
DUAL REGULATORY ROLE OF THE THYMUS IN THE 
MATUR~A.TION OF IMMUNE RESPONSE 

IN THE RABBIT 

BY MASARU TANIGUCHI A~D TOMIO TADA 

(From The Department of Pathology, School of Medicine, Chiba University, 
Chiba, Japan) 

(Received for publication 5 September 1973) 

The role of the thymus in the immune response oi the rabbit is still un- 
certain. This is probably because neonatal as well as adult thymectomy has 
much less effect on the subsequent immune response of rabbits than rodents 
(1-3). Furthermore, Richter and his co-workers have reported that antigen- 
reactive cells, comparable to thymus-derived lymphocytes (T cells) of rodents, 
were found in the bone marrow but not in other lymphoid tissues of rabbits 
(4-6). Nevertheless, the multicellular model for humoral antibody response is 
applicable to that of rabbits, as shown by three different lines of evidence: (a) 
cooperation between different antigenic determinants on the same molecule 
occurs in the secondary antibody response of the rabbit, as revealed by both 
in vivo and in vitro studies (7-10); (b) preimmunization with carrier antigen 
enhances the primary antibody response to a hapten-carrier conjugate (10); (c) 
at least two different cell types provided by the thymus, bone marrow, and 
appendix are required to reconstitute the early antibody response of lethally 
X-irradiated rabbits to sheep erythrocytes (11, 12). Although there is no clear 
indication that the thymus-derived lymphocytes actually act as helper cells in 
the rabbit, it may be predicted from these studies that the thvmus is endowed 
with an important role in the immune response of the rabbit. 

Another important indicator of maturation of the immune response, demon- 
strated mainly in the rabbit, is the time-dependent increase of antibody af- 
finity that reflects the differentiation of antibody-forming cells (13-17). The 
increase in antibody affinity appears to result from selection of antibody- 
forming cell precursors by antigen and is thus primarily determined by the 
effective concentration of antigen available to such precursor cells (18-20). 
However, Gershon and Paul (21) have recently shown that the affinity of anti- 
body produced by mice is also influenced by the quantity of T cells present in 
the immunized animals. They found that mice relatively deficient in T cells 
could produce only low affinity antibodies upon immunization with small 
amounts of a hapten-carrier conjugate. 

The present studies were undertaken to learn the regulatory role of the 
thymus in the immune response of the rabbit with respect to the amount and 
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affinity of an t ibody  produced.  The basic motive of the experiments derives 
from our previous studies on the regulatory ac t iv i ty  of T cells on ant ihapten-  
an t ibody  formation in the ra t  (22-25) in which we showed tha t  T cells pr imed 
with a carrier prote in  first assist in the product ion of an t ihap ten  homocytot ropic  
ant ibody,  bu t  later  negat ively regulate preestablished an t ibody  formation.  We 
have tried to find evidence for a similar regulatory influence of the thymus  on 
ant ibody-forming cells in rabbits ,  since the rabbi t  has a highly differentiated 
immune system. The  da t a  presented below clearly show tha t  the rabbi t  thymus  
is indeed endowed with an impor tan t  regula tory  role over the formation and 
matura t ion  of ant ihapten  ant ibody.  

Materials and Methods 

Proteins and Chemical Reagents.--Bovine serum albumin (BSA) 1 and bovine fibrinogen 
(BF) were obtained from Armour Pharmaceutical Co., Kankakee, IlL Human serum albumin 
(HSA) and bovine gammaglobulin (BGG) were obtained from Nutritional Biochemical 
Corporation, Cleveland, Ohio. 2,4-dinitrobenzenesulfonic acid (DNBS) was obtained from 
K & K Laboratories, Inc., Plainview, N. Y. and twice recrystallized from 90% ethanol. 
Amberlite IRA 400, disodinm ethylenediamine tetraacetate (EDTA), and epsilon-amino- 
caproic acid (EACA) were purchased from Nakarai Chemicals LTD., Kyoto, Japan. 
1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate was obtained 
from Aldrich Chemical Company Inc., Milwaukee, Wis. 

Preparation of Dinitrophenylated (DNP) Proteins.--Dinitrophenylated bovine gamma- 
globufin (DNP-BGG), dinitrophenylated bovine fibrinogen (DNP-BF), and dinitrophenylated 
bovine serum albumin (DNP-BSA) were prepared by the reaction of DNBS with proteins at 
room temperature under alkaline conditions as described by Eisen et al. (26). DNP-BGG 
containing 43 groups/tool, DNP-BF containing 107 groups/tool, and DNP-BSA containing 
7 groups/mol were used throughout. 

