reduced multiple-comparison burden in searching for novel var-
iants with main or complicated nonlinear joint effects on the outcome of interest.
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In this paper, we developed a pathway-based meta-analysis procedure by extending the
adaptive rank truncated product (ARTP) pathway analysis procedure [9], which was originally
developed for analyzing individual-level genotype data. The new procedure, called Summary
based ARTP (sARTP), accepts input from SNP-level summary statistics, with their correlations
estimated from a panel of reference samples with individual-level genotype data, such as the
ones from the 1000 Genomes Project [22, 23]. This idea was initially used in conducting gene-
based meta-analysis [24, 25] or conditional test [26]. As will be shown in the Results Section,
sARTP usually has a power advantage over its competitors. In addition, sARTP is specifically
designed for conducting pathway-based meta-analysis using SNP-level summary statistics
from multiple studies. In real applications (e.g., the type 2 diabetes example described below),
it is very common that different studies could have genotypes measured or imputed on differ-
ent sets of SNPs. As a result, the sample size used in the pathway-based meta-analysis on each
SNP can be quite different. Ignoring the difference in sample sizes across SNPs in a pathway-
based meta-analysis would generate biased testing results.

Pathway analysis generally targets two types of null hypotheses [4], including the competi-
tive null hypothesis [15, 16, 18–20], i.e., the genes in a pathway of interest are no more associ-
ated with the outcome than any other genes outside this pathway, and the self-contained null
hypothesis [17, 21], i.e., none of the genes in a pathway of interest is associated with the out-
come. The sARTP procedure focuses on the self-contained null hypothesis, as our main goal is
to identify outcome-associated genes or loci. Also, as pointed out by [27], tests for the competi-
tive null hypothesis often assume that genotype measured at different genes are independent
when evaluating the association significance level. This assumption, which is generally invalid
in practice, is unnecessary for sARTP when testing the self-contained null hypothesis. One
may refer to [27] and [4] for more discussion and comparison of these two types of hypotheses.

The pathways defined in many public databases can consist of thousands of genes and tens
of thousands of SNPs. To make the procedure applicable to large pathways, or pathways with
high statistical significance, we implement sARTP with efficient and parallelizable algorithms,
and adopt the direct simulation approach (DSA) [28] to evaluate the significance of the path-
way association.

We demonstrated the validity and power advantage of sARTP through simulated and
empirical data. We applied sARTP to conduct a pathway-based meta-analysis on the associa-
tion between type 2 diabetes (T2D) and 4,713 candidate pathways defined in the Molecular Sig-
natures Database (MSigDB) v5.0. The analysis used SNP-level summary statistics from two
sources with European ancestry. One is generated from the Diabetes Genetics Replication and
Meta-analysis (DIAGRAM) consortium [13], which consists of 12,171 T2D cases and 56,862
controls across 12 GWAS. The other one is based on a T2D GWAS with 7,638 T2D cases and
54,319 controls that were extracted from the Genetic Epidemiology Research on Aging
(GERA) study [29, 30]. The novel T2D-associated pathways detected in the European popula-
tion were further examined in Asians using summary data generated by the Asian Genetic Epi-
demiology Network (AGEN) consortium meta-analysis, which combined 8 GWAS of T2D
with a total of 6,952 and 11,865 controls from eastern Asian populations [10].

Materials and Methods

The Pathway-Based Meta-analysis Procedure
Here we describe the proposed method sARTP for assessing the association between a dichoto-
mous outcome and a pre-defined pathway consisting of J genes. The same procedure can be
applied to study a quantitative outcome with minor modifications.

Pathway-Based Meta-analysis Using Summary Statistics
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Score statistics and their variance-covariance matrix. We assume we have data from L
GWA studies, with each consisting of n(l) subjects, l = 1,� � �,L. Each gene in that pathway can
contain one or multiple SNP(s), while any two genes may have some overlapped SNPs. For
simplicity, we use superscript l to represent an individual study. For subject i in study l,

i = 1,� � �,n(l), let yðlÞi be the dichotomous outcome (e.g., disease condition, case/control status)

taking values from {0,1}, and let XðlÞ
i be the vector of covariates to be adjusted for. The central-

ized genotypes of q SNPs within a pathway are presented as a vector GðlÞ
i ¼ ðgðlÞi1 ; � � � ; gðlÞiq ÞT for

subject i. We assume the following logistic regression model as the risk model

logit PðyðlÞi ¼ 1jXðlÞ
i ;GðlÞ

i Þ ¼ ðXðlÞ
i ÞTaðlÞ þ ðGðlÞ

i ÞTg; i ¼ 1; � � � ; n;

Under the self-contained null hypothesis H0: γ = 0, we denote the maximum likelihood esti-

mate of α(l) as baðlÞ. Let by ðlÞ
i ¼ 1=ð1þ expð�XðlÞ

i baðlÞÞÞ and uðlÞ
i ¼ by ðlÞ

i ð1� by ðlÞ
i Þ. The Rao’s score

statistic vector on γ, which is the sum of score vectors from L participating studies, follows the
asymptotic multivariate normal distribution N(0,V), where

S ¼ ðStÞq�1 ¼
XL

l¼1

XnðlÞ

i¼1

GðlÞ
i ðyðlÞi � byðlÞ

i Þ ð1Þ
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XnðlÞ
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uðlÞ
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For study l, let nðlÞ
t be the number of subjects having their genotypes measured as HðlÞ

t (or

imputed) at SNP t, where HðlÞ
t ¼ ðgðlÞ1t ; � � � ; gðlÞnðlÞt t

ÞT . As pointed out by Hu, Berndt (24) if the

covariates and genotypes are uncorrelated or weakly correlated, the covariance between scores
at SNPs t and S can be approximated as

Vts �
XL

l¼1

nðlÞ
ts �u

ðlÞdCovðHðlÞ
t ;HðlÞ

s Þ

�
XL

l¼1

nðlÞ
ts rts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uðlÞdVarHðlÞ

t

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uðlÞdVarHðlÞ

s

q
; t; s ¼ 1; � � � ; q;

ð3Þ

where nðlÞ
ts is the number of samples that have their genotypes available at both SNPs in study l,

�uðlÞ ¼ ðnðlÞÞ�1
XnðlÞ
i¼1

uðlÞ
i , and
dCovðHðlÞ

t ;HðlÞ
s Þ ¼ ðnðlÞÞ�1

XnðlÞ
i¼1

gðlÞit g
ðlÞ
is . Here, we assume that the Pear-

son’s correlation coefficient ρts between two SNPs is the same among all participating studies.
This assumption is valid as long as subjects from all studies are sampled from the same source
population, or the population under study is relatively homogeneous, such as a study of sub-
jects with European ancestry in the United States.
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When only the summary statistics, i.e., the estimated marginal log odds ratios bbðlÞ
t and their

standard errors tðlÞt are available for each of the L studies, the score statistic at SNP t, defined by
(Eq 1) can be approximated as

St �
XL

l¼1

ðtðlÞt Þ�2 bbðlÞ
t ; t ¼ 1; � � � ; q: ð4Þ

Note that nðlÞ
t �uðlÞdVarHðlÞ

t � ðtðlÞt Þ�2, thus according to (Eq 3), we have

Vts �
XL

l¼1

nðlÞ
tsffiffiffiffiffiffiffiffiffiffiffiffi

nðlÞ
t n

ðlÞ
s

q rts

tðlÞt t
ðlÞ
s

: ð5Þ

Assume that ρts can be estimated from a public dataset (e.g., 1000 Genomes Project) and the

sample sizes nðlÞ
t and nðlÞ

ts are known, we can approximately recover the variance-covariance
matrix V = (Vts)q×q of score statistics S = (St)q×1. In cases when we only have the SNP p-value p

and its marginal log odds ratio bb, we can compute its standard error as t ¼ jbbj= ffiffiffiffiffiffiffi
w21;p

q
, where

w21;p is the quantile satisfying Pðw21 � w21;pÞ ¼ p, with w21 representing a 1-df chi-squared random

variable.
Combining score statistics for pathway analysis. With recovered score statistics vector S

and its variance-covariance matrix V, we can conduct a pathway association test using the
framework of the ARTP method. The ARTP method first combines p-values of individual
SNPs within a gene to form a gene-based association statistic (i.e., the gene-level p-value), and
then combines the gene-level p-values into a final testing statistic for the pathway-outcome
association. In the original ARTP method, [9] proposed the use of a resampling-based method
to evaluate the significance level of the pathway association test. Here we integrate the SNP-
level score statistics into the ARTP framework and use DSA [28] to evaluate the significance
level, which is much faster than the original ARTP algorithm [31]. Below is a brief summary of
the improved ARTP algorithm.

First we obtain the p-values pð0Þt1 ; � � � ; pð0Þtqj
of qj distinct SNPs in gene j as

pð0Þt ¼ Pðw21 � S2t =VttÞ. Let pð0Þjð1Þ; � � � ; pð0ÞjðqjÞ be their order statistics such that pð0Þjð1Þ � � � � � pð0ÞjðqjÞ.

