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ABSTRACT Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes main-
tain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-
associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spac-
ers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical
immunological memory. Only 50% of sequenced bacteria possess CRISPR-Cas immunity, in contrast to over 90% of sequenced
archaea. To probe why half of bacteria lack CRISPR-Cas immunity, we combined comparative genomics and mathematical mod-
eling. Analysis of hundreds of diverse prokaryotic genomes shows that CRISPR-Cas systems are substantially more prevalent in
thermophiles than in mesophiles. With sequenced bacteria disproportionately mesophilic and sequenced archaea mostly ther-
mophilic, the presence of CRISPR-Cas appears to depend more on environmental temperature than on bacterial-archaeal taxon-
omy. Mutation rates are typically severalfold higher in mesophilic prokaryotes than in thermophilic prokaryotes. To quantita-
tively test whether accelerated viral mutation leads microbes to lose CRISPR-Cas systems, we developed a stochastic model of
virus-CRISPR coevolution. The model competes CRISPR-Cas-positive (CRISPR-Cas�) prokaryotes against CRISPR-Cas-
negative (CRISPR-Cas�) prokaryotes, continually weighing the antiviral benefits conferred by CRISPR-Cas immunity against
its fitness costs. Tracking this cost-benefit analysis across parameter space reveals viral mutation rate thresholds beyond which
CRISPR-Cas cannot provide sufficient immunity and is purged from host populations. These results offer a simple, testable viral
diversity hypothesis to explain why mesophilic bacteria disproportionately lack CRISPR-Cas immunity. More generally, funda-
mental limits on the adaptability of biological sensors (Lamarckian evolution) are predicted.

IMPORTANCE A remarkable recent discovery in microbiology is that bacteria and archaea possess systems conferring immunolog-
ical memory and adaptive immunity. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-
associated genes (CRISPR-Cas) are genomic sensors that allow prokaryotes to acquire DNA fragments from invading viruses and
plasmids. Providing immunological memory, these stored fragments destroy matching DNA in future viral and plasmid inva-
sions. CRISPR-Cas systems also provide adaptive immunity, keeping up with mutating viruses and plasmids by continually ac-
quiring new DNA fragments. Surprisingly, less than 50% of mesophilic bacteria, in contrast to almost 90% of thermophilic bac-
teria and Archaea, maintain CRISPR-Cas immunity. Using mathematical modeling, we probe this dichotomy, showing how
increased viral mutation rates can explain the reduced prevalence of CRISPR-Cas systems in mesophiles. Rapidly mutating vi-
ruses outrun CRISPR-Cas immune systems, likely decreasing their prevalence in bacterial populations. Thus, viral adaptability
may select against, rather than for, immune adaptability in prokaryotes.
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A fundamental tenet of Darwinian evolution is that random
mutations drive adaptation (1–3). Yet, most nucleotide sub-

stitutions are deleterious to host fitness (4–8), making undirected
mutation wasteful. What if organisms could sense their changing
environments and acquire only those mutations that increased
fitness?

In multicellular eukaryotes, sensor-based, Lamarckian evolu-
tion appears unlikely, with soma-germ line barriers generally in-
hibiting the inheritance of environmentally acquired mutations
(9–11). In contrast, single-celled bacteria and archaea lack a ded-
icated germ line. With Lamarckian evolution thus apparently pos-
sible in prokaryotes, we sought to capture the conditions under

which natural selection favors sensor-based adaptation in bacteria
and archaea.

As a model system to quantitatively probe the prevalence of
sensor-based adaptation, we studied an adaptive immune system
found in many, but not all, bacteria and archaea (12–15). This
microbial sensor-based immune system is a genomic locus com-
prised of two adjacent regions. The first region is an array of in-
terspersed repetitive sequences termed clustered regularly inter-
spaced short palindromic repeats (CRISPR). The second region
contains critical accessory genes termed CRISPR-associated (Cas)
genes. The protein products of the Cas genes serve as the machin-
ery driving CRISPR-based immunity, enabling CRISPR loci to
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serially target and incorporate 30- to 84-bp DNA fragments from
invading viruses and plasmids between CRISPR repeat sequences
(16–18). These CRISPR-incorporated fragments are known as
“spacers,” whereas the corresponding viral or plasmid sequences
are termed “protospacers.”

Spacers make CRISPR-Cas an adaptive immune system, im-
munizing bacterial and archaeal hosts against subsequent inva-
sions by viruses or plasmids with matching protospacers (16–18).
In many ways, analogous to the RNA interference system of eu-
karyotes (19), spacer-mediated immunity is RNA guided. The
CRISPR locus is first transcribed into a single long RNA sequence;
this “pre-CRISPR RNA” is then cleaved into individual spacer
repeat units by a complex of Cas proteins (20–24). Aided by ad-
ditional Cas proteins, the single bound spacer senses and degrades
cognate protospacers, inactivating invading viruses or plasmids
(12, 18, 20, 22, 25–27). Viruses can evade CRISPR-Cas through
minimal changes in targeted protospacer regions. In several ex-
periments, single protospacer mutations have rendered CRISPR-
Cas ineffectual (16, 28–30). Conversely, hosts have regained anti-
viral immunity through new spacer additions (28, 29, 31, 32),
driving potential coevolutionary arms races between mutating vi-
rus and spacer-incorporating host.

Previously, we combined metagenomic time series data with a
mathematical model to track the arms race between CRISPR
spacer incorporation and viral protospacer mutation across a
multiyear period in an acid mine drainage system (33). To focus
on spacer/protospacer coevolution, the previous mathematical
model assumed that all prokaryotes contained CRISPR-Cas loci.
Similarly, the metagenomic reconstructions targeted CRISPR-Cas
regions, limiting most of our analysis to CRISPR-Cas-positive
(CRISPR-Cas�) hosts. In actuality, however, less than half of all
sequenced bacteria contain CRISPR-Cas loci (15).

Here we investigate why only ~45% of sequenced bacterial
genomes maintain CRISPR-Cas systems, in contrast to the over
90% of sequenced archaeal genomes that are CRISPR-Cas�. The
relative dearth of bacterial CRISPR-Cas systems appears especially
surprising given the extensive diversity of lytic bacterial viruses
(34, 35) against which CRISPR-Cas would be expected to provide
critical adaptive immunity.