Preparation of Radioactive Compounds.-- 1-fluoro-[2,4-~H]dinitrobenzene ([3H]DNFB) (sp 
act 19.0 Ci/mmol) was obtained from Radiochemical Centre, Amersham, England. [3H]DNP- 
EACA was prepared by mixing [3H]DNFB with a 100-fold molar excess of EACA dissolved 
in 0.1 ml of 5% Na2CO3. Mter stirring at room temperature for 5 h, the reaction mixture 
was applied to analytical thin layer chromatographic plates composed of silica gel. The thin 
layer chromatograph was developed with toluene-pyridine-ethylenchlorohydrin-0.8 N am- 
monia solution (100:30:60:60). The product was eluted from the silica gel with phosphate- 
buffered saline (PBS, 0.01 M phosphate buffer, 0.15 M NaCI, pH 7.6). [131I]DNP-BSA was 
prepared by the reaction of DNP-BSA with Nal31I in the cold by the chloramine T method 
(27). 

Preparation of DNP Carboxymethyl Cellulose Immunosorbent.--Carboxymethyl (CM) 
cellulose (Whatman CM-32) was obtained from W. & R. Balston, LTD., England. DNP-CM 
cellulose was prepared by the reaction of aminoethylated-CM cellulose with DNBS under 
alkaline conditions for 24 h at room temperature. Aminoethylated-CM cellulose was made by 
the reaction of CM cellulose with a 100-fold molar excess of anhydrous ethylenediamine and 

1 Abbreviations used in this paper: ATS, antirabbit thymocyte serum; BF, bovine fibrinogen, 
BGG, bovine gamma globulin; BSA, bovine serum albumin; CFA, Freund's complete ad- 
juvant; CM, carboxymethyl; DNBS, 2,4-dinitrobenzenesulfonic acid; [3H]DNFB, ~l-fluoro- 
[2,4-3H]dinitrobenzene; DNP, dinitrophenylated; EACA, epsilon-aminocaproic acid; EDTA, 
disodium ethylendiamine tetra acetate; HSA, human serum albumin; SRBC, sheep red blood 
cell; Tx, adult thymectomized. 
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1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide toluenesulfonate under acid conditions for 
20 h. 

Preparation of Antlrabbit Thymocyte Serum.--Antirabbit thymocyte serum (ATS) was 
prepared in goats injected with 5 X 109 rabbit  thymocytes in Freund's complete adjuvant 
(CFA). Goats were boosted with five additional injections at  2-wk intervals. They were 
exsanguinated by heart puncture 2 wk after the last injection, and the anfisera were absorbed 
with normal rabbit serum, erythrocytes, and a small amount of bone marrow cells. The pooled 
antiserum killed 50% of rabbit  thymocytes in the presence of guinea pig complement (by dye 
exclution), at  a 1:250 dilution, and agglutinated thymocytes at  1:640 dilution. 

Quantitation of Antibodies in the Serum.--The amount of anti-DNP antibody was measured 
by quantitative precipitation with DNP-BF (28) and by Farr 's ammonium sulfate precipita- 
tion technique (ABC-33) using [131I]DNP-BSA (29). The values obtained by both methods 
were so close that  the ABC-33 method was used in most of the experiments. The amount of 
anticarrier antibodies was determined by quantitative precipitation. 

Purification of Anti-DNP Antibodies.--Anti-DNP antibody was specifically purified from 
individual serums by adsorption to and elution from a DNP-CM cellulose immunoadsorbent 
column in the presence of 0.01 M EDTA pH 7.6. Antibody was eluted with 0.1 M DNP-OH. 
Hapten was removed by extensive dialysis against PBS in the presence of Amberlite IRA 400 
in PBS. The eluate was concentrated by vacuum dialysis. Antibody concentration was esti- 
mated by nesslerization. 

Measurement of Antibody Afinity.--The association constants (K0) for the reaction of 
purified anti-DNP antibodies were measured by equilibrium dialysis using tritiated DNP- 
EACA ([SH]DNP-EACA) as ligand, according to the method described by Eisen (30). 0.2-ml 
samples of specifically purified antibody in PBS pH 7.6 (about 100 t~g/ml) were placed inside 
the dialysis chamber which was made of 15 mm X 3 mm Tygon tube (Norton Chemical 
Process Prods Div., Akron, Ohio) covered with cellophane membranes on both sides. Dialysis 
was carried out at  37°C for 48 h (constant shaking) in a large volume (about 100 ml) with 
various concentrations of the ligand. 0.1 ml of the samples from inside and outside of the 
dialysis chamber were collected, dissolved in 1 ml of Soluene (Packard Instrument Co., 
Downers Grove, Ill.), and diluted with 10 ml of scintillation liquid. The radioactivity in the 
samples was counted in a Beckman LS-100 liquid scintillation counter (Beckman Instruments, 
Inc., Palo Alto, Calif.). Average intrinsic association constants (K0) were calculated from 
equilibrium dialysis data (31, 32). The standard free energy change (--AF °) for the reaction 
between antibody and hapten was calculated from the equilibrium constant (K0) by the use 
of the usual thermodynamic relationship 

--AF ° = RT lnK0 

where R is gas constant, T is absolute temperature, and lnK0 is the natural log of the average 
intrinsic association for the reaction. 