For any predefined integer K and SNP-level cut points c1 < � � �< ck, we define the observed
negative log product statistics for that gene at cut point ck as

wð0Þ
jk ¼ �

Xminðqj ; ckÞ

t¼1

log pð0ÞjðtÞ; k ¼ 1; � � � ;K:

We sampleM copies of vectors of the score statistic from the null distribution N(0,V) and

convert each of them to be the tail probability of w21 as p
ðmÞ
t1 ; � � � ; pðmÞ

tqj
,m = 1,� � �,M, which are

then used to calculate wðmÞ
jk ,m = 1,� � �,M. The significance of wð0Þ

jk can be estimated as

xð0Þ
jk ¼

# wðmÞ
jk � wð0Þ

jk ;m ¼ 1; � � � ;M
n o

M þ 1
:

The ARTP statistic for testing association between gene j and the outcome is defined as

T ð0Þ
j ¼ min

k¼1;���;K
xð0Þ
jk . Note that for any w

ðmÞ
jk , the set fwðm0Þ

jk : m0 2 f0; � � � ;Mg andm0 6¼ mg forms
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its empirical null distribution. The significance of wðmÞ
jk therefore can be estimated as

xðmÞ
jk ¼

# wðm0Þ
jk � wðmÞ

jk ; m0 6¼ m andm0 ¼ 1; � � � ;M
n o

M þ 1
; m ¼ 1; � � � ;M:

This idea, which was given by [32], can be used to avoid the computationally challenging

nested two-layer resampling procedure for evaluating p-values. The p-value of T ð0Þ
j can be read-

ily calculated as

zð0Þj ¼
# T ðmÞ

j � T ð0Þ
j : m ¼ 1; � � � ;M

n o
M þ 1

; j ¼ 1; � � � ; J:

where T ðmÞ
j ¼ min

k¼1;���;K
xðmÞ
jk . zð0Þj is the estimated gene-level p-value for the association between the

outcome and the jth gene. To obtain the pathway p-value, a similar procedure as above can be

applied to combine already established gene-level p-values zð0Þj , j = 1,� � �,J, through a set of K0

gene-level cut points d1 < � � �<dK0. For simplicity, let zð0Þk be the significance (p-value) of nega-

tive log product statistics defined on zð0Þj , j = 1,� � �,J at a specific cut point dk, k = 1,� � �,K0. The

ARTP statistic for the pathway association is defined as T ð0Þ ¼ min
k¼1;���;K 0z

ð0Þ
k . The top dk� genes, at

which zð0Þk� ¼ min
k¼1;���;K 0z

ð0Þ
k , can be regarded as the set of selected candidate genes that collectively

convey the strongest pathway association signal.
In the following discussion, we will use the term sARTP to represent the proposed pathway

analysis procedure using the SNP-level summary statistics as input, and reserve the term
ARTP to represent the original ARTP procedure that requires the individual-level genetic data.
Both procedures adopt the DSA algorithm to accelerate evaluating the significance level. When
performing the pathway analysis in this paper, we set SNP-level cut points as (c1,c2) = (1,2), i.e.,
gene-level association is summarized by one or two most significant SNPs within each gene,
and gene-level cut points as dk ¼ kmaxð1; dJ=20eÞ, k = 1,� � �,10, where J is the number of genes
in a pathway, and dJ=20e is the largest integer that is less or equal to J / 20. We usedM = 105

DSA steps to assess the significance level of each pathway in the initial screening. For pathways
with estimated p-values<10−4, we further refined their p-value estimates withM = 107 or 108

DSA steps.
Applying sARTP to meta-analysis result. Many GWAS consortia usually publish their

meta-analysis results by providing only the combined results from the fixed effects model, rather
than the summary statistics from each participating study. We can apply sARTP to this meta-
analysis result directly, with some modifications. First, since the reported marginal log odds
ratios for each SNP by using the fixed effects inverse-variance weighting method is given by

bb t ¼

XL

l¼1

ðtðlÞt Þ�2 bbðlÞ
t

XL

l¼1

ðtðlÞt Þ�2

;
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with its standard error given by

tt ¼
XL

l¼1

ðtðlÞt Þ�2

0
@

1
A

�1=2

: ð6Þ

Based on (Eq 4), we can see St � t�2
t
bbt . By assuming large sample sizes and certain condi-

tions (see S1 Text), we can also approximate the covariance between St and Ss, which is given
by (Eq 5), as

Vts �
ntsffiffiffiffiffiffiffiffi
ntns

p rts

ttts
; ð7Þ

where nt ¼
XL

l¼1

nðlÞ
t , and nts ¼

XL

l¼1

nðlÞ
ts . Thus, using just the meta-analysis result, without know-

ing summary statistics from each participating study, we can still obtain St exactly, and approx-
imately recover Vts. As a result, we can carry out the pathway-based meta-analysis based on the
SNP-level meta-analysis result as if it were summary data from a single study. We call this
approach the Meta-analysis based sARTP (MsARTP).

However, to apply the MsARTP, we need additional sample size information nt and nst in
order to properly estimate the variance-covariance matrix defined by (Eq 7). If the same set of
SNPs are studied by all participating studies, we have nt = ns = nst, and the approximation (Eq
7) becomes Vts � rts

ttts
, i.e., we can obtain the estimated variance-covariance matrix without

knowing nt and nst. But in most applications, not all GWAS choose the same SNP genotyping
array, even after the imputation using the same reference genomes. As a result, the SNP cover-
age, i.e., the set of SNPs evaluated in each participating study can be quite different. In those sit-
uations, we need to know the SNP coverage information in each participating study in order to
obtain ns and nst. We will show in the Results Section that using MsARTP with an inappropri-
ate uniform coverage assumption (i.e., nts = nt = ns), which is commonly made by many multi-
locus approaches, can lead to inflated type I error.

Given SNP-level summary statistics from each participating study, we can either apply
sARTP directly, or first conduct a SNP-level meta-analysis, and then apply MsARTP to the
meta-analysis result. These two approaches use the same score statistics, and different but con-
sistent estimates for the variance-covariance matrix. Numeric experiments in the Results Sec-
tion suggest that these two approaches generate vary similar pathway p-values.

Study Materials
Pathway and gene definition. We downloaded definitions for 4,716 human and murine

(mammalian) pathways (gene sets) from the MSigDB v5.0 (C2: curated gene sets). Genomic
definitions for genes were downloaded from Homo sapiens genes NCBI36 and reference
genome GRCh37.p13 using the Ensemble BioMart tool.

DIAGRAM study. The DIAGRAM (DIAbetes Genetics Replication And Meta-analysis)
consortium conducted a large-scale GWAS meta-analysis to characterize the genetic architec-
ture of T2D [13]. We downloaded the summary statistics generated by the DIAGRAMv3
(Stage 1) GWAS meta-analysis from www.diagram-consortium.org [13]. The meta-analysis
studied 12 GWAS with European ancestry consisting of 12,171 cases and 56,862 controls. Up
to 2.5 million autosomal SNPs with minor allele frequencies (MAFs) larger than 1% were
imputed using CEU samples from Phase II of the International HapMap Project. Study-specific
covariates were adjusted in testing T2D-SNP association under an additive logistic regression

Pathway-Based Meta-analysis Using Summary Statistics
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model [13]. SNP-level summary statistics from each GWAS were first adjusted for residual
population structure using the genomic control (GC) method [33], and then combined in the
fixed effects meta-analysis.

We sorted 2.5 million autosomal SNPs by their corresponding meta-analysis sample sizes in
S1 Fig, which shows that there are two major groups of SNPs with equal sample sizes. One
group of 469,985 SNPs (19.0%) had 12,171 cases and 56,862 controls, which included all the
available samples in the meta-analysis; another group of 1,431,361 SNPs (57.9%) had 9,580
cases and 53,810 controls. Since the calculation of covariance Vts in (Eq 7) relies on nts, the
number of samples having genotypes available at both SNP s and SNP t, in order to obtain an
accurate estimate of nts, we focused on these two groups of SNPs, which in combination had a
total of 1,901,346 SNPs. For any two SNPs in this reduced set, it is certain nts = min(nt, ns). The
Pearson’s correlation coefficients ρts were estimated using an external reference panel consist-
ing of genotypes on 503 European subjects (CEU, TSI, FIN, GBR, and IBS) from the 1000
Genomes Project (Phase 3, v5, 2013/05/02).

GERA study. We assembled a GWAS on T2D from the Genetic Epidemiology Research
on Adult Health and Aging (GERA, dbGaP Study Accession: phs000674.v1.p1). The GERA
project includes a cohort of over 100,000 adults who are members of the Kaiser Permanente
Medical Care Plan, Northern California Region, and participating in the Kaiser Permanente
Research Program on Genes, Environment, and Health (RPGEH). From the GERA data, we
compiled a GWAS with 7,638 T2D cases and 54,319 controls (subjects without T2D) who self-
reported to be non-Hispanic White Europeans in the RPGEH survey. We performed the geno-
type imputation with IMPUTE2 [34] using CEU reference samples from Phase II of the Inter-
national HapMap Project. After removing SNPs with low imputation quality (r2 < 0.3), we
ended up with 2.4 million SNPs for further analysis. In the single-locus analysis, we adjusted
for the categorized body mass index (BMI) provided in the downloaded dataset (adding a cate-
gory for missing BMI), gender, year of birth (in five-year categories), a binary indicator on
whether or not a participant was diagnosed with cancer (includes malignant tumors, neo-
plasms, lymphoma and sarcoma), and the top five eigenvectors for the adjustment of popula-
tion stratification. In the following discussion, we refer this assembled T2D GWAS as the
GERA study.