One potential driver of the dichotomous prevalence of
CRISPR-Cas between bacteria and archaea could be that most
sequenced archaea are thermophiles, whereas most sequenced
bacteria are mesophiles. Recent biophysical models show that mu-
tations are more likely to be lethal in thermophilic environments,
because high temperatures reduce protein stability (36–40). With
an increased cost to mutation, thermophilic genomes are pre-
dicted to have lower mutation rates than mesophilic genomes (38,
40). The results of several experiments match these predictions,
reporting substantially reduced genomic mutation rates in ar-
chaeal and bacterial thermophiles (41–43). A further indicator of
the increased cost of mutation in thermophiles is that the average
ratio of nonsynonomous to synonomous substitutions, i.e., the
dN/dS ratio, averaged across thousands of pairs of orthologous
genes, drops from 0.14 in mesophiles to 0.09 in thermophiles (44).

These predictions and measurements indicate that viruses in-
fecting thermophiles are afforded fewer viable protospacer muta-
tions to evade CRISPR-Cas targeting. With viable viral mutation
rates reduced, each CRISPR-incorporated spacer provides antivi-
ral immunity for a longer period of time. Armed with more ben-
eficial spacers, the entire CRISPR-Cas system would provide

greater immunity in mutationally constrained thermophilic envi-
ronments. We thus hypothesized that decreased viral mutation
rates select for the increased presence of CRISPR-Cas in thermo-
philes, explaining the disproportionate presence of CRISPR-Cas
in archaea.

To quantitatively test the hypothesis that decreased viral mu-
tation rates increase the prevalence of CRISPR-Cas, we developed
a population genetic model in which hosts with and without
CRISPR-Cas compete under pressure from mutating, lytic vi-
ruses. CRISPR-Cas� hosts serially acquire antiviral spacers, but
CRISPR-Cas also comes with a parameterized fitness cost. Weigh-
ing the fixed fitness cost of CRISPR-Cas against its changing im-
munological benefit, the model calculates the evolutionary stabil-
ity of CRISPR-Cas across the parameter space. In agreement with
the thermophilicity hypothesis, simulations capture striking
phase transitions in which CRISPR-Cas is highly prevalent at re-
duced viral mutation rates but eradicated once viral mutation
rates surpass cost-dependent thresholds. Thus, increasing viral
adaptability appears to depress host immune adaptability.

RESULTS
CRISPR-Cas is disproportionately present in bacterial and ar-
chaeal thermophiles. The basic premise of our thermophilicity
hypothesis is that, by reducing viral mutation rates, increased en-
vironmental temperatures increase the prevalence of CRISPR-
Cas. Thus, a high frequency of CRISPR-Cas is predicted for the
minority of bacteria that are thermophiles. To test this prediction,
we sampled a representative set of 383 bacterial and archaeal ge-
nomes from the collection of all fully sequenced prokaryotes (Ma-
terials and Methods). Only one sequence per genus was generally
sampled, increasing statistical independence. We then analyzed
the sampled genomes for the presence of putatively functional
CRISPR-Cas loci, using established bioinformatics methods (45,
46).

In agreement with the prediction of the thermophilicity hy-
pothesis, approximately 90% of bacterial thermophiles possess
CRISPR-Cas systems, whereas only 46% of bacterial mesophiles
are CRISPR-Cas� (Fig. 1, top). Archaeal thermophiles are also
more likely to contain CRISPR-Cas than are archaeal mesophiles.
Across all prokaryotes, thermophilicity and the presence of
CRISPR-Cas are highly correlated (P � 10�11 by Fisher’s exact
test). Multivariate logistic regression verifies that the strong cor-
relation between thermophilicity and the presence of CRISPR-Cas
exists independent of whether the thermophiles are archaea or
bacteria (P � 10�6). In addition to the strong environmental cor-
relation, there is a weak correlation between archaeal-bacterial
taxonomic affiliation and CRISPR-Cas presence (P � 0.02). To
test whether the presence of CRISPR-Cas hinges more strongly on
thermophilic environment or on archaeal taxonomic affiliation,
we used the Akaike information criterion (AIC), a model selection
method (47). The AIC computes relative goodness of fit for statis-
tical models, with a lower AIC indicating a better fit. Computing
the AIC values shows that the presence of CRISPR-Cas is better
predicted by thermophilic environment alone (AIC � 479) than
by archaeal taxonomy alone (AIC � 509).

To further analyze the environmental dependence of CRISPR-
Cas, we estimated the distribution of the number of spacers per
CRISPR-Cas� host in mesophilic and thermophilic environ-
ments (Fig. 1, bottom; see Fig. S1 in the supplemental material).
On average, thermophiles possess a greater number of CRISPR
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spacers per genome than do mesophiles (P � 10�7 by Welch’s
t test). However, the variance in the per-genome number of spac-
ers is greater in mesophiles than in thermophiles (P � 5 � 10�3 by
the F test), with the greatest number of spacers found in a meso-
phile.

A mutation-selection-drift model for the evolution of
CRISPR-Cas. To quantitatively probe the high prevalence of
CRISPR-Cas in thermophiles, we developed a population genetic
model. Similar to previous mathematical models of CRISPR-virus
coevolution (33, 48–50), the model implements basic events
known to occur during viral infections such as unidirectional host
spacer addition and viral protospacer mutation. However, in con-
trast to earlier models, here we include horizontal gene transfer
(HGT) events that occur independent of viral infection. During
HGT events, hosts can acquire or delete entire CRISPR-Cas loci.
This allows us to compete the resulting CRISPR-Cas-positive
(CRISPR-Cas�) and CRISPR-Cas-negative (CRISPR-Cas�)
subpopulations across wide swaths of parameter space, yielding
thresholds for the maintenance of CRISPR-Cas systems.

All model events occur during discrete, nonoverlapping itera-
tions, with model parameters determining event probabilities (see
Table S1 in the supplemental material). The full model algorithm
is detailed in the supplemental material; below we describe the key
steps involved in each iteration (Fig. 2).

