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In genome-wide association study (GWAS), robust genetic association tests such as maximum of three CATTs (MAX3), each
corresponding to recessive, additive, and dominant geneticmodels, theminimum p value of Pearson’s Chi-square test with 2 degrees
of freedom, and CATT based on additive genetic model (MIN2), genetic model selection (GMS), and genetic model exclusion
(GME) methods have been shown to provide better power performance under wide range of underlying genetic models. In this
paper, we demonstrate how these robust tests can be applied to the replication study of GWAS and how the overall statistical
significance can be evaluated using the combined test formed by p values of the discovery and replication studies.

1. Introduction

With the advance of biotechnology and substantial reduc-
tion of genotyping costs, a genome-wide association study
(GWAS) using hundred thousand markers in several thou-
sand individuals is now increasingly utilized and has been
successful in detecting genetic associations across the entire
genomewith complex human traits [1–6]. Amongmany chal-
lenges this application holds; development of more efficient
and robust statistical methodologies with higher power to
detect an association with a single marker has been one of
the most important statistical issues, given that effects of
individualmarkers are usually characterized as being small to
moderate. One attempt to overcome this challenge is focused
ondeveloping efficient tests that are robust against underlying
genetic model misspecification.

Two most frequently used association tests are the allele-
based test (ABT) and the genotype-based test (GBT). ABT
compares the allele frequencies between cases and controls,
while GBT compares the genotype distributions of cases and
controls.The Cochran-Armitage trend test (CATT) [7, 8] is a

popularGBTwhich takes into account the underlying genetic
model. It is well known, however, that the ABT may inflate
type I error when Hardy-Weinberg equilibrium (HWE) does
not hold in the samples [9]. Even under HWE, when the
genetic model is recessive or dominant, the ABT may suffer
from serious power loss. On the other hand, the CATT does
not depend on HWE, but to apply the CATT the choice of
scores optimal for the underlying genetic model needs to be
specified. For complex diseases, the genetic model is usually
unknown and robust tests such as the maximum of three
CATTs (MAX3) [10] and the maximum efficiency robust
test (MERT) [11, 12] are preferable. Alternatively, Zheng and
Ng [13] and Joo et al. [14] proposed a two-phase analysis
based on the genetic model selection (GMS) and genetic
model exclusion (GME). Moreover, an alternative approach
was proposed by theWellcome trust case-control consortium
(WTCCC) [5] which used a minimum 𝑝 value of Pearson’s
Chi-square test and additive CATT, and the asymptotic
properties of this approach were studied in detail by Joo
et al. [15].Thesemethods provide better or comparable power
performance than some of the robust tests such as MAX3.
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In this paper, we illustrate how these robust tests can
be applied to a replication study of GWAS and how overall
statistical significance can be evaluated using the combined
test formed by 𝑝 values of the discovery and replication
studies.The importance of replication or validation in GWAS
has been well recognized [16, 17], and joint analysis in a
two-stage design of GWAS has been proved to be more
powerful than replication-based analysis and has been widely
conducted in GWAS with a variety of phenotypes of interest
[18, 19].

The paper is organized as follows. We first describe
the data structures and notation and review existing robust
association tests for a single data set. Then we describe how
to obtain the 𝑝 value for the replication data set, given the
significant result of the discovery stage, using robust tests. In
the next section, a combined test of the𝑝 values of the discov-
ery and replication data sets is proposed, together with the
way to evaluate the statistical significance for the combined
test. Simulation studies are conducted to compare the type
I error rates and powers of various analytical strategies. For
illustration purposes, the summarized methods are applied
to a non-small-cell lung cancer data set and at the end there
is a discussion.

2. Methods

2.1. Data and Notation. For a marker with two alleles 𝐴 and
𝐵, let the frequencies of 𝐵 in cases and controls be 𝑝 = 𝑃(𝐵 |

case) and 𝑞 = 𝑃(𝐵 | control). Denote three genotypes by
𝐺
0
= 𝐴𝐴,𝐺

1
= 𝐴𝐵, and𝐺

2
= 𝐵𝐵. In case-control association

studies, 𝑟 cases and 𝑠 controls are independently sampled
from each population. The observed genotype counts for
(𝐺
0
, 𝐺
1
, 𝐺
2
) are (𝑟

0
, 𝑟
1
, 𝑟
2
) in the cases and (𝑠

0
, 𝑠
1
, 𝑠
2
) in the

controls. Disease prevalence is denoted by 𝑘 = 𝑃(disease)
and penetrance by 𝑓

𝑖
= 𝑃(disease | 𝐺

𝑖
) for 𝑖 = 0, 1, 2. Two

genotype relative risks (GRRs) are denoted by 𝜆
1
= 𝑓
1
/𝑓
0

and 𝜆
2
= 𝑓
2
/𝑓
0
using 𝑓

0
> 0 as baseline penetrance. Under

the null hypothesis of no association 𝐻
0
: 𝑓
0
= 𝑓
1
= 𝑓
2
= 𝑘

or alternatively𝐻
0
: 𝜆
2
= 𝜆
1
= 1. Genetic model is recessive

(REC), additive (ADD),multiplicative (MUL), and dominant
(DOM)when 𝜆

1
= 1, 𝜆

1
= (1+𝜆

2
)/2, 𝜆
1
= 𝜆
1/2

2
, and 𝜆

2
= 𝜆
1
,

respectively.