When analyzing the SNP-level summary data from the GERA study, the Pearson’s correla-
tion coefficients ρts were estimated using an external reference panel consisting of genotypes on
503 European subjects from the 1000 Genomes Project.

AGEN-T2D study. The Asian Genetic Epidemiology Network (AGEN) consortium car-
ried out a meta-analysis by combining eight GWAS of T2D with a total of 6,952 cases and
11,865 controls from eastern Asian populations [10]. The meta-analysis was conducted with
the fixed effect model. We obtained SNP-level summary statistics on 2.6 million imputed and
genotyped autosomal SNPs from AGEN, and used this summary data to evaluate whether
pathway associations identified in European populations remain to be present in Asians. We
adopted an external reference panel consisting of 312 eastern Asian subjects (103 from CHB,
105 from CHS, and 104 from JPT) from the 1000 Genomes Project for the variance-covariance
matrix estimation in the pathway analysis.

Results

Simulation Studies
Firstly, we conducted a simulation study to evaluate the empirical size of sARTP and MsARTP.
Secondly, we compared empirical powers of different strategies for carrying out pathway-based
meta-analysis that integrated summary statistics from multiple studies. We also evaluated
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whether results from sARTP were consistent with the ones fromMsARTP. Thirdly, we com-
pared our method to the recently developed method aSPUsPath [8] that can be used for path-
way-based meta-analysis. We used the R package, aSPU (version 1.39), with the default
settings given in [8, 17] to conduct the aSPUsPath test.

Empirical size of sARTP and MsARTP. To evaluate the empirical size of sARTP and
MsARTP, we conducted a simulation study by using individual-level GWAS data of the path-
way PUJANA_BREAST_CANCER_WITH_BRCA1_MUTATED_UP (including 728 SNPs in
50 genes) from the GERA study. We picked 12,000 samples randomly for this experiment. By
keeping their genotypes unchanged, we randomly assigned 6,000 subjects as cases and the
remaining as controls to generate 500,000 datasets. We split each dataset into three case-con-
trol studies, each with 2,000 cases and 2,000 controls. To mimic the scenario when not all stud-
ies have their genotypes measured on the same set of SNPs (such as the one occurred in the
DIAGRAM and AGEN data), we assumed that each case-control study had genotypes mea-
sured on only half of SNPs in the pathway. For each generated dataset that consisted of three
case-control studies, we applied sARTP to the SNP-level summary data obtained from each
case-control study, and MsARTP to the meta-analysis result based on the three case-control
studies, with the variance-covariance matrix estimated by an external reference panel (with 503
European reference samples from the 1000 Genomes Project), or an internal reference panel
(with 500 samples randomly selected from the GERA data).

Based on results from the 500,000 generated datasets, this simulation study showed that
both sARTP and MsARTP, using the internal or external reference samples, can well control
their empirical sizes (Table 1). Given the same reference panel, the p-values estimated from
sARTP and MsARTP are highly consistent (Pearson’s correlation coefficient> 0.99). Further-
more, the p-values of sARTP (or MsARTP) estimated with an external or internal reference
panel are also very consistent (Pearson’s correlation coefficient> 0.99). More numeric experi-
ments demonstrating the validity of sARTP under the null are described in S2 Text.

To demonstrate the importance of knowing nt and nts when applying MsARTP to the meta-
analysis result, we analyzed each simulated dataset using MsARTP assuming the uniform cov-
erage (nts = nt = ns). We called this approach MsARTP-u. It is clear from Table 1 that
MsARTP-u assuming the uniform coverage suffers from inflated type I errors with either the
internal or external reference panel.

Empirical power of sARTP and MsARTP for pathway-based meta-analysis. We con-
ducted a set of simulation studies to compare the power of different strategies to carry out
pathway analysis when SNP-level summary statistics were available from multiple studies. We
considered a hypothetical pathway consisting of 50 genes randomly selected from chromosome

Table 1. Empirical sizes of the sARTP, MsARTP, andMsARTP-u procedures.

Reference Size

0.05 0.01 0.005 0.001 0.0005

sARTP Externala 0.050 0.0093 0.0040 0.00078 0.00044

Internalb 0.046 0.0087 0.0042 0.00074 0.00040

MsARTP External 0.048 0.0093 0.0040 0.00076 0.00041

Internal 0.048 0.0084 0.0042 0.00074 0.00041

MsARTP-u External 0.082 0.018 0.0081 0.0013 0.00064

Internal 0.094 0.022 0.011 0.0016 0.00081

Empirical sizes are estimated based on 500,000 datasets simulated from the GERA data.
aUsing 503 European samples from the 1000 Genomes Project as an external reference;
bUsing 500 samples from the GERA data as an internal reference.

doi:10.1371/journal.pgen.1006122.t001
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17, each with 20 randomly chosen SNPs. The joint genotype distribution at the 20 SNPs within
each gene was defined by the observed genotypes in the GERA study. We further assumed that
all genes in that pathway are independent. This assumption is unnecessary for sARTP and
MsARTP, but it was introduced for simplifying the simulation. For the risk model, we assumed
the firstM (M ¼ 5; 10; 15) genes were associated with the outcome. Within each outcome-
associated gene, we picked the SNP with its MAF closest to the median MAF level within the
gene to be functional. We considered the following risk model

logit Pðy ¼ 1 j g�1 ; � � � ; g�MÞ ¼ aþ
XM

l¼1

g�l g
�
l ; ð8Þ

where g�l is the genotype (encoded as 0, 1, or 2 according to counts of minor alleles) at the func-
tional SNP within gene l. Under this model, g�l is also the marginal log odds ratio for the lth
functional SNP [9]. Given the sample sizes of cases and controls, and the MAF of the lth func-
tional SNP, g�l was chosen such that the theoretical power of the trend test to detect the lth
functional SNP is equal to P (P ¼ 0:3; 0:4), with 0.05 as the targeted type I error rate. For
every pair of ðM; PÞ, we generated 1,000 datasets, each consisting of three case-control stud-
ies, with the same sample size and SNP coverage configurations used for evaluating the empiri-
cal size. Given the genotype distribution in the general population, individual-level genotype
data for a case-control study can be generated according to the assumed risk (model 8).

We assumed that only SNP-level summary statistics from each of the three studies were
available. For each simulated dataset, we applied sARTP andMsARTP, using either an internal
or external reference panel to estimate the variance-covariance matrix. The sARTP and
MsARTP approaches integrate association evidence across SNP-level summary statistics, which
are obtained by pooling information from all participating studies on individual SNPs. As a
comparison, we also considered a naïve approach, in which we first applied sARTP to analyze
the summary statistics from each study separately, and then combined the three pathway p-val-
ues with Fisher’s method. This naïve approach could be useful when the researchers do not have
access to the SNP-level summary data but the pathway p-values from individual studies. The
empirical powers are compared at the type I error level of 0.05, and are summarized in Table 2.
It is obvious that the pathway-based meta-analysis using sARTP, with either the internal or
external reference panel, have almost the same level of power as the MsARTP method. It is also
evident that both sARTP andMsARTP are more powerful than the naïve approach, which sug-
gests that it is always be beneficial to have the SNP-level summary statistics from each partici-
pating study, or SNP-level meta-analysis result when conducting a pathway analysis.

Given the SNP coverage information, the MsARTP method is a valid pathway association
test that has well controlled type I error and similar power to the sARTP method. In the follow-
ing analysis, either sARTP or MsARTP is chosen depending on the type of available data. For
the sake of simplicity, we always label the chosen procedure as sARTP.

Power comparison between sARTP and aSPUsPath. Since the aSPUsPath method in the
current aSPU package cannot handle summary data from multiple studies, or meta-analysis
results from studies with varied SNP coverage, we focused on the scenario with just one study,
and adopted the similar simulation strategy as the one used by [8] to compare the power
between sARTP and aSPUsPath. We simulated haplotypes on a set of SNPs within a gene in
the general population using the algorithm of Wang and Elston [35]. Then the joint genotypes
on a subject can be formed by randomly pairing two haplotypes. In brief, we first chose the
MAF for each SNP by randomly sampling a value from the uniform distribution U(0.1,0.4).