(i) Step 1. Virus-host encounters. In each iteration, a fixed and
parameterized number of virus-host encounters occur. These en-
counters are divided among the host and viral strains according to
the products of host and viral strain frequencies (mass action).
Each virus-host encounter is then classified as either “immune” or
“productive” based on the outcome: either the immune host clears
the virus, or the productive virus successfully infects (i.e., lyses)
the host.

Immune encounters arise in one of two ways: (i) CRISPR-
Cas� hosts can survive viral infection by possessing spacers
matching viral protospacers, or (ii) CRISPR-Cas� and CRISPR-
Cas� hosts can survive through non-CRISPR-based resistance
mechanisms such as restriction modification (35, 51). When both
CRISPR and innate resistance mechanisms fail, the virus kills the
host in a lytic encounter. Offering CRISPR-Cas a strong selective
advantage in the model and in agreement with the results of viral
challenge assays performed in two distinct model systems (28, 30),
we parameterize CRISPR-Cas to be 105-fold more protective than
non-CRISPR-based resistance mechanisms (see Table S1 in the
supplemental material). Importantly, CRISPR-Cas is protective
only when it contains a spacer matching a viral protospacer. In-
nate resistance mechanisms are thus vital to host survival when the
host lacks spacers matching an invading virus.

(ii) Step 2. Immune hosts can add spacers, and infective vi-
ruses can mutate protospacers. In a parameterized fraction of
immune (but not productive) virus-host encounters, a CRISPR-
Cas� host strain can unidirectionally incorporate a new spacer.
Analogous to host spacer addition, in a parameterized fraction of
productive virus-host encounters, a viral strain can mutate a ran-
dom protospacer. Given the �30-bp size of each protospacer, a
previously unseen protospacer is placed in the slot of the mutated
protospacer (“infinite allele” assumption). Virus and host mu-
tants are initialized with an abundance of 1.

(iii) Step 3. CRISPR-Cas� hosts can lose CRISPR-Cas or de-
lete spacers, and CRISPR-Cas� hosts can gain CRISPR-Cas. In-
dependent of the virus-host encounters and mutations in steps 1
and 2, all host strains can undergo homologous recombination or
plasmid-driven HGT. This leads to spacer deletions and acquisi-
tions and losses of entire CRISPR-Cas systems. When a CRISPR-
Cas� host is chosen to delete spacers, two random spacers in its
CRISPR locus are sampled. The new mutant deletes all spacers
between the two chosen spacers. When a CRISPR-Cas� host loses
CRISPR-Cas, the entire CRISPR-Cas locus is deleted, with all at-
tendant spacers. Finally, when a CRISPR-Cas� host acquires
CRISPR-Cas by HGT, the CRISPR-transferring donor strain is
chosen by randomly sampling all host strains. If the chosen donor
strain lacks CRISPR-Cas, the mutant receives a functional
CRISPR-Cas locus but no spacers. Thus, the model continually
reintroduces CRISPR-Cas into CRISPR-Cas� populations, test-
ing the stability of CRISPR-Cas� populations to mutational in-
vasion by CRISPR-Cas� strains. Accordingly, at each point in the
parameter space, we can average the prevalence of CRISPR-Cas
across large numbers of iterations, instead of averaging the results
of many independent simulations (the continual reintroduction
of CRISPR-Cas fits an ergodic assumption). As in step 2, all host
mutants are generated independently at an initial abundance of 1.

(iv) Step 4. Selection for immune hosts and infective viruses.
Selection modulates the frequencies of host and viral strains ac-
cording to the fitness functions defined below. This frequency
adjustment is performed only for the “parent” strains that under-

FIG 1 CRISPR-Cas is disproportionately prevalent in thermophiles. (Top)
Bar graph showing the percentage of CRISPR-Cas� and CRISPR-Cas� pro-
karyotes in mesophilic (mesoph.) and thermophilic (therm.) environments.
The numbers in white or black shown on the bars are the numbers of species.
Across 383 diversified bacterial and archaeal genomes (Materials and Meth-
ods), CRISPR-Cas is disproportionately sampled in thermophiles (P � 10�6).
(Bottom) CRISPR locus length distributions. The distributions of locus
lengths for CRISPR-Cas� thermophiles and mesophiles fit to log10 of the total
number of spacers per genome (Fig. S1 shows histograms in logarithmic and
nonlogarithmic scales). On average, thermophilic loci possess more spacers (P
� 10�7). However, CRISPR locus lengths show greater variance in mesophiles
(P � 5 � 10�3).
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went the virus-host encounters in step 1: mutants from steps 2 and
3 remain at frequencies of 1/N, where N is the respective host or
viral population size.

To increase in fitness, viruses need to productively infect hosts,
whereas hosts need to immunize themselves without paying too
high a fitness cost. One potential cost of the CRISPR-Cas system
could be autoimmunity, stemming from the documented acqui-
sition of self-spacers matching host DNA in ~18% of known
CRISPR-Cas loci (52–54). An additional cost is that CRISPR-Cas
might hamper all forms of HGT, including the uptake of beneficial
genetic material such as antibiotic resistance genes (54, 55). With
these sources of fitness costs in mind, the model includes a fixed,
parameterized cost for the CRISPR-Cas locus. Importantly, hosts
were not penalized for each ~100-bp spacer repeat unit added.

The fixed CRISPR-Cas cost, C, lowers the relative growth rate
(r) of CRISPR-Cas� strains by the factor r � 1/(1 � C). If a host
strain lacks CRISPR-Cas, r is defined to equal 1. Weighing this
relative fitness cost against the relative immunity of a host strain,
selection resets the frequencies of each host strain to the following:

fBj
�

� Vir(Bj) � Immunei,j

� Vi� Bjr(Bj) � Immunei,j

(1)

where fBj
stands for the frequency of host (Bacterial) strain j, Vi stands

for virus, Bj stands for host (Bacterial) strain j, and Immunei,j stands
for number of immune encounters between virus strain i and bacte-
rial strain j.

Thus, the new frequency of a host strain is its fraction of all host
immune encounters, with the caveat that CRISPR-Cas� strains
pay a relative growth cost.

To determine viral strain frequencies, we consider only the
ability of a viral strain to productively infect the host strains. The
new frequency of a viral strain is then its fraction of all productive
encounters undergone by the viral population:

fVi
�

� BjProductivei,j

� Vi� BjProductivei,j

(2)

where fVi
stands for the frequency of viral strain i and Productivei,j

stands for the number of productive encounters between viral
strain i and host strain j.