2.2. Review of Association Tests for a Single Data Set. The
association in case-control studies can be tested using various
methods which have been extensively studied. The general
association between the disease status and the SNP can
be tested using Pearson’s Chi-square test which has an
asymptotic Chi-square distributionwith 2 degrees of freedom
under𝐻

0
. The test is given by

𝑇chi2 =
2

∑

𝑗=0

(𝑟
𝑗
− 𝑛
𝑗
𝑟/𝑛)
2
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2
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, (1)

where 𝑛
𝑖
= 𝑟
𝑖
+ 𝑠
𝑖
for 𝑖 = 0, 1, 2 and 𝑛 = 𝑟 + 𝑠. Under Hardy-

Weinberg equilibrium (HWE), an allele-based test (ABT) and

CATT with scores (0, 𝑥, 1) for (𝐺
0
, 𝐺
1
, 𝐺
2
), where 0 ≤ 𝑥 ≤ 1,

are given by
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(2)

where (𝑥
0
, 𝑥
1
, 𝑥
2
) = (0, 𝑥, 1) [9]. The optimal choices of 𝑥

for the recessive (REC), additive/multiplicative (ADD/MUL),
and dominant (DOM) models are 𝑥 = 0, 1/2 and 1,
respectively [9, 20]. Both 𝑍

𝑥
and 𝑍ABT asymptotically follow

a standard normal distribution under 𝐻
0
. 𝑍
𝑥
can be used

even when HWE does not hold. However, without the
HWE assumption, 𝑍ABT does not follow a standard normal
distribution due to the correlation between two alleles.

A robust test, MAX3 proposed by Friedlin et al. [10], can
be obtained by taking the maximum of three CATTs under
the three genetic models as MAX3 = max(|𝑍

0
|, |𝑍
1/2
|, |𝑍
1
|).

Parametric bootstrap or permutationmethods can be used to
find the 𝑝 value of MAX3 [4].

Let the 𝑝 values of Pearson’s Chi-square test and CATT
under the additive genetic model 𝑍

1/2
be 𝑃chi2 and 𝑃

1/2
,

respectively. WTCCC [5] proposed an alternative robust test
MIN2 = min(𝑃chi2, 𝑃1/2). Joo et al. [15] derived the asymptotic
null distribution of MIN2 and using their result the 𝑝 value
of MIN2 can be obtained as

𝑃MIN2

=
1

2
exp {−1

2
𝐻
−1

1
(1 −MIN2)} + 1

2
MIN2

−
1

2𝜋
∫

−2 log(MIN2)

𝐻
−1

1

(1−MIN2)
𝑒
−V/2 arcsin(

2𝐻
−1

1
(1 −MIN2)
V − 1

)𝑑V,

(3)

where 𝐻
1
and 𝐻

2
are the cumulative distributions of Chi-

square distributions with 1 and 2 degrees of freedom.
On the other hand, Song and Elston [21] considered a

Hardy-Weinberg disequilibrium trend test (HWDTT) given
by

𝑍
𝐻
=

(𝑟𝑠/𝑛)
1/2

(Δ̂
𝑝
− Δ̂
𝑞
)
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where Δ̂
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2
− (𝑝
2
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1
/2)
2 and Δ̂
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2
− (𝑞
2
+ 𝑞
1
/2)
2

are the estimates of Δ
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and Δ

𝑞
, where 𝑝

𝑖
= 𝑟
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/𝑟 and 𝑞

𝑖
= 𝑠
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Here, Δ denotes the Hardy-Weinberg disequilibrium (HWD)
coefficient defined by 𝑃𝑟(𝐵𝐵) − {𝑃𝑟(𝐴𝐵)/2 + 𝑃𝑟(𝐵𝐵)}

2 and
Δ
𝑝
andΔ

𝑞
denote the HWD coefficient in cases and controls,

respectively.
Zheng and Ng [13] used the information contained in the

signs of (Δ
𝑝
, Δ
𝑞
) to determine the genetic models in their

two-phase method. Their two-phase statistic 𝑍GMS is given
by 𝑍GMS = 𝑍

0
if 𝑍
𝐻

> 𝑐, 𝑍
1
if 𝑍
𝐻

< −𝑐, and 𝑍
1/2

other-
wise, where 𝑐 = Φ

−1
(1 − 𝛼

𝐻
) for 𝛼

𝐻
= 0.05. The asymptotic
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correlations between 𝑍
𝐻
and three CATTs under HWE were

derived and the significance level was adjusted accordingly to
control the desired type I error. Based on the observation that
this method assumes 𝐵 is the risk allele, Joo et al. [14] studied
the behavior of 𝑍GMS when either one of the alleles can be a
risk allele.They chose the risk allele based on the sign of𝑍