Then for the set of SNPs in a gene we sampled a latent vector Z ¼ ðz1; � � � ; zqÞT from a
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multivariate normal distribution with a covariance matrix Cov(zi, zj) = ρ|i−j|,1�i,j�q, where ρ
was sampled from the uniform distribution U(0,0.8) for a given gene. We randomly picked
50% of the SNPs and converted their simulated zi into minor and major alleles (coded as 0, 1),
with the cuts chosen for each zi such that the resultant minor allele has its frequency defined by
the specified MAF. For the remaining SNPs, we used the same algorithm to dichotomize −zi
into minor and major alleles. This created a more realistic haplotype structure such that a hap-
lotype can consist of a mixture of minor and major alleles. Genotypes on SNPs from different
genes were generated independently.

Given the number of genes (20, 50, or 80) in a pathway, the proportion of genes (5%, 10%,
20%, and 30%) associated with the outcome, and a chosen common value for all log odds ratios
(γ�) in the risk (model 8), we repeated the following steps to generate 1,000 case-control stud-
ies, with each consisting of 1,000 cases and 1,000 controls. First, the number of SNPs within
each gene was randomly chosen from 10 to 100. Second, for each randomly selected outcome-
associated gene, we randomly picked a functional SNP. Third, we use the aforementioned algo-
rithm of Wang and Elston [35] to generate the individual-level genotype data for a case-control
study according to the specified risk model. We also considered the situation where all γ� in
the risk (model 8) had the same magnitude but different directions. More precisely, when gen-
erating a case-control study at the third step, we defined the risk (model 8) by randomly choos-
ing the direction of each log odds ratio to be positive or negative with equal probability.
Furthermore, we considered a more complex scenario where each outcome-associated gene
had one or two functional SNPs, each with equal probability.

All simulation results are given in S1 and S2 Tables. It is clear that sARTP are generally
more powerful than aSPUsPath, especially when the signal-to-noise ratio (the proportion of
genes including a functional SNP) is relatively low. The two types of tests tend to have compa-
rable performance when the signal-to-noise ratio increases to 30%, although it is uncommon
for a candidate pathway to have such a high signal-to-noise ratio in real applications. For
example, among the 4,713 candidate pathways analyzed in the next section, only 4.2% and
0.9% of the pathways have over 20% and 30% of their genes that are likely to contain associa-
tion signals (i.e., with gene-level p-values< 0.05).

Table 2. Power comparisons under the type I error rate of 0.05 when analyzing data from three studies.

Pa Mb Internal referencec External referenced

sARTP MsARTP Fisher sARTP MsARTP Fisher

0.3 5 0.165 0.170 0.110 0.170 0.167 0.105

10 0.405 0.402 0.229 0.399 0.401 0.221

15 0.573 0.578 0.334 0.564 0.561 0.323

0.4 5 0.292 0.293 0.162 0.295 0.297 0.154

10 0.642 0.637 0.363 0.640 0.635 0.362

15 0.858 0.858 0.574 0.855 0.856 0.561

For every pair of P and M, the empirical powers are computed from 1,000 simulated datasets at the level of 0.05. Each dataset contains three studies.

The pathway consists of 50 independent genes, each with 20 SNPs. Fisher’s method is used to combine the three pathway p-values obtained by applying

sARTP to the SNP-level summary data from each of three studies separately.
aThe theoretical power of the single-locus trend test on the functional SNP under the type I error rate of 0.05, given the sample sizes of cases and

controls, and the MAF of the functional SNP;
bThe number of genes including the functional SNPs;
c Using 500 samples from the GERA data as an internal reference;
dUsing 503 European samples from the 1000 Genomes Project as an external reference.

doi:10.1371/journal.pgen.1006122.t002
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From S1 and S2 Tables, we also notice that the advantage of sARTP over aSPUsPath is more
evident if not all minor alleles of the functional SNPs are deleterious (or protective) variants
(i.e., γ� in the risk (model 8) are not all positive). This is expected, as the sARTP approach does
not take the effect direction of the minor allele at each SNP into consideration, while aSPUs-
Path integrates a set of candidate statistics, including the one similar to the burden test that
assumes all minor alleles are either deleterious or protective. When this assumption is not
valid, the inclusion of the burden test statistic in aSPUsPath is unlikely to enhance the power,
but certainly would increase the multiple-testing penalty.

Evaluation of sARTP Using Data from T2D Studies
To demonstrate the consistency between results obtained by sARTP using SNP-level summary
statistics and the ones by ARTP using individual-level genotype data, we compared pathway
analysis results from three different procedures on the 4,713 candidate pathways using the
GERA GWAS data. Details on how those 4,713 pathways were pre-processed are given in the
Results of T2D Pathway Analysis Section. We applied sARTP to the SNP-level summary statis-
tics generated from the GERA study, using either an internal or an external reference panel.
We also obtained the pathway p-values by directly applying the ARTP method to the individ-
ual-level GERA GWAS data. Fig 1 shows the comparison among p-values from these three
analyses, and demonstrates that all three approaches can generate very consistent results.

Results of T2D Pathway Analysis
Findings from the European populations. Since our goal was to identify new susceptibil-

ity loci for T2D through the pathway analysis, we excluded 170 high evidence T2D associated
SNPs that were either listed in [13] or found from the GWAS Catalog satisfying the following

Fig 1. Comparisons of p-values from three types of pathway analyses on the GERA data. Based on the GERA data, 4,713 pathways are analyzed
in three different ways. Pathway p-values obtained by ARTP using the GERA individual-level genetic data (x-axis) are compared with the ones obtained
by sARTP using summary statistics in combination with the internal reference panel that consists of 500 randomly selected GERA samples (left), and the
ones using the summary statistics in combination with the external reference panel that consists of 503 European subjects from the 1000 Genomes
Project (right).

doi:10.1371/journal.pgen.1006122.g001
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three conditions simultaneously: (1) were investigated by GWAS of samples with European
ancestry; (2) had reported p-values<10−7 on the initial study; and (3) were replicated on inde-
pendent studies. We excluded 195 SNPs that has their single-locus testing p-values less than
10−7 in either DIAGRAM or GERA data to ensure that the pathway analysis result was not
driven by a single SNP. In addition, we further excluded genes within a ±500kb region from
each of the removed SNPs to eliminate potential association signals that could be caused by
linkage disequilibrium (LD) with the index SNPs.

We conducted three types of pathway-based meta-analyses using sARTP, including the one
using the DIAGRAM SNP-level summary statistics, the one using the GERA SNP-level sum-
mary statistics, and the pathway meta-analysis combining SNP-level summary statistics from
both DIAGRAM and GERA studies. When applying the pathway-based meta-analysis to a sin-
gle gene, we refer to this as the gene-level meta-analysis. We used the external reference panel
of 503 Europeans from the 1000 Genomes Project to estimate the variance-covariance matrix.

Before performing a pathway analysis, we applied LD filtering to remove redundant SNPs.
For any two SNPs with their pairwise squared Pearson’s correlation coefficient> 0.9 estimated
from the external reference panel from the 1000 Genomes Project, we removed the one with a
smaller value defined as, 2f(1−f)n0n1n

−1, where n0 and n1 are numbers of controls and cases,
n = n0 + n1, and f is the MAF based on the reference panel. This value is proportional to the
non-centrality parameter of the trend test statistic at a given SNP. We also excluded SNPs with
MAF< 1%. After all SNP filtering steps, we had a total of 4,713 pathways for the analysis. The
summary of the number of genes and SNPs used in each pathway analysis is given in S2 Fig.

The DIAGRAM study had a genomic control inflation factor λGC = 1.10 based on the pub-
lished meta-analysis result. The assembled GERA T2D GWAS had λGC = 1.08. When conduct-
ing the pathway analysis on each of two studies, we adjusted the inflation by using the

corresponding
ffiffiffiffiffiffiffi
lGC

p
to rescale the standard error of estimated log odds ratio at each SNP. The

single-locus meta-analysis combining results from DIAGRAM and GERA datasets had an
inflation factor λGC = 1.067 after each study had adjusted for its own inflation factor. We fur-
ther adjusted this inflation in the pathway and gene-level meta-analysis when combining SNP-
level summary statistics from both studies using formulas (4) and (5).

The Q-Q plots of gene-level and pathway p-values are given in Fig 2. Gene-level p-value
Q-Q plots based on the three analyses show no sign of inflation with their λGC close to 1.0, but
suggest that there are enriched gene-level association signals at the tail end. The pathway p-
value Q-Q plots, on the other hand, shift away from the diagonal identify line and have much
higher λGC, which suggests that T2D associated genes are preferably included in pathways
under study. In fact, it can be seen from S3 Fig that a gene with a smaller gene-level meta-anal-
ysis p-value tends to be included in more pathways, even though the 4,713 pathways collected
fromMSigDB v5.0 are not specifically defined for the study of T2D.

Fig 2 illustrates that the gene and pathway level signal from the GERA study tends to be
slightly stronger than that from the DIAGRAM study. The main reason is that the DIA-
GRAM summary result had gone through two rounds of inflation adjustments, with the first
round done at each participating study, and the second round on the meta-analysis result.
Also, its second round adjustment (λGC = 1.10) is larger than the one applied to the GERA
study (λGC = 1.08). Adjusting for λGC in the pathway analysis could be too conservative, since
some proportion of the inflation can be caused by the real polygenic effect. A less conservative
adjustment could be possible, but it might not be adequate. More discussions on this issue are
given in the Discussion Section.