After selection, the model calculates the number of mutants,
m, created by each host and viral parent strain in steps 2 and 3. The
cumulative frequency of these mutants, m/NB (for host mutants)
where NB stands for the total host bacterial population and m/NV

FIG 2 Model of virus-host coevolution. Schematic of a representative model iteration. Host and viral populations are divided into strains labeled B1 and B2 (B
stands for bacteria) and V1 and V2 (V stands for virus), respectively. Host strains are shown as ovals and viral strains as hexagons; bars within the strains reflect
host spacers and viral protospacers. Identical spacer and protospacer sequences have the same colored bar. Host strains lacking CRISPR-Cas are shown as empty
ovals. In the first step of a model iteration, host and viral strains encounter one another. In the next step, mutations occur (single and double quotation marks).
Because viruses mutate only in productive encounters and hosts incorporate spacers only if they survive infection, mutations are concentrated in immune hosts
and infective viruses. In the next step, more mutations can occur if CRISPR-Cas� hosts delete spacers or lose entire CRISPR-Cas loci. Similarly, CRISPR-Cas�
hosts can acquire CRISPR-Cas loci. In the fourth step, selection modifies strain frequencies according to equations 1 and 2 in the text. Finally, each iteration ends
with the model randomly sampling approximately fixed numbers of hosts and viruses.
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(for viral mutants) where NV stands for the total virus population,
is then deducted from the frequency of the parent strain. When
the frequency of a parent strain falls below 0, it is cleared from the
model.

(v) Step 5. Sampling. Collecting all parent and mutant strains
from the previous steps, we multiply the host and viral strain fre-
quencies by the total population sizes, NB and NV, of the host and
viral populations. This yields an abundance for each strain (with
an abundance of 1 for each mutant). We then sample (with re-
placement) an average of NB hosts and NV viruses. Sampled hosts
and viruses remain in the model, whereas unsampled strains are
removed.

Sampling mimics genetic drift by challenging new mutants
that arise at the low abundance of 1 with stochastic extinction,
regardless of their fitness. Further, sampling randomly removes
old strains which selection has reduced in abundance. Thus, mu-
tation creates diversity, whereas selection and sampling limit di-
versity, allowing the model to implement mutation-selection-
drift balance.

Finally, at the end of an iteration, host and viral strain frequen-
cies are renormalized to ensure that both sum to 1. The model
then returns to step 1 in all but the final iteration.

Cost-benefit threshold for CRISPR-Cas systems. To analyti-
cally derive the dependence of CRISPR-Cas prevalence on exper-
imentally measurable parameters, we calculated when CRISPR-
Cas is under positive selection in a given model iteration.
According to equation 1, the selection equations set the frequency
of a host strain to be its fraction of all immune encounters, and
CRISPR-Cas� strains have their immune encounters reduced by
a cost. Thus, the postselection prevalence of CRISPR-Cas is the
sum of the cost-reduced fractions of immune encounters for all
CRISPR-Cas� host strains. When the postselection prevalence of
CRISPR-Cas is greater than its preselection prevalence, CRISPR-
Cas is under positive selection in the model. As derived in the
supplemental material, CRISPR-Cas is under positive selective
when:

C � fB�V� 1
P0

� 1� (3)

Here C is the fitness cost of maintaining CRISPR-Cas, whereas
fB�V is the probability that a randomly chosen CRISPR-Cas� host
strain shares at least one spacer with a randomly chosen viral
strain. Given the extremely small failure rate measured for
CRISPR-Cas systems (16, 30), this is effectively the probability of
CRISPR-Cas providing immunity in a model iteration. Con-
versely, P0 is the fraction of viral encounters that a host strain
survives when CRISPR-Cas is absent or fails.

Because fB�V is a nonlinear function dependent on all model
parameters, equation 3 is not in itself predictive. However, fB�V

can be divided into measurable components, yielding a predictive
threshold for CRISPR-Cas in a simplified setting. For simplicity,
we assume that the CRISPR-Cas� strains initially lack spacers
against the current viruses and that the number of protospacers
per virus is one.

Lacking protective spacers in advance, fB�V is the combined
probability that a CRISPR-Cas� host survives viral infection due
to innate resistance, adds a spacer, and then encounters a virus
with a protospacer matching the acquired spacer. With the three
events independent, fB�V � (P0)(Ps_add)(�i si

2), where P0 is the
probability of innate resistance and Ps_add is the probability of

adding a spacer in an immune encounter (P0). Ps_add is thus the
probability that a spacer addition occurs. The probability of the
acquired protospacer being protospacer i is si, where si is the frac-
tion of viruses containing protospacer i. Because the next virus
encountered will also contain protospacer i with probability si,
once a spacer addition occurs, �i si

2 is the probability that the next
virus encountered has the same protospacer. Critically, the si val-
ues (i.e., the protospacer frequencies) are directly measurable in
both laboratory and metagenomic samplings.

In addition to being measurable, �i si
2 has an immediate con-

nection to a well-studied measure of population diversity known
as the Simpson diversity index D (56) that is defined to equal 1 �
�i si

2, i.e., the probability that two randomly sampled protospacers
are distinct. Combining equation 3 with the decomposition of
fB�V, in the simplified model setting, selection promotes CRISPR-
Cas� strains when:

C � (Ps_add)(1 � D)(1 � P0) (4)
Two key predictions arise from this inequality. First, equation

4 is a cost-benefit threshold that quantifies when the cost of
CRISPR-Cas is less than the immunological benefit conferred by
CRISPR-Cas. The immunological benefit of CRISPR-Cas reflects
its ability to acquire protospacers shared by many viruses together
with the likelihood that competing, innate resistance mechanisms
are nonprotective. Second, this inequality predicts that, if viral
diversity is sufficiently high, CRISPR-Cas cannot rise in fre-
quency. As protospacer diversity gets large, 1 � D approaches 0,
whereas Ps_add and the 1 � P0 term cannot surpass 1. Thus, for any
nonnegligible cost, high viral diversities are predicted to purge
CRISPR-Cas from a population, irrespective of the spacer addi-
tion rate.