1/2
;

that is, if 𝑍
1/2

> 0, 𝐵 is the risk allele, and 𝑍
0
, 𝑍
1/2

, and 𝑍
1

are chosen for REC, ADD, and DOM models, respectively.
If 𝑍
1/2

< 0, the respective test statistics are chosen to
be −𝑍

1
, −𝑍
1/2

, and −𝑍
0
. They incorporate this property in

defining the test statistic for genetic model selection (𝑍GMS)
and calculating the 𝑝 value. Let Θ

0
(𝑧) = {𝑧 : 𝑧 > 𝑐},

Θ
1/2
(𝑧) = {𝑧 : |𝑧| < 𝑐}, and Θ

1
(𝑧) = {𝑧 : 𝑧 < −𝑐}. Then,

the 𝑝 value of this method can be obtained by

𝑝GMS

= 2{

1

∑
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∫
Θ
𝑥

(𝑧
𝐻

)

∫

∞

0

∫

∞

𝑡

𝜙
𝑥
(𝑧
𝑥
, 𝑧
1/2
, 𝑧
𝐻
) 𝑑𝑧
𝑥
𝑑𝑧
1/2
𝑑𝑧
𝐻
}

+ 2
{

{

{

∫
Θ
1/2

(𝑧)

Φ(
(−𝑡 ∧ 0) + 𝜌

1/2
𝑧

(1 − 𝜌2
1/2
)
1/2

)𝑑Φ (𝑧)
}

}

}

,

(5)

where 𝜌
𝑥
= Corr(𝑍

𝑥
, 𝑍
𝐻
) in (5) and 𝜌

𝑥,1/2
= Corr(𝑍

𝑥
, 𝑍
1/2
)

(𝑥 = 0, 1) are replaced by their consistent estimates. Here,
𝑡 = 𝑧GMS and (−𝑡 ∧ 0) = min(−𝑡, 0). Moreover, 𝑧GMS and 𝑧1/2
are the observed values of 𝑍GMS and 𝑍1/2, respectively.

While studying the properties of GMS, Joo et al. [14]
noticed that the probability of selecting the true recessive or
dominant models using 𝑍

𝐻
is very low especially for low

to moderate GRRs, but the unlikely genetic model can be
successfully excluded. This led to genetic model exclusion
method𝑍GME which is the same as the𝑍GMS described above
except 𝑍

𝑥
for 𝑥 = 0, 1/2, 1 is replaced by 𝑍∗

𝑥
where 𝑍∗

𝑥
=
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𝑥
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)/{2(1 +𝜌
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)}
1/2. And the 𝑝 value of GME can be

obtained as
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(6)

where 𝐿 = 𝑡{2(1 + 𝜌
𝑥,1/2

)}
1/2

− 𝑧
1/2

for 𝑡 = 𝑧GME.

2.3. 𝑝 Value of Replication Data Using the Robust Method. In
the discovery stage, the 𝑝 value of robust association tests,
including MAX3, MIN2, 𝑍GMS, and 𝑍GME, can be obtained
as described in Section 2.2. For the 𝑝 value of replication data
using the robust method, we use the same analytic method
that was used for discovery and the risk allele identified by
it [16]. This means that when the best test statistic or genetic
model is selected in the discovery stage, the replication stage

will adopt the discovery stage selection and the direction of
association.

Suppose that, for simplicity of notation, our interest is
in GWAS with two stages, one for discovery and the other
for replication, although the methodology described below
can be extended to multistages for replication. Let 𝑍(𝑖)

𝑥
for

𝑥 = 0, 1/2, 1 be the CATT optimal for recessive, additive,
and dominant models and let 𝑃(𝑖)

𝑥
be corresponding 𝑝 value

for 𝑖th stage (𝑖 = 1 for discovery and 𝑖 = 2 for replication
stages). Also, denote 𝑍(𝑖)∗

𝑥
= (𝑍
(𝑖)

𝑥
+ 𝑍
(𝑖)

1/2
)/{2(1 + 𝜌

(𝑖)

𝑥,1/2
)}
1/2

for 𝑥 = 0, 1/2, 1. Then, for CATT with a preselected genetic
model, 𝑃(2)

𝑥
= 1−Φ(sign(𝑍(1)

𝑥
⋅𝑍
(2)

𝑥
) ⋅ |𝑍
(2)

𝑥
|) using a one-sided

𝑝 value given the direction of association from the discovery
stage, and𝑃(2)∗

𝑥
= 1−Φ(sign(𝑍(1)∗

𝑥
⋅𝑍
(2)∗

𝑥
) ⋅ |𝑍
(2)∗

𝑥
|). Moreover,

denote the test statistics and 𝑝 values using Pearson’s Chi-
square test from the 𝑖th stage as 𝑇(𝑖)chi2 and 𝑃

(𝑖)

chi2. Further, let
HWDTT from the 𝑖th stage be 𝑍(𝑖)

𝐻
. Then, the second stage

𝑝 values, using MAX3, MIN2, 𝑍GMS, and 𝑍GME, denoted as
𝑃
(2)

MAX3, 𝑃
(2)
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(2)
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(2)
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𝑃
(2)
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(2)

𝑥
∗
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𝑥
,
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0
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𝐻
< −𝑐) + 𝑃

(2)

1
𝐼 (𝑍
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0
𝐼 (𝑍
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𝐻
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(7)

It is important to note that even though the direction of
the test statistics and the selected genetic models are used
to obtain the second stage 𝑝 values, the 𝑝 values from the
two stages are independent under the null hypothesis. This
is because, under the null hypothesis, the probability of 𝑍

1/2

being positive or negative is simply 1/2, and the probability
of the selection of a certain genetic model is also a constant
(𝛼
𝐻
for the recessive and dominant models and 1 − 2𝛼

𝐻
for

the additive model).