Based on the pathway meta-analysis on a total of 4,713 pathways, we identified 43 signifi-
cant pathways with p-values less than 1.06×10−5, the family-wise significant threshold based
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on the Bonferroni correction. Their pathway meta-analysis results as well as results from indi-
vidual studies are summarized in Table 3. More detailed results on each of 43 significant path-
ways are given in the S6–S48 Figs and S6 Table. There are a total of 15,946 unique genes in all
4,713 pathways. The top 50 genes with smallest gene-level p-values based on the gene meta-
analysis are listed in S3 Table. Because of the LD filtering, a gene belonging to two pathways
might end up with slightly different sets of SNPs. To remove this ambiguity, we obtained the
gene-level p-values by conducting a gene-level meta-analysis on each gene separately.

From Table 3, we can notice that some identified pathways have relatively weak association
signals from each of the two studies, but have very significant p-values based on the pathway
meta-analysis on the two studies combined. For example, the pathway RIZ_ERYTHROID_
DIFFERENTIATION has p-values of 0.0233 and 0.0231 based on DIAGRAM and GERA stud-
ies, respectively. Combining these two p-values using Fisher’s method yields a p-value of
0.0046. On the other hand, the pathway meta-analysis produces a much more significant result
(p = 6.15×10−7). This demonstrates the power advantage of the pathway meta-analysis over the
approach that simply combines the pathways p-values from individual studies. The aforemen-
tioned simulation studies also confirmed this observation (Table 2).

In Fig 3, we illustrate the connection between the 43 significant pathways and a group of
genes showing association evidence. For the purpose of illustration, in the figure we only focus
on 46 genes that are covered by the 43 pathways and have their gene-level meta-analysis p-val-
ues less than 0.001. It is evident from Fig 3 that a cluster of 4 genes, UBE2Z, SNF8, GIP, and
ATP5G1, has the most significant gene-level p-values (S3 Table), and contribute association
signals to 20 out of 43 significant pathways (S6–S25 Figs). These 4 genes overlap each other at
chromosome 17q21. This region contains a previously unidentified genome-wide significant
synonymous SNP rs1058018 (meta-analysis p = 3.06×10−8) after two rounds of inflation
adjustments. More detailed information on SNP rs1058018 and SNPs in that region are given

Fig 2. Q-Q plots of gene-level and pathway p-values based on the sARTP procedure on the DIAGRAM study, the GERA study, and the
two studies combined. (Left) Q-Q plots of gene-level p-values on 15,946 genes based on the sARTP gene-based analysis of the DIAGRAM
study (DIAGRAM), the GERA study (GERA), and the two studies combined (META). (Right) Q-Q plots of pathway p-values on 4,713 pathways
based on the sARTP pathway analysis of the DIAGRAM study (DIAGRAM), the GERA study (GERA), and the two studies combined (META).

doi:10.1371/journal.pgen.1006122.g002
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Table 3. Summary of 43 significant pathways detected by the pathwaymeta-analysis based on the DIAGRAM and GERA studies.

Pathway METAa DIAGRAMb GERAc

SCHLOSSER_SERUM_RESPONSE_UPd 2.50E-08 2.92E-04 1.77E-03

PENG_RAPAMYCIN_RESPONSE_DNef 1.50E-07 1.68E-03 2.08E-04

YAGI_AML_WITH_T_8_21_TRANSLOCATIONef 1.50E-07 4.33E-03 4.46E-04

PATIL_LIVER_CANCERd 2.00E-07 4.35E-05 3.89E-03

PUJANA_CHEK2_PCC_NETWORKef 2.00E-07 1.18E-02 3.39E-03

STEIN_ESRRA_TARGETSef 2.00E-07 9.37E-04 8.39E-04

STEIN_ESRRA_TARGETS_UPef 3.00E-07 6.38E-03 1.02E-04

WANG_CISPLATIN_RESPONSE_AND_XPC_UPef 4.00E-07 6.75E-03 1.18E-01

CADWELL_ATG16L1_TARGETS_DNe 4.35E-07 1.45E-03 9.59E-03

SONG_TARGETS_OF_IE86_CMV_PROTEINd 5.30E-07 7.88E-04 3.20E-05

CASORELLI_ACUTE_PROMYELOCYTIC_LEUKEMIA_DNef 5.50E-07 2.48E-02 5.70E-03

RIZ_ERYTHROID_DIFFERENTIATIONd 6.15E-07 2.33E-02 2.31E-02

BORCZUK_MALIGNANT_MESOTHELIOMA_UPd 6.50E-07 7.61E-03 2.52E-02

HILLION_HMGA1_TARGETSe 9.00E-07 3.39E-01 1.10E-05

KEGG_MATURITY_ONSET_DIABETES_OF_THE_YOUNGd 1.14E-06 1.68E-02 3.58E-04

HOLLEMAN_ASPARAGINASE_RESISTANCE_B_ALL_DNe 1.22E-06 3.42E-02 1.67E-03

PUJANA_BRCA1_PCC_NETWORKef 1.50E-06 1.69E-02 5.11E-03

HOSHIDA_LIVER_CANCER_SUBCLASS_S3d 1.95E-06 6.14E-03 5.83E-03

GRAESSMANN_APOPTOSIS_BY_DOXORUBICIN_DNef 2.00E-06 9.57E-04 6.41E-04

REACTOME_REGULATION_OF_BETA_CELL_DEVELOPMENTd 2.26E-06 4.81E-02 1.15E-03

PUJANA_BREAST_CANCER_WITH_BRCA1_MUTATED_UPd 2.48E-06 7.61E-03 2.39E-02

BLALOCK_ALZHEIMERS_DISEASE_UPd 2.50E-06 3.52E-02 3.26E-02

GOBERT_OLIGODENDROCYTE_DIFFERENTIATION_UPd 2.85E-06 3.68E-02 5.37E-04

MCBRYAN_PUBERTAL_BREAST_4_5WK_DNd 2.95E-06 2.20E-01 1.10E-05

REACTOME_REGULATION_OF_GENE_EXPRESSION_IN_BETA_CELLSd 3.11E-06 2.81E-02 2.33E-03

SANSOM_APC_TARGETS_DNef 3.25E-06 3.08E-01 2.84E-03

NABA_MATRISOMEd 3.45E-06 4.46E-02 1.30E-02

PUJANA_BRCA2_PCC_NETWORKd 4.65E-06 1.25E-02 6.32E-02

KEGG_TYPE_II_DIABETES_MELLITUSd 4.85E-06 6.38E-02 9.93E-04

LINDGREN_BLADDER_CANCER_CLUSTER_1_DNd 5.50E-06 5.20E-02 4.36E-03

ROPERO_HDAC2_TARGETSe 6.04E-06 2.11E-02 1.41E-03

KEGG_INSULIN_SIGNALING_PATHWAYd 6.20E-06 2.65E-02 4.26E-03

CHEN_PDGF_TARGETSd 6.36E-06 2.48E-03 1.04E-02

REACTOME_INTEGRATION_OF_ENERGY_METABOLISMe 6.50E-06 6.11E-02 1.06E-04

PETROVA_ENDOTHELIUM_LYMPHATIC_VS_BLOOD_UPd 6.60E-06 1.79E-01 8.72E-03

REACTOME_PPARA_ACTIVATES_GENE_EXPRESSIONd 6.70E-06 4.97E-02 1.69E-02

AGUIRRE_PANCREATIC_CANCER_COPY_NUMBER_UPe 6.90E-06 1.73E-01 1.97E-04

DACOSTA_UV_RESPONSE_VIA_ERCC3_UPd 7.45E-06 2.20E-02 4.25E-02

TOYOTA_TARGETS_OF_MIR34B_AND_MIR34Cd 8.10E-06 1.20E-01 2.67E-03

HOLLEMAN_ASPARAGINASE_RESISTANCE_ALL_DNe 8.43E-06 5.90E-02 3.22E-03

REACTOME_CLASS_I_MHC_MEDIATED_ANTIGEN_PROCESSING_PRESENTATIONe 8.45E-06 5.67E-02 2.00E-02

DODD_NASOPHARYNGEAL_CARCINOMA_DNef 1.00E-05 2.86E-03 1.71E-04

REACTOME_MEMBRANE_TRAFFICKINGe 1.04E-05 6.43E-03 4.52E-04

The 43 pathways are identified among 4,713 candidate pathways for having their pathway meta-analysis p-values less than the <1.06×10−5, the

Bonferroni correction threshold.
aP-values based on summary statistics combined from the DIAGRAM and GERA studies;
bP-values based on summary statistics from the DIAGRAM study;
cP-values based on summary statistics from the GERA study;
dPathways that do not contain genes in the 17q21 region;
ePathways that contain at least one gene in the 17q21 region;
fPathways that remain globally significant after excluding genes in the 17q21 region.

doi:10.1371/journal.pgen.1006122.t003
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in S4 Table, S4 and S5 Figs. By conditioning on rs1058018, none of the other SNPs in this
region are significant based on the conditional association analysis using the GERA individual-
level GWAS data. Based on GTEx data v6, rs1058018 is a cis eQTL for UBE2Z in blood
(p = 7.9×10−15). UBE2Z is involved in Class I MHC antigen processing and presentation (Gen-
eCards). The region at 17q21 was previously implicated to be associated with T2D through a
candidate gene/loci approach [36]. Although genes at the 17q21 region carry the strongest
association signal, 11 out of those 20 pathways remain to be globally significant
(p< 1.06×10−5) after excluding those genes from the pathway definition (Table 3).