CRISPR-Cas emerges only at intermediate levels of innate
resistance. Inequalities 3 and 4 appear to imply that increasing the
probability of innate resistance (P0) decreases the selective advan-
tage of CRISPR-Cas (i.e., reduces the maximal cost at which
CRISPR-Cas can be maintained). However, this is not always the
correct interpretation. Increasing P0 also decreases viral diversity
(D) by decreasing the frequency of productive encounters in
which the viruses can mutate. Thus, when increasing P0 increases
the 1 � D term more than it decreases the 1 � P0 term, increasing
P0 actually promotes CRISPR-Cas� strains. Increasing innate im-
munity offers a second advantage to CRISPR-Cas by providing
more immune encounters to prime the CRISPR locus with spacers
against new viruses.

While initial increases in innate immunity promote CRISPR-
Cas� strains, inequalities 3 and 4 show that CRISPR-Cas� strains
will be selected against when P0 increases to become close to 1.
Inequality 3 shows that even perfect CRISPR-Cas systems, with
immunity against 100% of the viruses, cannot evolve when P0 �
2/3 (at the parameterized CRISPR-Cas cost of 0.5). This is because
there is no benefit to maintaining a costly CRISPR-Cas system
when the cost-free alternative (innate immunity) provides almost
complete protection.

With simple analytics implying that innate immunity has com-
peting effects on the evolution of CRISPR-Cas, we designed a
model simulation to directly probe the prevalence of CRISPR-Cas
as a function of the level of innate immunity (see Fig. S2 in the
supplemental material). The model simulations confirm that in-
nate immunity must be increased above a basal, “priming” thresh-
old to maintain CRISPR-Cas. Similarly, CRISPR-Cas loci are lost
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from populations at extremely high levels of innate resistance.
Only at intermediate levels of innate immunity does CRISPR-Cas
dominate populations.

High viral mutation rates overwhelm CRISPR-Cas systems.
While the prevalence of CRISPR-Cas nonmonotonically depends
on the probability of innate immunity, inequalities 3 and 4 predict
a simpler dependence of the prevalence of CRISPR-Cas on the
level of viral mutation. Increasing the viral mutation rate lowers
the probability that a host’s spacers match future viral protospac-
ers, directly decreasing the benefit of CRISPR-Cas. To test whether
this decreased immunological benefit purges CRISPR-Cas from
host populations, we simulated the model across thousands of
iterations at gradually increasing viral mutation rates.

At low viral mutation rates, all hosts maintain CRISPR-Cas
immunity (Fig. 3a; see Fig. S3 in the supplemental material). Be-
cause viral diversity is depressed at low viral mutation rates
(Fig. S3 and Fig. S4), few spacers are required to provide immunity
against the entire viral population. With spacer deletion outpac-
ing spacer addition in the model (see Table S1 in the supplemental
material), CRISPR loci delete all but the few antiviral spacers that
selection maintains. The CRISPR loci are thus kept small at low
viral mutation rates. As the viral mutation rate increases, CRISPR
loci gradually increase in length, requiring more and more spacers
to maintain immunity against an increasingly diverse viral popu-
lation. The model predicts that CRISPR loci contain hundreds of
spacers per locus at intermediate viral mutation rates, matching
the largest experimentally observed CRISPR-Cas systems (Fig. 1,
bottom). Further increases in the rate of viral mutation cannot be
matched with further increases in CRISPR lengths. Beyond a viral
mutation rate threshold, average locus lengths plunge to zero and
CRISPR-Cas is purged from populations. Thus, viral mutation
overwhelms the CRISPR-Cas system.

Before the viral mutation rate Pv_mut is increased to the point
that it purges CRISPR-Cas from host populations, an intermedi-
ate viral mutation regime emerges (0.001 � Pv_mut � 0.003) in
which the average prevalence of CRISPR-Cas is often strictly be-
tween 0 and 1 (Fig. 3a). Two explanations for this intermediate
CRISPR-Cas prevalence are conceivable: either mixed CRISPR-
Cas� and CRISPR-Cas� populations coexist in individual itera-
tions, or the model oscillates between entirely CRISPR-Cas� and
entirely CRISPR-Cas� iterations, yielding an intermediate time-
averaged prevalence. To discriminate between these cases, we an-
alyzed all individual iterations of the 600 simulations in which
0.001 � Pv_mut � 0.003. Only 0.2% of the individual model iter-
ations contained mixed CRISPR-Cas� and CRISPR-Cas� popu-
lations (see Fig. S5 in the supplemental material). Thus, at inter-
mediate viral mutation rates (i.e., the separatrix points), hosts
occasionally undergo rapid phase transitions between 100%
CRISPR-Cas� and 100% CRISPR-Cas� states (Fig. S4, middle
panel). Across thousands of model iterations, the average preva-
lence of CRISPR-Cas can thus fall anywhere between 0 and 1,
depending on the residence times at the CRISPR-Cas� and
CRISPR-Cas� quasi-steady states.

The viral mutation parameter probed above is not the sole
determinant of viral diversity. Because viral mutants emerge only
in productive virus-host encounters, the probability of a viral mu-
tation is the product of the parameterized viral mutation rate and
the probability that virus-host encounters are productive. We de-
note this product the “effective” viral mutation rate. Similarly, the
effective host spacer addition rate is the product of the host spacer

addition rate and the probability that a random virus-host en-
counter is immune (nonproductive). Plotting the effective viral
mutation rate and the effective spacer addition rate as functions of
the parameterized viral mutation rate reveals an initial inverse
symmetry: as the viral mutation parameter increases, slow in-
creases in the effective viral mutation rate match slow decreases in
the effective host spacer addition rate (Fig. 3b). These changes in
the effective adaptation rates are initially buffered because a still-
functioning CRISPR-Cas system keeps most encounters immune
(see Fig. S3 in the supplemental material). However, when the
viral mutation parameter increases to an intermediate level, a nar-
row regime emerges in which both the effective spacer addition
rate and effective viral mutation rate are nonnegligible. This is the
regime of most intensive coevolution, in which hosts frequently