2.4. Combined Test Using 𝑝 Values and Its Statistical Signif-
icance. For a given robust test, we can consider the joint
analysis by combining 𝑝 values from the discovery and
replication stages of GWAS. We consider using 𝑝 values
rather than the test statistics because test statistics can have
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Table 1: Type I error rates of three approaches—replication-based (REP) test, Fisher’s combination (𝑍FC), and linear combination of test
(𝑍LC)—based on the CATT with an additive model (𝑍

1/2
), 𝜒2, MAX3, MIN2, GMS, and GME. The disease prevalence 𝐾 = 0.1, 𝑀 = 10

markers, 𝑟 = 1, 500 cases, and 𝑠 = 1, 500 controls are considered based on 20,000 simulations.

MAF 𝜋
𝑠

𝛼
𝐷

𝐹 = 0

𝑍
1/2

𝜒
2 MAX3 MIN2 GMS GME

0.3 0.5

0.05
REP 0.00530 0.00455 0.00505 0.00485 0.0050 0.00490
𝑍FC 0.00500 0.00535 0.00495 0.00510 0.00515 0.00460
𝑍LC 0.00535 0.00525 0.00485 0.00510 0.0050 0.00485

0.1
REP 0.00510 0.00560 0.00565 0.00485 0.00525 0.00545
𝑍FC 0.00565 0.00535 0.00565 0.00545 0.00565 0.00540
𝑍LC 0.00520 0.00565 0.00525 0.00520 0.00530 0.00525

0.3 0.6

0.05
REP 0.00510 0.00485 0.00480 0.00515 0.00480 0.00500
𝑍FC 0.00445 0.00455 0.00450 0.00455 0.00450 0.00460
LC 0.00500 0.00515 0.00495 0.00520 0.00475 0.00480

0.1
REP 0.00500 0.00485 0.00485 0.00535 0.00530 0.00505
𝑍FC 0.00465 0.00490 0.00485 0.00500 0.00455 0.00460
𝑍LC 0.00480 0.00470 0.00515 0.00490 0.00485 0.00475

0.4 0.5

0.05
REP 0.00590 0.00505 0.00530 0.00565 0.00505 0.00510
𝑍FC 0.00575 0.00430 0.00460 0.00535 0.00460 0.00500
𝑍LC 0.00600 0.00445 0.00500 0.00540 0.00490 0.00490

0.1
REP 0.00525 0.00470 0.00535 0.00450 0.00480 0.00515
𝑍FC 0.00515 0.00510 0.00495 0.00475 0.00540 0.00500
𝑍LC 0.00530 0.00500 0.00485 0.00475 0.00495 0.00510

0.4 0.6

0.05
REP 0.00475 0.00585 0.00480 0.00500 0.00515 0.00495
𝑍FC 0.00460 0.00470 0.00420 0.00490 0.00455 0.00440
𝑍LC 0.00525 0.00550 0.00520 0.00580 0.00510 0.00510

0.1
REP 0.00550 0.00490 0.00515 0.00535 0.00555 0.00540
𝑍FC 0.00520 0.00370 0.00495 0.00450 0.00515 0.00510
𝑍LC 0.00565 0.00485 0.00570 0.00530 0.00610 0.00580

complex forms and obtaining the distribution of the joint test
can be difficult. On the other hand, calculating a 𝑝 value for
each data set might be relatively simple, and the distribution
of 𝑝 values under the null hypothesis of no association is easy
to handle.

There are several methods for combining test statistics
from two stages [22], and twomost commonly used forms are
based on Fisher’s combination and a linear combination after
inverse normal transformation [23]. Fisher’s combination
(FC) directly sums 𝑝 values after −2 log transformation; that
is, 𝑍FC = −2𝑤

1
log(𝑃(1)) − 2𝑤

2
log(𝑃(2)), where 𝑃(𝑖) is 𝑝 value

from 𝑖 = 0 for discovery and 𝑖 = 1 for replication stages
using a given robust test. A specification of 𝑤

1
= 𝑤
2
= 1

gives the same weight for discovery and replication stages,
and one can consider 𝑤

1
= 2𝜋

𝑠
and 𝑤

2
= 2(1 − 𝜋

𝑠
)

where 𝜋
𝑠
= 𝑁
𝐷
/(𝑁
𝐷
+ 𝑁
𝑅
), and 𝑁

𝐷
and 𝑁

𝑅
are sample

sizes of the discovery and replication data sets. A linear
combination of two 𝑃 values after taking the inverse of the
standard normal cumulative distribution is given by 𝑍LC =