The majority of 43 identified pathways are enriched with signals from multiple chromo-
somal regions as demonstrated by the Q-Q plots of their SNP-level and gene-level p-values
(S6–S48 Figs). For example, the strongest T2D-associated pathway, SCHLOSSER_SERUM_
RESPONSE_UP, consists of 103 genes, which includes two genes with p-values< 0.001, and
has 20 genes with p-values between 0.001 and 0.05 (S26 Fig, and Supplemental data). We con-
ducted the ingenuity pathway analysis on those 22 genes with p-values less than 0.05, and
found enrichment of these genes in caveolae-mediated cytosis (important for removal of low/
high density lipoproteins), and lipid metabolism pathways, and in functions/diseases related to
differentiation of phagocytes and transport of proteins.

It is assuring that our pathway analysis detected several pathways that are natural candidates
underlying the development of T2D, including the pathways KEGG_MATURITY_ONSET_
DIABETES_OF_THE_YOUNG (S31 Fig), KEGG_TYPE_II_DIABETES_MELLITUS (S41
Fig), KEGG_INSULIN_SIGNALING_PATHWAY (S43 Fig), and REACTOME_REGULA-
TION_OF_BETA_CELL_DEVELOPMENT (S33 Fig). It is worth emphasizing that these path-
ways were analyzed after excluding genes in the neighborhood of 170 GWAS established T2D
loci and 195 SNPs with p-values<10−7 on either DIAGRAM or GERA data, which suggests

Fig 3. Heat map of gene-level p-values on selected genes within 43 significant pathways based on the DIAGRAM and GERA studies.
There are 46 unique genes in the 43 significant pathways that have their gene-level meta-analysis p-values less than 0.001. Each row in the
plot represents one of 43 significant pathways. Each column represents one of the 46 unique genes. The chromosome IDs of 46 unique genes
are given in parentheses. The color of each cell represents the gene-level p-value (in the −log10 scale). A cell for a gene that is not included in a
pathway is colored gray in the corresponding entry. The orders of genes (x-axis) and pathways (y-axis) are arranged according to their gene
and pathway meta-analysis p-values.

doi:10.1371/journal.pgen.1006122.g003
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that these well-defined T2D-related pathways are enriched with additional unidentified and
contributory T2D-associated genes.

Among the 43 globally significant pathways, there are multiple ones that are defined accord-
ing to specific gene expression patterns on various tumor types, including pancreatic adenocar-
cinoma (S21 Fig), hepatocellular carcinoma (HCC) (S27 and S32 Figs), bladder carcinoma
(S42 Fig), nasopharyngeal carcinoma (S24 Fig), and familial breast cancer (S34 and S37 Figs).
It is well recognized that T2D patients have elevated risk of cancer at multiple cancer sites,
such as the liver and pancreas [37, 38]. These findings can provide valuable insights into the
genetic basis underlying the connection between T2D and a host of different cancers.

In the above analysis, we used the sARTP method with the gene-level association evidence
summarized by one or two most significant SNPs within each gene, under the assumption that
there are at most two independent association signals within a given gene. We also applied
sARTP by using 3 SNP-level cut points (i.e., (c1,c2,c3) = (1,2,3)) to reanalyze the 4,713 pathways
based on the combined data of DIAGRAM and GERA. It appears that results obtained by
sARTP with 3 SNP-level cut points are very consistent with those with 2 cut points (S49 Fig).

Findings from Eastern Asian populations. We reanalyzed the 43 significant pathways
identified from the European populations using summary-level data generated by the
AGEN-T2D study. An inflation factor λGC = 1.03 calculated from the AGEN-T2D meta-analy-
sis was adjusted in the pathway meta-analysis. The genetic regions excluded from analyzing
the DIAGRAM and GERA studies were also excluded from the AGEN study. The results were
summarized in Table 4. There are 10 out of 43 pathways with the unadjusted p-value less than
0.05, suggesting that many pathways identified from the European populations were also
enriched with T2D-associated genes in the eastern Asian populations (S7 Table). Among the
43 pathways, we were able to identify 4 significant T2D-associated pathways at the false discov-
ery rate (FDR [39]) of 0.05 (S27, S12, S32 and S36 Figs), and 3 additional T2D-associated path-
ways at the FDR of 0.1 (S47, S44, and S25 Figs). All the pathway p-values remain basically the
same level if we further excluded genes within ±500kb regions surrounding the GWAS T2D
loci established in eastern Asian populations. These results support the presence of trans-ethnic
pathway effect on T2D in European and eastern Asian populations [11, 12].

Given the existing epidemiologic evidence on the close connection between T2D and the
liver cancer, it is noteworthy that the two HCC related pathways (S27 and S32 Figs) identified
in European populations remain to be significant in eastern Asian populations at the FDR of
0.05 (Table 4). The pathway PATIL_LIVER_CANCER consists of 653 genes (after data prepro-
cessing) that are highly expressed in HCC and are enriched with genes having functions related
to cell growth, cell cycle, metabolism, and cell proliferation [40]. The other pathway, HOSHI-
DA_LIVER_CANCER_SUBCLASS_S3 consists of 240 genes that show similar gene expression
variation patterns and together define a HCC subtype with its unique histologic, molecular and
clinical characteristics [41]. These two pathways have only 6 genes in common, and none of
the 6 genes has a gene-level p-value< 0.05 in either European or eastern Asian data. More in
depth investigations of these two complementary pathways could lead to further understand-
ing the connection between T2D and the liver cancer.

The genome-wide significant SNP rs1058018 at the 17q21 region identified through the
combined analysis of DIAGRAM and GERA studies turned out to be null in the AGEN-T2D
study (p = 0.29). This could be due to the relatively small sample size of the AGEN-T2D study,
or the genetic risk heterogeneity at the 17q21 locus among different ethnic populations. Never-
theless, 2 out of the 20 pathways (S12 and S25 Figs) that contain genes within the 17q21 region
are still significant at the FDR of 0.1. Among the 23 pathways that do not contain any gene
within the 17q21 region, 5 pathways remain significant at the FDR of 0.1 (S27, S32, S36, S47
and S44 Figs).
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Table 4. Pathway p-values and FDR adjusted p-values based on the AGEN-T2D study.