Thymectomy.--Litters of young adult rabbits at  1 kg body weight were divided into two 
groups. One group was thymectomized under anesthesia with pentobarbital. The thymus 
was removed through a median sternotomy, taking care to remove the last piece and not to 
damage the pericardium or pleura. The other group was sham thymectomized by cutting open 
the thorax and immediately suturing the wound closed. The animals were kept for about 3 wk, 
and when body weights reached more than 1.5 kg each group was immunized as described 
below. 

Experimental Design.--Four separate experiments were designed (Fig. 1) to learn the 
regulatory influence of the thymus on anfihapten antibody formation. In experiment 1, nine 
thymectomized and nine sham-thymectomized rabbits were immunized with 500/zg of DNP- 
BGG in CFA divided among the four footpads. They were boosted monthly with 500 ~g of 
DNP-BGG in CFA in the back muscles. Sera were taken at 15, 30, 90, and 150 days after the 
start of immunization for measurement of antibody concentration and affinity. 
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FIo. 1. Experimental protocols. 

In  experiment 2, a group of five adult rabbits weighing about 2 kg was treated with five 
consecutive daily injections of 2 ml of ATS intramuscuiary before the immunization was 
started. Animals were immunized according to the same schedule as in experiment 1, consisting 
of monthly injections of 500/~g of DNP-BGG in CFA. Additional monthly injections of 2 ml 
of ATS were given to each experimental rabbit  1 day before the boosting injections of DNP- 
BGG. Anti-DNP antibody concentration and affinity were measured at  30, 90, and 150 days 
after immunization was started. 

Experiment 3 was designed to study the effect of preimmunization with different doses of 
the carrier molecule. Groups of four rabbits were preimmunized with different doses of un- 
conjugated BGG in CFA 2 wk before the immunization with DNP-BGG was started. The 
priming dose of unconjugated carrier ranged from 5/~g to 500 #g. Four control rabbits were 
given no BGG. All groups were then immunized with monthly injections of 500 #g of DNP- 
BGG in CFA. 

To see the effect of more profound carrier immunization, a separate group of rabbits was 
preimmunized 2 wk apart  with two injections of 500/~g of BGG in CFA, and then was given 
DNP-BGG 2 wk after the second BGG injection. As a control for this experiment, a group of 
rabbits was preimmunized with an unrelated antigen, HSA (500 #g in CFA given twice 2 wk 
apart), and then immunized with DNP-BGG by the same schedule. The immunization with 
DNP-BGG in CFA was performed monthly as in experiment 1, and the amount of anti-DNP 
antibody and its affinity were measured at  30, 60, and 90 days after the start  of immunization 
with DNP-BGG (see Fig. 1). 

In  experiment 4, adult animals were partially tolerized with unconjugated carder by the 
intravenous injection of 0.5-S00 mg of soluble BGG 1 mo before the immunization with 
DNP-BGG. These injections resulted in the production of only small quantities of antibody 
after subsequent immunization with DNP-BGG t mo later (see below). They were thus con- 
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sidered to be "tolerizing" rather than priming. Such rabbits, partially tolerized with the 
carrier, were immunized with monthly injections of 500 #g of DNP-BGG in CFA. Sera taken 
at 30, 60, and 90 days after the first immunization with DNP-BGG were examined for the 
amount and affinity of anti-DNP antibody (see Fig. 1). 

RESULTS 

Enhancement of Hapten-Specific Antibody Responses by Adult Thymectomy 
(Experiment 1).--A group of nine rabbits thymectomized in young adulthood 
was immunized with monthly injections of DNP-BGG in CFA, and the amount 
and affinity of anti-DNP antibody produced were compared with those of the 
sham-thymectomized control. Fig. 2 shows the kinetics of anti-DNP antibody 

rog/ml 
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30 90 150 Days 

FIG. 2. Anti-I)NP antibody response in adult thymectomized (Tx, i - -m) ,  
ATS-treated (A--A) ,  and sham-thymectomized control (C, O . . . .  O) rabbits immunized 
with monthly injections of 500 #g of DNP-BGG in CFA. Each point and bracket are the geo- 
metric mean and standard deviation of five to nine similarly treated animals. 

formation in adult thymectomized rabbits, as measured by ABC-33, in com- 
parison with those in the sham-thymectomized control. The amount of anti- 
D N P  antibody produced in all nine thymectomized rabbits was much higher 
than that of controls on day 15. The amount further increased between 30 and 
90 days (Fig. 2) and, though falling by day 150, remained well above control 
values. The mean amount of antibody produced in the th)~nectomized group 
on day 90 was about four times higher than that  of the controls (Table I). 