{𝑤
1
Φ
−1
(1−𝑃
(1)
/2)+𝑤

2
Φ
−1
(1−𝑃
(2)
)}/√𝑤2

1
+ 𝑤2
2
with a natural

choice of 𝑤
1
= √𝜋𝑠 and 𝑤2 = √1 − 𝜋

𝑠
. Let the significance

level of the discovery stage be 𝛼
𝐷
, which means that markers

with 𝑃(1) < 𝛼
𝐷
are selected and replicated in the replication

stage. The 𝑝 value of combined test can then be obtained as

𝑝FC = 𝑃
𝐻
0

(𝑃
(1)

< 𝛼
𝐷
, 𝑍FC > 𝑧FC)where the observed value of

𝑍FC is 𝑧FC.The𝑝FC are calculated as 𝑒
−𝑧FC/2(1+𝑧FC/2+log𝛼𝐷)

for equal weights where 𝑧FC > −2 log𝛼
𝐷
and (𝑤

1
/(𝑤
1
−

𝑤
2
))𝑒
−𝑧FC/2𝑤1−(𝑤

2
/(𝑤
1
−𝑤
2
))𝑒
−𝑧FC/2𝑤2𝛼

−(𝑤
1

−𝑤
2

)/𝑤
2

𝑑
for unequal

weights where 𝑧FC > −2𝑤
1
log𝛼
𝐷
. Detailed derivations are

described in the Appendix. Equivalently, for an overall type
I error threshold for a single marker of 𝛼, one may obtain
the threshold 𝐶FC of 𝑍FC that satisfies 𝑃

𝐻
0

(𝑃
(1)

< 𝛼
𝐷
, 𝑍FC >

𝐶FC) ≤ 𝛼. Similarly, for the 𝑍LC, the 𝑝 value is calculated
as 𝑝LC = 𝑃

𝐻
0

(𝑃
(1)

< 𝛼
𝐷
, 𝑍LC > 𝑧LC) = ∫

∞

𝑧
1−𝛼

𝐷

/2

𝜙(𝑧)[1 −

Φ((√𝑤2
1
+ 𝑤2
2
𝑧LC − 𝑤1𝑧)/𝑤2)]𝑑𝑧 for 𝑧LC > 𝑧

1−𝛼
𝐷

/2
where the

observed value of 𝑍LC = 𝑧LC.

3. Simulation Results

3.1. Type I Error. Table 1 provides the type I errors under
different scenarios. A disease prevalence of 10% is assumed,
and a total of 1500 cases and 1500 controls were divided into
two stages. The proportions of samples in the first stage (𝜋

𝑠
)

of 0.5 and 0.6 were considered for the minor allele frequency
(MAF) of 0.3 and 0.4. We considered 𝑀 = 10 markers to
control the genome-wide false positive rate at 𝛼 = 0.05 with
the Bonferroni correction. We did not consider a larger 𝑀
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such as 300,000 or 500,000 because this will require more
than 10 million simulations to show a stable estimate of the
type I error rate. With 𝑀 = 10, we performed 20,000
simulations which result in less than 10% of a coefficient
of variation for a significance level 0.05/𝑀 = 0.005 for
each marker [24]. The test statistics considered are 𝑍

1/2
,

Pearson’s Chi-square test,MIN2,MAX3,GMS, andGME. For
the second stage analysis, we considered a replication-based
analysis, 𝑍FC, and 𝑍LC as proposed above. The results are
based on the situation under HWE (HWE coefficient 𝐹 = 0).
As expected, all tests control the type I error reasonablly well,
and similar results were obtained when a slight deviation
from HWE is present with 𝐹 = 0.05 (results not shown).

3.2. Empirical Power. We examined the empirical powers of
different tests considered above. In Figure 1, we considered
𝑀 = 10 markers, a disease prevalence of 10%, the same
genotype relative risk for two stages (𝑟

1
= 1.4 and 𝑟

2
= 1.4),

and 1,000 cases and 1,000 controls. 2,000 simulations were
performed under HWE (𝐹 = 0) to control the genome-
wide false positive rate at 𝛼 = 0.05. The recessive, additive,
and dominant models were assumed for the first, second,
and third rows. Both joint analyses showed better power
performances compared to the replication-based analysis (up
to 15.9% in scenarios considered in Figure 1), and LC and FC
have comparable powers with less than 2% difference. The
power gain of using the joint analysis is not as much as that
observed in Skol et al. [18]. However, as reported by Skol
et al. [18], when the between-stage heterogeneity exists and
the risk allele has a larger effect in the first stage than that
in the second stage, much improved power is observed by
using the joint test. Figure 2 shows results under this scenario
with 𝑟

1
= 1.6 and 𝑟

2
= 1.4, and the observed increase

in power using the joint test is as high as 33.9%. Again,
the difference between LC and FC is minor with less than
3% difference. As for comparison between different robust
methods, MAX3, GMS, and GME perform well under the
recessive model, while 𝑍

1/2
, 𝜒2, and MIN2 are less powerful.

Under the additivemodel,𝑍
1/2

is most powerful, as expected,
and 𝜒2 is least powerful. Other robust methods perform well
with a slight decrease in power compared to 𝑍

1/2
. Under the

dominant model, MAX3, GMS, and GME perform the best
even though all tests show good power performances, and the
difference is minor. Similar patterns were observed when a
slight deviation from theHWE is present (results not shown).