Pathway P-valuea FDRb

PATIL_LIVER_CANCERc 0.0014 0.029

CADWELL_ATG16L1_TARGETS_DN 0.0023 0.029

HOSHIDA_LIVER_CANCER_SUBCLASS_S3c 0.0025 0.029

GOBERT_OLIGODENDROCYTE_DIFFERENTIATION_UPc 0.0027 0.029

DACOSTA_UV_RESPONSE_VIA_ERCC3_UPc 0.011 0.074

CHEN_PDGF_TARGETSc 0.011 0.074

REACTOME_MEMBRANE_TRAFFICKING 0.012 0.074

AGUIRRE_PANCREATIC_CANCER_COPY_NUMBER_UP 0.026 0.14

MCBRYAN_PUBERTAL_BREAST_4_5WK_DNc 0.041 0.19

LINDGREN_BLADDER_CANCER_CLUSTER_1_DNc 0.043 0.19

PUJANA_CHEK2_PCC_NETWORK 0.057 0.21

BLALOCK_ALZHEIMERS_DISEASE_UPc 0.059 0.21

SCHLOSSER_SERUM_RESPONSE_UPc 0.085 0.27

RIZ_ERYTHROID_DIFFERENTIATIONc 0.089 0.27

DODD_NASOPHARYNGEAL_CARCINOMA_DN 0.097 0.28

TOYOTA_TARGETS_OF_MIR34B_AND_MIR34Cc 0.10 0.28

REACTOME_CLASS_I_MHC_MEDIATED_ANTIGEN_PROCESSING_PRESENTATION 0.14 0.32

PUJANA_BRCA2_PCC_NETWORKc 0.14 0.32

WANG_CISPLATIN_RESPONSE_AND_XPC_UP 0.14 0.32

STEIN_ESRRA_TARGETS 0.16 0.35

PUJANA_BREAST_CANCER_WITH_BRCA1_MUTATED_UPc 0.17 0.35

GRAESSMANN_APOPTOSIS_BY_DOXORUBICIN_DN 0.18 0.36

PUJANA_BRCA1_PCC_NETWORK 0.23 0.43

HOLLEMAN_ASPARAGINASE_RESISTANCE_B_ALL_DN 0.35 0.62

PENG_RAPAMYCIN_RESPONSE_DN 0.38 0.62

ROPERO_HDAC2_TARGETS 0.38 0.62

KEGG_MATURITY_ONSET_DIABETES_OF_THE_YOUNGc 0.39 0.62

HILLION_HMGA1_TARGETS 0.43 0.65

HOLLEMAN_ASPARAGINASE_RESISTANCE_ALL_DN 0.44 0.65

PETROVA_ENDOTHELIUM_LYMPHATIC_VS_BLOOD_UPc 0.45 0.65

REACTOME_PPARA_ACTIVATES_GENE_EXPRESSIONc 0.52 0.72

REACTOME_REGULATION_OF_GENE_EXPRESSION_IN_BETA_CELLSc 0.55 0.74

KEGG_INSULIN_SIGNALING_PATHWAYc 0.58 0.74

STEIN_ESRRA_TARGETS_UP 0.59 0.74

YAGI_AML_WITH_T_8_21_TRANSLOCATION 0.64 0.76

NABA_MATRISOMEc 0.65 0.76

KEGG_TYPE_II_DIABETES_MELLITUSc 0.67 0.76

SANSOM_APC_TARGETS_DN 0.69 0.76

REACTOME_INTEGRATION_OF_ENERGY_METABOLISM 0.70 0.76

REACTOME_REGULATION_OF_BETA_CELL_DEVELOPMENTc 0.70 0.76

BORCZUK_MALIGNANT_MESOTHELIOMA_UPc 0.75 0.79

SONG_TARGETS_OF_IE86_CMV_PROTEINc 0.86 0.88

CASORELLI_ACUTE_PROMYELOCYTIC_LEUKEMIA_DN 0.88 0.88

These 43 pathways are nominated through the pathway meta-analysis on DIAGRAM and GERA studies. The analysis is carried out on the summary data

from the AGEN-T2D study.
aP-values based on summary statistics from the AGEN-T2D study;
bFDR adjusted p-values;
cPathways that do not contain genes in the 17q21 region.

doi:10.1371/journal.pgen.1006122.t004
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Discussion
We developed a general statistical procedure sARTP for pathway analysis using SNP-level
summary statistics generated from multiple GWAS. By applying sARTP to summary statistics
from two large studies with a total of 19,809 T2D cases and 111,181 controls with European
ancestry, we were able to identify 43 globally significant T2D-associated pathways after exclud-
ing genes in neighborhoods of GWAS established T2D loci. Using summary data generated
from 8 T2D GWAS with 6,952 cases and 11,865 controls from eastern Asian populations, we
further showed that 7 out of 43 pathways identified in the European populations were also sig-
nificant in the eastern Asian populations at the FDR of 0.1. The analysis clearly highlights
novel T2D-associated genes and pathways beyond what has been known from single-SNP asso-
ciation analysis reported from largest GWAS to date. Since the new procedure requires only
SNP-level summary statistics, it provides a flexible way for conducting pathway analysis, allevi-
ating the burden of handling large volumes of individual-level GWAS data.

We have developed a computationally efficient R package called ARTP2 implementing the
ARTP and sARTP procedures, so that it can be used for conducting pathway analysis based on
individual-level genetic data, as well as SNP-level summary data from one or multiple GWAS.
The R package also supports the parallelization on Unix-like OS, which can substantially accel-
erate the computation of small p-values when a large number of resampling steps are needed.
The ARTP2 package has a user-friendly interface and provides a comprehensive set of data
preprocessing procedures to ensure that all the input information (e.g., allele information of
SNP-level summary statistics and genotype reference panel) can be processed coherently. To
make the sARTP method accessible to a wider research community, we have also developed a
web-based tool that allows investigators to conduct their pathway analyses using the comput-
ing resource at the National Cancer Institutes through simple on-line inputs of summary data.

Single-locus analysis of GWAS usually has its genomic control inflation factor larger than
1.0. Some proportion of the inflation can be attributed to various confounding biases, such as
the one caused by population stratification, while the other part can be due to the real polygenic
effect. In the pathway analysis it is important to minimize the confounding bias at the SNP-level
summary statistic. Otherwise a small bias at the SNP level can be accumulated in the pathway
analysis, and lead to an elevated false discovery rate. Here we try to remove the confounding
bias by adjusting for the genomic control inflation factor observed at the GWAS study. This
approach is conservative because part of the inflation can be caused by the real polygenic effect.
Recently, [42] developed the LD score regression method to quantify the level of inflation caused
solely by the confounding bias. Adjusting for the inflation factor estimated by this method,
instead of the genomic control inflation factor, can potentially increase the power of the path-
way analysis. However, the LD score regression method relies on a specific polygenic risk
model, and its estimate might not be robust for this model assumption. More investigations are
needed to evaluate the impact of this new inflation adjustment on the pathway analysis.

There are several other strategies to increase the power of pathway analysis besides increas-
ing sample size [4]. One area of active research is to find better ways to define the gene-level
summary statistic using observed genotypes on multiple SNPs, so that it can accurately charac-
terize the impact of the gene on the outcome [43–46]. In our proposed procedure, we adopt a
data driven approach to select a subset of SNPs within a gene that collectively show the stron-
gest association evidence. Because of this, we have to pay the penalty of multiple-comparison
in the final pathway significance assessment. However, it is well recognized that SNPs at differ-
ent loci can have varied levels of functional implications. We can potentially reduce the burden
of multiple-comparisons and thus improve the power of the pathway analysis, by prioritizing
SNPs according to existing genomic knowledge and other data resources. For example, [47]
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recently proposed a new gene-level summary statistic based on a prediction model that was
trained with external transcriptome data. The gene-level summary statistic is defined as the
predicted value that estimates the component of gene expression regulated by a subject’s geno-
types within the neighborhood of the considered gene. Pathway analysis procedures using this
kind of biologically informed gene-level summary statistic can be easily incorporated into the
ARTP2 framework.

The sARTPmethod can be easily expanded to adopt other multi-locus statistics in accumulat-
ing association within a gene, as long as they can be written in terms of SNP-level score statistics
and their variance-covariance matrix. For example, the current ARTP2 package provides the
option for conducting the pathway meta-analysis using the joint test statistics proposed by [31].

When conducting pathway analysis with individual-level genetic data, we could run into a
computing memory issue if the study has a large sample size and the pathway consists of a
large number of genes and SNPs (S4 Fig). The ability of performing pathway analysis using
summary data provides a convenient and efficient solution in those situations. We can first cal-
culate the SNP-level summary statistics based on the individual-level genetic data, and then
randomly sample a small proportion of the original data as an internal reference to estimate
the variance-covariant matrix for score statistics at considered SNPs. Based on our experi-
ments, using 500 or more subjects to form a reference panel would be good enough to generate
accurate pathway p-values. As shown in Fig 1, the testing results using this approach are very
consistent with those based on individual-level genotype data.

The sARTP approach can be applied directly to SNP-level meta-analysis results. This is very
convenient as meta-analysis results are in general easily accessible. But we want to emphasize
that it is important to know the set of the SNPs studied by each participating study in order to
apply sARTP properly, as the SNP coverage information is essential for accurately estimating
the variance-covariance matrix of SNP-level score statistics. GWAS consortia usually do not
post the SNP coverage information when releasing their meta-analysis results. Many statistical
packages designed for conducting multi-locus analysis based on meta-analysis results often
assume the uniform coverage [15–18, 24, 25, 48]. As we already have demonstrated in the con-
text of pathway analysis, this type of over-simplification could lead to inflated false positive rate.

The proposed procedure assumes that all participating studies are conducted with subjects
with the same ancestry background. If this is not the case, a simple approach is to use the Fish-
er’s method to combine pathway p-values estimated on different ethnic populations. However,
if there were no evidence for the existence of cross ethnic risk heterogeneity, it would be more
powerful to assume a fixed effects model on the SNP-level association when performing the
pathway analysis. In that case, since the LD structures in different ethnic populations are differ-
ent, we need a separate reference panel for each ethic group to derive the corresponding vari-
ance-covariance matrix of the score statistics. The current ARTP2 package needs to be
modified to accommodate such a more complicated case.

As already demonstrated by many successful GWAS meta-analysis, increasing the sample
size through combining results from multiple studies is a very effective way to improve our
chance for new findings. For the same reason, pathway-based meta-analysis can provide us
with new opportunities to uncover biological pathways that are previously undetectable due to
the limitation on the sample size. With more summary data from meta-analysis becoming
increasingly available, we expect the ARTP2 package would be a valuable tool for further
exploring the genome in search for the hidden heritability.