FIG 3 Rapid viral mutation overwhelms CRISPR-Cas systems. (a) Average
CRISPR locus length (y axis) and prevalence (heatmap) as functions of the
viral mutation rate. Model averages are “time averages” taken across 100,000
(10N) iterations. Viral mutation rates range from 10�4 to 10�2 per genome per
productive infection. Since spacer deletion rates outpace spacer addition rates
(see Table S1 in the supplemental material), evolution prunes CRISPR loci to
the smallest sizes at which they provide antiviral immunity. At low viral mu-
tation rates, few spacers are required against the highly similar viruses. As the
viral mutation rate increases, locus lengths increase, with more spacers re-
quired against the diversifying viruses (see Fig. S3 in the supplemental mate-
rial). Once viral mutation rates increase above a threshold, however, CRISPR-
Cas systems can no longer keep pace. Overwhelmed by viral diversity, locus
lengths crash to 0, and the system is purged from host populations. (b) Effec-
tive host and viral mutation rates as functions of the viral mutation rate. Since
viruses mutate protospacers only during productive virus-host encounters, the
effective viral mutation rate in a simulation is the product of the fraction of
productive encounters and the (changing) viral mutation rate. Similarly, since
hosts add spacers only during immune virus-host encounters, the effective
host mutation rate in a simulation is the product of the fraction of immune
encounters and the (fixed) spacer addition rate. Notably, the longest CRISPR
loci emerge at reduced effective spacer addition rates. In fact, these long loci
emerge in the small window in which the effective mutation rates of both host
and virus are nonnegligible. Locus lengths thus reflect the strength of virus-
host coevolution, rather than the rate of host spacer addition.

Weinberger et al.

6 ® mbio.asm.org November/December 2012 Volume 3 Issue 6 e00456-12

mbio.asm.org


add spacers and viruses frequently mutate protospacers. More-
over, selection maintains the host spacer addition in the face of the
rapid spacer deletion because the level of viral diversity necessi-
tates extra spacers. Thus, the maximal locus lengths in Fig. 3a
reflect maximal virus-host coevolution. Beyond this intermediate
regime of maximal coevolution and maximal locus lengths, the
effective host spacer addition rate plunges to 0, whereas the effec-
tive viral mutation rate increases linearly. The linear increase at
high viral mutation rates shows that all but a constant (innate
immune) fraction of encounters are productive absent CRISPR-
Cas.

High costs and rapid viral mutation eradicate CRISPR-Cas.
Although Fig. 3 shows that CRISPR is lost at high viral mutation
rates due to the loss of antiviral immunity (i.e., benefit), inequal-
ities 3 and 4 predict that the prevalence of CRISPR-Cas is a func-
tion of both immunity and cost. We thus ran new simulations to
track the average prevalence of CRISPR-Cas as a function of both
the cost and the viral mutation rate (Fig. 4).

As shown in Fig. 4a, when the cost of CRISPR-Cas is suffi-
ciently high (C � ~8), CRISPR-Cas cannot persist for any viral
mutation rate. Matching these simulations, inequality 3 shows
that the maximal cost at which even 100% immunogenic CRISPR-
Cas systems can evolve is C � 9 (with P0 parameterized to equal
0.1). Conversely, at very low costs, CRISPR-Cas will be main-
tained in populations, even for the high viral mutation rates at
which CRISPR-Cas provides almost no immunity (Fig. 4b). Thus,

sufficiently increasing either the cost or the viral mutation rate
takes host populations from entirely CRISPR-Cas� to entirely
CRISPR-Cas�.

To better understand how the loss of CRISPR-Cas both drives
and is driven by increased viral diversity, we also tracked how viral
diversity varies with the viral mutation rate and CRISPR-Cas cost
(Fig. 4c). To quantify viral diversity, the Shannon diversity index
(56) of the viral protospacers was calculated during each model
iteration. Similar to Simpson’s diversity index, the Shannon index
reflects the unpredictability of a randomly chosen viral proto-
spacer. Mathematically, the Shannon index is defined to equal
� �i silog�si�, where si denotes the fraction of viruses containing
protospacer i. Providing a reliable metric of viral diversity, the
Shannon index sums to 0 when the viruses are all identical (e.g., in
the absence of viral mutation). The Shannon index then increases
as increasing viral mutation diversifies the viral protospacer pop-
ulation (Fig. 4c). Importantly, the Shannon index can also in-
crease when the viral mutation rate is kept constant. This occurs
when the cost of CRISPR-Cas is increased to the point that
CRISPR-Cas is purged from host populations, offering the viruses
new productive encounters in which to mutate (Fig. 4c).

Rapid spacer addition cannot preserve CRISPR-Cas at high
viral mutation rates. One might expect that CRISPR-Cas systems
can maintain immunity against rapid viral mutation by simply
incorporating spacers at a higher rate. To test whether accelerated
spacer addition can preserve CRISPR-Cas loci at high viral muta-

FIG 4 Cost-benefit analysis of CRISPR-Cas prevalence. Heatmaps of model statistics—averaged over 100,000 iterations—as functions of the cost of CRISPR-
Cas and the viral mutation rate. (a) CRISPR-Cas prevalence. Both high costs and high viral mutation rates shift host populations from 100% CRISPR-Cas� to
0% CRISPR-Cas�. Importantly, the intermediate CRISPR-Cas frequencies found in the midregion separating these two extremes (i.e., the separatrix) do not
reflect coexisting CRISPR-Cas� and CRISPR-Cas� populations. Instead, the separatrix frequencies reflect an average over time as the model alternates between
quasi-steady states of entirely CRISPR-Cas� and entirely CRISPR-Cas� populations (see Fig. S4 and Fig. S5 in the supplemental material). (b) Probability that
CRISPR-Cas provides immunity. Given the low failure rate of CRISPR-Cas (Table S1), the probability of CRISPR-Cas providing immunity is effectively the
probability that a host spacer matches a viral protospacer. High viral mutation rates thus reduce CRISPR-Cas immunity. In fact, at high viral mutation rates,
immunity is absent even when CRISPR-Cas remains 100% prevalent due to low costs (top left of figure 4b). (c) Average (Shannon) diversity of viral protospacers.
Increasing the viral mutation rate increases the average diversity across time by increasing genetic diversity at each time point. More surprisingly, increasing the
cost of CRISPR-Cas above a threshold rapidly increases viral diversity, because it purges CRISPR-Cas from populations, allowing viruses to freely mutate. (d)
Average CRISPR-Cas locus lengths. As in Fig. 3a, which reflects a vertical cross section of Fig. 5d (i.e., locus lengths at a single cost), the largest CRISPR loci emerge
at intermediate viral mutation rates.
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tion rates, we systematically tracked CRISPR-Cas prevalence as a
function of both the viral mutation rate and the host spacer addi-
tion rate. While viral mutation rates are kept low, CRISPR-Cas-
increased spacer addition maintains CRISPR-Cas immunity
against increased viral mutation. However, once the rate of viral
mutation surpasses a (cost-dependent) threshold, CRISPR-Cas is
purged from host populations even when the rate of spacer addi-
tion far outpaces the rate of viral mutation (see Fig. S6 in the
supplemental material). With hosts unlikely to encounter the
same viral protospacers twice, increasing the rate of spacer addi-
tion is of little benefit.