4. Real Data Application

The GWAS on non-small-cell lung cancer (NSCLC) by Yoon
et al. [25] studied 621 NSCLC patients and 1541 control
subjects in the discovery stage. After stringent quality control
steps, a total of 246,758 SNPs were tested for the association
with NSCLC based on𝑍

1/2
. In the replication stage, 168 SNPs

with 𝑝 value less than 1 × 10−4 in the first stage based on 𝑍
1/2

were tested using 804 patients and 1470 control samples. We
identified additional 234 SNPs using MIN2 in the first stage
which could be studied in the replication stage if MIN2 was
used instead of 𝑍

1/2
since MIN2 produces stronger evidence

for the additional SNPs than 𝑍
1/2

does. The Manhattan plots
of using MIN2 and 𝑍

1/2
are presented in Figure 3. One

example is 𝑟𝑠385272 located in chromosome 2, which had
a 𝑝 value of 1.37 × 10

−7 which reached significance level at
Bonferroni correction in discovery samples alone, whereas
𝑍
1/2

yielded a𝑝 value greater than 1×10−4. Even though there
is possibility of false positive findings, these SNPs could have
been selected for replication if robust methods were used.

Since we do not have replication data for these additional
SNPs selected using MIN2 because the first stage selection
was based on 𝑍

1/2
in Yoon et al. [25], just for illustration

purpose of the proposed methods, we present the results of
three SNPs including 𝑟𝑠2131877 that was reported by Yoon
et al. [25]. When the significance level in the discovery stage
is set at 𝛼

𝐷
= 5 × 10

−5 so that all these exemplary SNPs can
be selected in the discovery stage; the 𝑝 value of combined
test based on four robust methods (MAX3, MIN2, GMS,
and GME) as well as 𝑍

1/2
and Pearson’s Chi-square test is

presented in Table 2. Fisher’s combination was used for the
joint test in the second stage. Only 𝑟𝑠2131877was found to be
significant with Bonferroni correction (𝑝 value < 2.03×10

−7)
by all except MAX3method.

5. Discussion

In genetic association studies, efficiency robust tests whose
performance does not depend on the underlying genetic
model have been extensively studied, and their power benefit
over a wide range of geneticmodels has been well recognized.
In this paper, we described how the idea of these robust
association tests can be applied to the replication studies and
further how overall statistical significance can be evaluated
using the combined test formed by 𝑝 values of the discovery
and replication studies.

When the robust tests are used, the test statistic of
each stage can have a complex form and thus dealing with
the distribution of the joint test can be difficult, whereas
calculating the 𝑝 value of each stage might be relatively
simple. Because the asymptotic distribution of the 𝑝 value
under the null hypothesis of no association is easy to handle,
the combined test using 𝑝 values rather than the test statistics
themselves can provide computational convenience.

There are several methods for combining test statistics
from two stages and Won et al. [22] compared the per-
formances of various choices. Two most commonly used
forms are based on Fisher’s combination and the linear
combination after the inverse normal transformation [23],
and we presented the test statistics and 𝑝 values of these two
methods. In our limited experience, the linear combination
and Fisher’s combination are fairly comparable. Fisher’s
combination seems to perform slightly better than the linear
combination when there exists some heterogeneity between
stages in terms of the genotype relative risk, while the linear
combination seems to perform slightly better in most of
other situations. However, the difference is extremely minor.
Further research is required for the thorough comparison of
various methods of combining 𝑝 values in the application of
efficiency robust tests to the replication of genetic association
studies.
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Figure 1: Empirical powers based on 2,000 simulations for𝑀 = 10markers, genotype relative risks of both stages = 1.4, and disease prevalence
𝐾 = 0.1 under the recessive, additive, and dominant models. 1,000 cases and 1,000 controls are considered to control 𝛼 = 0.05. The first stage
type I error rate for discovery is 𝛼

𝐷
= 0.05. Six test statistics, 𝑍

1/2
, 𝜒2, MAX3, MIN2, GMS, and GME, are considered. The first, second, and

third columns depict powers using the replication-based test, 𝑍FC, and 𝑍LC, respectively.
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Figure 2: Empirical powers based on 2,000 simulations for 𝑀 = 10 markers; genotype relative risks of two stages are different (𝑟
1
= 1.6,

𝑟
2
= 1.4); disease prevalence 𝐾 = 0.1 under the recessive, additive, and dominant models. 1,000 cases and 1,000 controls are considered to

control 𝛼 = 0.05. The first stage type I error rate for discovery is 𝛼
𝐷
= 0.05. Six test statistics, 𝑍

1/2
, 𝜒2, MAX3, MIN2, GMS, and GME, are

considered. The first, second, and third columns depict powers using the replication-based test, 𝑍FC, and 𝑍LC, respectively.
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Figure 3: Manhattan plots of 246,758 SNPs from Yoon et al. [25] based on MIN2 (a) and 𝑍
1/2

(b). The 𝑥 axis is chromosomal location and
the 𝑦 axis is the significance (−log

10
𝑃) of association. The horizontal line corresponds to the significance level 10−4.