Web Resources
The URLs for data and software presented herein are as follows:
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DIAbetes Genetics Replication And Meta-analysis (DIAGRAMv3), http://diagram-
consortium.org/

Genetic Epidemiology Research on Aging (GERA, dbGaP Study Accession: phs000674.v1.
p1), http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000674.v1.p1

Molecular Signatures Database (C2: curated gene sets), http://software.broadinstitute.org/
gsea/msigdb/collections.jsp#C2

BioMart (Homo sapiens genes NCBI36 and GRCh37.p13), http://feb2014.archive.
ensembl.org/

IMPUTE2, https://mathgen.stats.ox.ac.uk/impute/impute_v2.html
GWAS Catalog, http://www.ebi.ac.uk/gwas/
1000 Genomes Project (Phase 3, v5, 2013/05/02), ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

release/20130502/
aSPU, https://cran.r-project.org/web/packages/aSPU/index.html
GTEx Portal v6, http://gtexportal.org/home/
GeneCards Human Gene Database, http://www.genecards.org/
Ingenuity Pathway Analysis, http://www.ingenuity.com/
LocusZoom, http://locuszoom.sph.umich.edu/locuszoom/
ARTP2 package, https://cran.r-project.org/web/packages/ARTP2/
Web-based tool of ARTP2, http://analysistools.nci.nih.gov/pathway/

Supporting Information
S1 Table. Power comparison between sARTP and aSPUsPath under the scenario where
each outcome-associated gene contains one functional SNP.
(DOCX)

S2 Table. Power comparison between sARTP and aSPUsPath under the scenario where
each outcome-associated gene contains one or two functional SNP(s) with equal probabil-
ity.
(DOCX)

S3 Table. Summary of top 50 genes with smallest gene-level p-values from the gene-level
meta-analysis based on the DIAGRAM and GERA studies.
(DOCX)

S4 Table. Effect of SNP rs1058018 on type 2 diabetes.
(DOCX)

S5 Table. The genomic control inflation factors, Spearman’s rank correlation coefficients
between the pathway size and its p-value based on results obtained by applying sARTP to
20 simulated GWAS under the null.
(DOCX)

S6 Table. Gene-level p-values of genes in the 43 significant pathways identified in the Euro-
pean populations based on combined data from the DIAGRAM and GERA studies.
(XLSX)

S7 Table. Gene-level p-values of genes in the 10 pathways with unadjusted pathway
p-values< 0.05 based on data from the AGEN-T2D study.
(XLSX)
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S1 Text. Recovering score statistics and their variance-covariance matrix using summary
results from the fixed effects model.
(DOCX)

S2 Text. Further evaluation of sARTP under the null.
(DOCX)

S1 Fig. The sample size used for each SNP in the DIAGRAMmeta-analysis. The SNP
index (x-axis) is sorted according to its meta-analysis sample size. There are 2.5 million
autosomal SNPs genotyped or imputed in at least one of the twelve participating GWAS
in the DIAGRAMmeta-analysis. 19.0% of those SNPs have a sample size of 69,033
(12,171 cases and 56,862 controls), which is total sample size of all twelve participating
GWAS combined. Another 57.9% of those SNPs have a sample size of 63,390 (9,580 cases
and 53,810).
(TIF)

S2 Fig. Histograms of numbers of SNPs and genes after SNP filtering within each of 4,718
pathways in pathway analyses of the DIAGRAM study, the GERA study, and the two stud-
ies combined (META).
(TIF)

S3 Fig. Boxplot of the number of pathways containing genes with p-values in a given range.
Genes are stratified into five groups according to their p-values from the gene-level meta-anal-
ysis on the summary data from the DIAGRAM and GERA studies. The boxplot summarizes
the number of pathways containing a gene within a given group.
(TIF)

S4 Fig. The LocusZoom plot showing ±100kb region of rs1058018 in European popula-
tions. The SNP p-values were computed based on combined data of DIAGRAM and GERA
studies after two rounds of genomic control inflation factor adjustment.
(TIF)

S5 Fig. The LocusZoom plot showing ±100kb region of rs1058018 in eastern Asian popula-
tions. The SNP p-values were computed based on data of AGEN-T2D study after the adjust-
ment of genomic control inflation factor.
(TIF)

S6 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway PENG_RAPAMY-
CIN_RESPONSE_DN.
(TIF)

S7 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway YAGI_AML_
WITH_T_8_21_TRANSLOCATION.
(TIF)

S8 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway PUJANA_CHEK2_
PCC_NETWORK.
(TIF)

S9 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway STEIN_ESRRA_
TARGETS.
(TIF)
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S10 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway STEIN_ESRRA_
TARGETS_UP.
(TIF)

S11 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway WANG_CIS-
PLATIN_RESPONSE_AND_XPC_UP.
(TIF)

S12 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway CADWELL_
ATG16L1_TARGETS_DN.
(TIF)

S13 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway CASORELLI_
ACUTE_PROMYELOCYTIC_LEUKEMIA_DN.
(TIF)

S14 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway HILLION_
HMGA1_TARGETS.
(TIF)

S15 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway HOLLEMAN_
ASPARAGINASE_RESISTANCE_B_ALL_DN.
(TIF)

S16 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway PUJANA_
BRCA1_PCC_NETWORK.
(TIF)

S17 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway GRAESSMANN_
APOPTOSIS_BY_DOXORUBICIN_DN.
(TIF)

S18 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway SANSOM_APC_
TARGETS_DN.
(TIF)

S19 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway ROPERO_
HDAC2_TARGETS.
(TIF)

S20 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway REACTOME_
INTEGRATION_OF_ENERGY_METABOLISM.
(TIF)

S21 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway AGUIRRE_
PANCREATIC_CANCER_COPY_NUMBER_UP.
(TIF)

S22 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway HOLLEMAN_
ASPARAGINASE_RESISTANCE_ALL_DN.
(TIF)

S23 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway REACTOME_
CLASS_I_MHC_MEDIATED_ANTIGEN_PROCESSING_PRESENTATION.
(TIF)

Pathway-Based Meta-analysis Using Summary Statistics

PLOS Genetics | DOI:10.1371/journal.pgen.1006122 June 30, 2016 23 / 28

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006122.s019
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006122.s020
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006122.s021
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006122.s022
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006122.s023
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006122.s024
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006122.s025
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006122.s026
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006122.s027
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006122.s028
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006122.s029
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006122.s030
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006122.s031
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006122.s032


S24 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway DODD_NASO-
PHARYNGEAL_CARCINOMA_DN.
(TIF)

S25 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway REACTOME_
MEMBRANE_TRAFFICKING.
(TIF)

S26 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway SCHLOSSER_
SERUM_RESPONSE_UP.
(TIF)

S27 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway PATIL_LIVER_
CANCER.
(TIF)

S28 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway SONG_TARGETS_
OF_IE86_CMV_PROTEIN.
(TIF)

S29 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway RIZ_ERYTHROID_
DIFFERENTIATION.
(TIF)

S30 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway BORCZUK_
MALIGNANT_MESOTHELIOMA_UP.
(TIF)

S31 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway KEGG_MATUR-
ITY_ONSET_DIABETES_OF_THE_YOUNG.
(TIF)

S32 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway HOSHIDA_
LIVER_CANCER_SUBCLASS_S3.
(TIF)

S33 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway REACTOME_
REGULATION_OF_BETA_CELL_DEVELOPMENT.
(TIF)

S34 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway PUJANA_
BREAST_CANCER_WITH_BRCA1_MUTATED_UP.
(TIF)

S35 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway BLALOCK_ALZ-
HEIMERS_DISEASE_UP.
(TIF)

S36 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway GOBERT_OLI-
GODENDROCYTE_DIFFERENTIATION_UP.
(TIF)

S37 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway MCBRYAN_PU-
BERTAL_BREAST_4_5WK_DN.
(TIF)
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S38 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway REACTOME_
REGULATION_OF_GENE_EXPRESSION_IN_BETA_CELLS.
(TIF)

S39 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway NABA_MATRI-
SOME.
(TIF)

S40 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway PUJANA_BR-
CA2_PCC_NETWORK.
(TIF)

S41 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway KEGG_TYPE_
II_DIABETES_MELLITUS.
(TIF)

S42 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway LINDGREN_
BLADDER_CANCER_CLUSTER_1_DN.
(TIF)

S43 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway KEGG_INSU-
LIN_SIGNALING_PATHWAY.
(TIF)

S44 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway CHEN_PDGF_
TARGETS.
(TIF)

S45 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway PETROVA_EN-
DOTHELIUM_LYMPHATIC_VS_BLOOD_UP.
(TIF)

S46 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway REACTOME_
PPARA_ACTIVATES_GENE_EXPRESSION.
(TIF)

S47 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway DACOSTA_
UV_RESPONSE_VIA_ERCC3_UP.
(TIF)

S48 Fig. Q-Q plots for SNP p-values and sARTP gene p-values of pathway TOYOTA_TAR-
GETS_OF_MIR34B_AND_MIR34C.
(TIF)

S49 Fig. Comparison of sARTP p-values obtained with 2 or 3 SNP-level cut points based on
combined data of DIAGRAM and GERA. The p-values (in −log10 scale) of 4,713 pathways
defined in MSigDB v5.0 were obtained with sARTP.
(TIF)

S50 Fig. Q-Q plots of pathway p-values based on 20 GWAS datasets generated under the
null. Based on each generated GWAS, 4,439 pathways (each with no more than 10,000 SNPs)
defined in MSigDB v5.0 were analyzed with sARTP. λ is the genomic control inflation factor of
the pathway p-values.
(TIF)
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