DISCUSSION

Despite the ubiquity of lytic prokaryotic viruses, less than 50% of
bacteria maintain CRISPR-Cas adaptive immune systems. Here
we formulate a testable hypothesis to explain the relative dearth of
adaptive immunity in bacteria. Using comparative genomics, we
first report that the absence of CRISPR-Cas in bacteria is highly
temperature dependent. While the majority of bacteria are meso-
philic and contain CRISPR-Cas at the relatively low prevalence of
45%, bacterial thermophiles are 88% CRISPR-Cas�. Both theory
and experimental results indicate that mesophilic genomes pos-
sess higher mutation rates than thermophilic genomes (38, 41–
44). We wondered whether the increased viral mutation rates of
mesophiles were sufficient to explain the low prevalence of
CRISPR-Cas in mesophilic environments. To test this hypothesis,
we developed an evolutionary model to analyze how the preva-
lence of CRISPR-Cas varies as the viral mutation rate and other
basic parameters are varied. Model analytics and simulations sup-
port the viral mutation hypothesis, capturing how CRISPR-Cas is
purged from host populations as viral mutation rates increase
above cost-dependent thresholds. By mutating rapidly, viruses
undermine the key benefit of CRISPR-Cas, immunological mem-
ory. In other words, hosts gain little fitness advantage from
CRISPR-Cas storing viral sequences never again encountered.

Although our theoretical model shows that increased viral mu-
tation rates are sufficient to explain the reduced prevalence of
CRISPR-Cas in mesophilic bacteria, other hypotheses are plausi-
ble. For example, CRISPR-Cas might be more beneficial in ther-
mophilic environments because high temperature settings might
be closed off from their surroundings with limited inflow of new,
diverse viruses. This viral immigration hypothesis is essentially
equivalent to the viral mutation hypothesis: increasing immigra-
tion rates will have the same qualitative effect as increasing muta-
tion rates. We focus on mutation rather than immigration because
mutation rates are readily measurable in the laboratory and be-
cause previous data have already measured reduced thermophilic
mutation. Another counterhypothesis might argue that unique
genetic barriers specifically inhibit acquisition of CRISPR-Cas by
bacteria. However, CRISPR-Cas is commonly found on mobile
plasmids and widely distributed in diverse bacteria and archaea
(15), undermining this argument. Finally, increased CRISPR-Cas
costs, rather than decreased immunological benefits, might be im-
plicated in the reduced frequency of CRISPR-Cas in mesophiles.
These cost-driven hypotheses are compatible with the results of
our model. Figure 4 shows that both high costs and high viral
mutation rates purge CRISPR-Cas from populations.

One recent study suggesting an increased cost for CRISPR-Cas
in mesophiles reports that bacterial CRISPR-Cas loci have a dis-
proportionate number of self-targeting spacers in comparison to

archaeal CRISPR-Cas loci (57). Thus, increased autoimmune
costs might limit CRISPR-Cas in mesophilic bacteria. However,
unlike viral mutation rates, one wonders why the frequency of
self-targeting spacers would be temperature dependent. An alter-
native explanation for the high prevalence of self-targeting spacers
in mesophiles is that they represent the effects, not the causes, of
CRISPR-Cas failure at moderate temperatures. Self-targeting
spacers might indicate bacteria abandoning the immune function
of CRISPR-Cas, arguably because it fails to provide robust antivi-
ral immunity in mesophiles, instead coopting CRISPR-Cas for
RNA interference (RNAi)-like gene regulation. Two studies have
already addressed this possibility, with differing conclusions (53,
58), making further investigations required.

A similar cost-driven hypothesis assumes that mesophiles
more frequently require DNA uptake via HGT, which CRISPR-
Cas can block. Thus, the HGT hypothesis argues that mesophiles
disproportionately lack CRISPR-Cas to disproportionately ac-
quire HGT. However, there is little evidence for reduced HGT in
thermophilic communities. Genomic screens have captured fre-
quent genetic transfer among thermophiles, even between archaea
and bacteria (59). Further, a basic assumption of the HGT hy-
pothesis is that CRISPR-Cas actually blocks significant amounts
of beneficial HGT in nature. Although a previous study has cap-
tured a dearth of CRISPR-Cas within Enterococcus faecalis strains
with horizontally acquired drug resistance modules (55), no in-
verse CRISPR-HGT correlation has been shown at the interspecies
scale in which demographic biases are better accounted for.
Among the 383 species studied in this work, we found no signifi-
cant difference in the presence of plasmids between the CRISPR-
Cas� and CRISPR-Cas� genomes (P � 0.27 by Fisher’s exact
test). In fact, a recent study reports a positive CRISPR-HGT cor-
relation, finding an increased prevalence of CRISPR-Cas systems
in competent bacteria than in noncompetent bacteria (58). Future
studies will need to disentangle what correlation, if any, exists
between CRISPR-Cas and HGT.

Whether a CRISPR-HGT anticorrelation exists, an important
evolutionary issue must be resolved. Unlike spacers that protect
against deadly viruses, there seems to be no selective benefit to
acquiring spacers that block beneficial plasmids. Thus, the exper-
imental studies demonstrating that CRISPR-Cas blocks beneficial
HGT are often forced to artificially engineer CRISPR-Cas loci with
the deleterious spacers blocking critical plasmids and DNA. It is
worth asking whether these deleterious spacers would naturally
rise to high frequencies and thus present real costs to CRISPR-
Cas� hosts in nature. Either way, these experimental studies find
little selection against CRISPR-Cas�, spacer controls, implying
that beneficial HGT may select against spacers but not the
CRISPR-Cas system.