Table 2: For selected exemplary three SNPs for testing association with NSCLC, 𝑝 value of combined test using additive CATT (𝑍
1/2
),

Pearson’s Chi-square test (𝑇chi2), MAX3, MIN2, 𝑍GMS, and 𝑍GME.

SNP 𝑝 value of 𝑍
1/2

𝑝 value of 𝑇chi2
Discovery Replication Combined test Discovery Replication Combined test

rs2131877 7.88 × 10
−5

1.04 × 10
−4

7.97 × 10
−8

1.40 × 10
−4

1.49 × 10
−4

1.84 × 10
−7

rs905551 1.83 × 10
−5

7.02 × 10
−3

7.70 × 10
−6

8.06 × 10
−5

4.89 × 10
−2

1.40 × 10
−5

rs1695109 2.48 × 10
−4

3.46 × 10
−2

2.17 × 10
−6

4.56 × 10
−5

1.53 × 10
−1

2.07 × 10
−5

SNP 𝑝 value of MAX3 𝑝 value of MIN2
Discovery Replication Combined test Discovery Replication Combined test

rs2131877 1.53 × 10
−4

4.05 × 10
−2

1.92 × 10
−5

1.32 × 10
−4

1.04 × 10
−4

1.26 × 10
−7

rs905551 4.50 × 10
−5

7.02 × 10
−3

1.92 × 10
−6

1.34 × 10
−4

4.89 × 10
−2

1.99 × 10
−5

rs1695109 3.54 × 10
−5

2.63 × 10
−2

4.64 × 10
−6

2.36 × 10
−5

2.63 × 10
−2

3.35 × 10
−6

SNP 𝑝 value of 𝑍GMS 𝑝 value of 𝑍GME

Discovery Replication Combined test Discovery Replication Combined test
rs2131877 1.86 × 10

−4
1.04 × 10

−4
1.71 × 10

−7
1.03 × 10

−4
1.04 × 10

−4
1.02 × 10

−7

rs905551 5.19 × 10
−5

7.02 × 10
−3

2.16 × 10
−6

7.35 × 10
−5

8.01 × 10
−3

3.20 × 10
−6

rs1695109 6.89 × 10
−4

1.27 × 10
−1

3.85 × 10
−5

2.69 × 10
−5

4.19 × 10
−2

5.40 × 10
−6

In a genetic study where the purpose of considering a
replication stage is to validate or replicate the genetic findings
from the discovery stage, which is the case considered in
this paper, the analysis in the replication stage utilized the
test statistic or genetic model that is selected as being the
best in the discovery stage and also the direction of the risk
allele, following guidelines for exact replication in genetic
association studies. If the purpose is to simply combine the
evidence fromdifferent data sources such as inmeta-analysis,
other strategies may be devised. Further research, again, is
required to provide fully detailed properties of suchmethods.

Power gain of a joint analysis over the conventional
replication-based analysis was thoroughly studied by Skol et
al. [18, 19]. In our simulation, the amount of power increase
using a joint test compared to the replication-based analysis
was much minor than what was observed by Skol et al.
[18, 19]. The exact reason is not known, but we suspect this
might be due to the power advantages of robust methods
and also due to the fact that the optimal choice from the
first stage is used when calculating the second stage 𝑝 values.

However, even though it was minor in some situations,
the joint anlysis presented better power performance than
the replication-based analysis in our study. This type of
joint analysis raised concerns about the exact meaning of
replication [17]. However, McCarthy et al. [26] mentioned
that joint analyses “blur the boundaries of where exactly
replication starts, but whichever analytical approach is taken,
confirmation in many independent samples is important and
it is the overall strength of the evidence of association that
matters.” Purpose of the current study was to present how
the overall strength of the evidence of association can be
evaluated when robust tests are used in GWAS replication
studies.

We illustrated how the proposed methods can be applied
in the real data that studied the association of SNPs with non-
small-cell lung cancer (NSCLC) in discovery and replication
stages. In the original study reported by Yoon et al. [25],
SNPs were selected in the discovery data set not based on
the robust tests but based on additive CATT. Therefore, we
found that some SNPs could have been selected by one
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of the robust methods but they were not included in the
replication data set. For these SNPs, we were not able to
perform the joint analysis that we propose, and it was not
possible to examine whether there are other SNPs that could
have been found to be associated with NSCLC by proposed
methods in the replication study. For this reason, we merely
presented howmany additional SNPs could have been further
followed in the replication stage when robust methods were
used. In many GWASs, it is a common practice to report
the summary test statistics and 𝑝 values of the SNPs under
a specific genetic model, usually an additive model, which
were further genotyped in the replication stage and were
finally defined to be significantly associated with a phenotype
of interest. As emphasized in this paper, one may have a
better chance of findingmanymissing SNPs by applyingmore
powerful and robust methods that consider different genetic
models simultaneously.Therefore, we urge the community to
share test results under not only an additive model but also
other genetic models, although they were not significant at a
stringent significance level, so that future research may have
enriched data resources, to which robust tests can be applied
in association studies.