The present hypothesis assumes that thermophilic viruses have
reduced mutation rates, although previous experiments noting
reduced thermophilic mutation have tracked only the mutation
rates of thermophilic hosts (41–44). Our claim is premised on the
fact that both thermophilic host and virus share the same environ-
mentally driven mutational constraints. Supporting this assump-
tion, in mesophilic environments, host and virus have been mea-
sured to have virtually identical per-genome mutation rates (60).
With thermophilic hosts measured to have mutation rates an or-
der of magnitude lower than those measured for both mesophilic
host and virus (42), we infer that thermophilic viruses also possess
reduced mutation rates. Further, a data-driven biophysical study
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directly predicts that thermophilic viruses have less mutational
plasticity than mesophilic viruses do (38).

Thus, the results of initial experimental and genomic assays are
compatible with many of the assumptions of our model. However,
to show that in nature viral diversity is limited at high tempera-
tures, better metagenomic resolution is required. Fortunately,
next-generation deep-sequencing methods should enable more-
detailed gauges of viral nucleotide diversity as a function of tem-
perature. Moreover, the prediction of our model that viral muta-
bility overwhelms CRISPR-Cas is directly testable in the
laboratory through challenge experiments with increasingly mu-
tagenized viruses.

Beyond offering a testable hypothesis for the absence of
CRISPR-Cas in many bacteria, this work has a more general evo-
lutionary implication. At an abstract level, CRISPR-Cas is a
genomic sensor that seeks to directly acquire beneficial mutations
in response to a stochastically changing environment (i.e., the
virome). Studying the prevalence of CRISPR-Cas can thus provide
insight into the conditions under which Lamarckian, directed ad-
aptation is favored in evolution. Seminal analytic work by Kussell
and Leibler (61) provides the required mathematical framework
by analytically deriving a sensor cost threshold above which
genomic sensors are deleterious to their hosts. Surprisingly, Kus-
sell and Leibler’s threshold predicts that the sensor cost threshold
increases as the Shannon diversity index (i.e., entropy) of the en-
vironmental states increases. In other words, the more a cell re-
quires a sensor because of environmental unpredictability, the
more a cell can pay for the sensor. Thus, the results of Kussell and
Leibler are opposite to the conclusions that we derive from in-
equalities 3 and 4 and obtain in the simulations.

To explain the dichotomy between the predictions of our
model and those of Kussell and Leibler, we note that the assump-
tions of Kussell and Leibler are unlikely to apply to adaptive im-
mune systems such as CRISPR-Cas. For analytic tractability, Kus-
sell and Leibler required a model in which the environment
remains constant while the population adapts to it. Rapid viral
mutation is likely to render this separation of time scales inappli-
cable in the context of virus-host coevolution. More importantly,
Kussell and Leibler’s model assumes that sensors always perfectly
adapt to the environment, whatever the environmental entropy.
In our model, the efficacy of the sensor is directly reduced by
increased environmental entropy (Fig. 4b). Thus, when sensor
performance hinges on the difficulty of the sensing task at hand
(i.e., environmental entropy), we infer inversion of the predic-
tions of Kussell and Leibler. Future work will aim to capture how
this phase transition arises as the assumptions of immediate and
perfect sensor performance are relaxed.

A final question can be posed. If CRISPR-Cas sensors are un-
able to confer antiviral immunity against high levels of viral diver-
sity, why have bacteria and archaea been unable to evolve fitter
alternatives over billions of years? In contrast, in just about 500
million years, vertebrates have evolved an adaptive immune sys-
tem that prefabricates immunity against virtually any viral variant.
In principle, an analogous preemptive system could have evolved
in prokaryotes, with CRISPR-Cas systems generating unlimited
repertoires of random spacers, while keeping in place the neces-
sary Cas and genetic machinery to target and cleave matching
foreign sequences. However, no prokaryote is known to possess a
genome larger than 13 Mb (62). With more than 50 bp contained
in each spacer repeat unit, the vertebrate mode of preemptive

adaptive immunity is unlikely to be feasible in compact single-
celled microbes. With no way to fit billions of randomly generated
spacer sequences in a single prokaryotic cell, perhaps the best mi-
crobes can do is to adaptively chase the diversifying viral popula-
tion, trying to stay apace.

MATERIALS AND METHODS
Comparative genomics of CRISPR-Cas. Bacterial and archaeal genome
sequences were downloaded from the NCBI FTP site ftp://ftp.ncbi.nih
.gov/genomes/Bacteria/ in March 2010. At that time, 978 bacterial and 77
archaeal genomes were available. A representative set of 383 genomes (45)
used in this work includes the largest genome from each genus (as defined
by the NCBI taxonomy database) with greater than 500 annotated
protein-coding genes. Exceptions were made for the genus Shigella that
was considered to be identical to Escherichia and the genera Escherichia
and Bacillus that also included the model genomes Escherichia coli strain
K-12 substrain MG1655 and Bacillus subtilis strain 168. Ecological infor-
mation (environment and growth temperature) was obtained from the
NCBI Complete Microbial Genomes Web page (http://www.ncbi.nlm
.nih.gov/genomes/lproks.cgi). cas genetic loci were identified using the
PSI-BLAST profiles (45), while the number of CRISPR repeats was deter-
mined using the PILER-CR program (46). Statistical analyses of the data
were performed in R version 2.14.

Mathematical model. The mathematical model (see the supplemental
material for the full algorithm) was programmed in MatLab. To probe
multidimensional parameter space, thousands of simulations were run in
parallel on NIH’s Helix compute cluster and Harvard Medical School’s
Orchestra cluster.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org
/lookup/suppl/doi:10.1128/mBio.00456-12/-/DCSupplemental.

Figure S1, PDF file, 0.1 MB.
Figure S2, PDF file, 0.1 MB.
Figure S3, PDF file, 0.1 MB.
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Figure S6, PDF file, 0.1 MB.
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