Appendix

𝑝 value of Fisher’s Combination for
Equal and Unequal Weights

Equal Weights. Assume 𝑤
1

= 𝑤
2

= 1. Under the null
hypothesis of no association, 𝑋

1
= −2 log𝑃(1) and 𝑋

2
=

−2 log𝑃(2) are independent and each asymptotically follows
a 𝜒2 distribution with 2 degrees of freedom Let 𝑓

𝑘
(𝑥) and

𝐹
𝑘
(𝑥) be the probability and cumulative density functions of

𝜒
2 random variable with 𝑘 degrees of freedomThen 𝑓

2
(𝑥) =

exp(−𝑥/2)/2, 𝑓
4
(𝑥) = 𝑥 exp(−𝑥/2)/4, 𝐹

2
(𝑥) = 1 − exp(−𝑥/2),

and𝐹
4
(𝑥) = 1−exp(−𝑥/2)−𝑥 exp(−𝑥/2)/2. Denote the cutoff

of the discovery stage based on 𝛼
𝐷
as 𝐶
𝐷
; that is, 𝐹

2
(𝐶
𝐷
) =

1 − 𝛼
𝐷
. For observed value 𝑧FC > 𝐶

𝐷
of𝑋
1
+ 𝑋
2
, the 𝑝 value

is written as

𝑃
𝐻
0

(𝑋
1
> 𝐶
𝐷
, 𝑋
1
+ 𝑋
2
> 𝑧FC)

= 𝛼
𝐷
− ∫

𝑧FC

𝐶
𝐷

𝑓
2 (𝑥) 𝐹2 (𝑧FC − 𝑥) 𝑑𝑥

= 𝛼
𝐷
+ exp (−

𝑧FC
2
) − 𝛼
𝐷
+
1

2
exp(−

𝑧FC
2
) (𝑧FC − 𝐶𝐷)

= exp (−
𝑧FC
2
) (1 +

𝑧FC
2

+ log𝛼
𝐷
) .

(A.1)

Unequal Weights.When different proportions of samples are
used in the discovery and replication stages, it may be more
appropriate to assignweights proportional to the sample sizes
for each stage. For example, when only a small portion is
used in the discovery stage, to prevent Fisher’s combination
test from being dominated by the significant result in the

discovery stage, one may want to assign a small weight to the
discovery stage result.

When 𝜋
𝑠
is the proportion of samples used in the dis-

covery stage, one selection for weights is 𝑤
1

= 2𝜋
𝑠
and

𝑤
2
= 2(1 − 𝜋

𝑠
) for discovery and replication stages, which

simplifies to equal weights when 𝜋
𝑠
= 0.5. Based on these

weights, we consider unequal-weighted Fisher’s combination
as−2 log𝑃(1)𝑤1𝑃(2)𝑤2 = 𝑤

1
𝑋
1
+𝑤
2
𝑋
2
[27]. Its density function

is given by

𝑓
𝑤 (𝑥) =

1

2 (𝑤
1
− 𝑤
2
)
exp(− 𝑥

(2𝑤
1
)
)

−
1

2 (𝑤
1
− 𝑤
2
)
exp(− 𝑥

(2𝑤
2
)
) ,

(A.2)

and the probability distribution function is

𝐹
𝑤 (𝑥) = 1 − {

𝑤
1

(𝑤
1
− 𝑤
2
)
exp(− 𝑥

2𝑤
1

)

−
𝑤
2

(𝑤
1
− 𝑤
2
)
exp(− 𝑥

2𝑤
2

)} , 𝑤
1

̸= 𝑤
2
.

(A.3)

Using the previous notation, we have the following form
of 𝑝 value:

𝑃
𝐻
0

(𝑋
1
> 𝐶
𝐷
, 𝑤
1
𝑋
1
+ 𝑤
2
𝑋
2
> 𝑧FC)

= 𝛼
𝐷
− ∫

𝑧FC/𝑤1

𝐶
𝐷

𝑓
2 (𝑥) 𝐹2 (

𝑧FC − 𝑤1𝑥

𝑤
2

)𝑑𝑥

= exp(−
𝑧FC
2𝑤
1

) +
𝑤
2

𝑤
1
− 𝑤
2

exp(−
𝑧FC
2𝑤
2

)

× {exp(𝑤1 − 𝑤2
2𝑤
1
𝑤
2

𝑧FC) − exp(𝑤1 − 𝑤2
2𝑤
1
𝑤
2

𝑤
1
𝐶
𝐷
)}

=
𝑤
1

𝑤
1
− 𝑤
2

exp(−
𝑧FC
2𝑤
1

)

−
𝑤
2

𝑤
1
− 𝑤
2

exp(−
𝑧FC
2𝑤
2

)𝛼
−(𝑤
1

−𝑤
2

)/𝑤
2

𝐷

=
𝑤
1

𝑤
1
− 𝑤
2

exp(−
𝑧FC
2𝑤
1

)

−
𝑤
2

𝑤
1
− 𝑤
2

exp(−
𝑧FC
2𝑤
2

)𝛼
−(𝑤
1

−𝑤
2

)/𝑤
2

𝐷
,

(A.4)

where 𝑧FC/𝑤1 > 𝐶
𝐷
.
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