Changes in affinity of the anti-DNP antibody produced in the thymectomized 
and control groups are shown in Fig. 3. Up until day 15, the affinity values of 
thymectomized rabbits were lower than those of the controls, whereas after 
day 15 the affinity of antibodies from thymectomized animals consistently 
increased to values significantly higher than that in sham-thymectomized 
animals. After day 30, values in the control group, by contrast, actually de- 
creased. As shown in Table I, the difference in the association constants (K0) 
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TABLE I 
Anti-DNP Antibody and its Hapten-Binding Affinity in Sham-Thymectomized, Thymectomized, 

and A TS-Treated Rabbits 90 Days after the Start of Immunization with DNP-BGG 

No. of AntI-DNP antibody* 
Treatment animals ABC-33 Quant. P$ Affinity* (K0) 

mg/ml mg/ml X 10-6 liters~tool 

Sham thymecto- 9 1.88 (1.13-3.13) 1.65 (1.09-2.50) 6.5 (3.1-13.6) 
mized 

Thymectomlzed 9 6.81 (4.92-9.44) 6.55 (5.48-8.39) 44.7 (18.6-107.6) 
ATStreated 5 4.99 (3.77-6.63) 4.81 (3.49-6.05) 13.5 (5.8-31.3) 

* Geometric means, lower and upper limits of standard deviations, 
P, precipitation. 

between those two groups was about one log scale on day 90, which amounted 
to a difference of about 1.2 kcal/mol in free energy change (--AF°), a margin 
that was even more striking on day 150 (2.2 kcal/mol). 

Enhancement of Hapten-Specific Antibody Responses by Treatment with A TS 
(Experiment 2).--In this experiment, animals were treated with ATS instead 
of by adult th3~Tlectomy. Animals that were extensively treated with the 
lymphopenic dose of ATS and then immunized with monthly injections of 
DNP-BGG in CFA produced greater amounts of anti-DNP antibody than did 
controls, especially in the later days of immunization (Fig. 2). Table I includes 
the results obtained in ATS-treated animals on day 90, and shows that the 
average amount of anti-DNP antibody in ATS-treated animals was about 2.5 
times higher than those of the controls, both by quantitative precipitation and 
ABC-33. Also in accord with the results of experiment 1, antibody affinity of 
the group was lower than that of the controls until 30 days, after which it kept 
increasing (Fig. 3). The difference in --AF ° between the control and ATS- 
treated group on day 90 amounted to about 0.5 kcal/mol, but on day 150 was 
1.9 kcal/mol, being comparable to that observed between thymectomized and 
sham-thymectomized groups (Fig. 3, Table I). 

Enhancement and Suppression of Hapten-Specific Antibody Responses by 
Carrier Preimmunization (Experiment 3).--The above findings indicated that 
the relative diminution ot T cells resulting from adult thymectomy or ATS 
treatment caused enhanced production of high affinity hapten-specific antibody. 
These results suggested that T cells suppressed the antibody response, and that 
the relative depletion of such suppressor T cells resulted in an overproliferation 
of antibody-forming cells. In order to test whether such postulated regulation 
by T cells is effected by antigen-specific stimulation, experiment 3 was per- 
formed, testing the effect of preimmunization by the carrier protein, BGG, 
on the subsequent antibody response to DNP-BGG. Groups of four rabbits 
each were primed with various doses of BGG in CFA given 2 wk before the 
start of immunization with monthly injections of DNP-BGG in CFA. A control 
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FIG. 3. Antibody affinity of anti-DNP antibodies produced by adult thymectomized 
(Tx, I - -m) ,  ATS-treated (A--A),  and sham-thymectomized control (C, O . . . .  O) 
rabbits immunized with monthly injections of 500 /zg of I)NP-BGG during the 150-day 
period. Each point and bracket are the geometric mean and standard deviation of five to 
nine similarly treated rabbits. 

group of. four rabbits was not preimmunized with BGG, but received the same 
monthly injections of DNP-BGG. 

As shown in Fig. 4, rabbits that had been preimmunized with unconjugated 
carrier showed either enhanced or suppressed production of antihapten anti- 
bodies, depending on the priming doses of BGG. Animals preimmunized with 
5 #g of BGG produced markedly larger amounts of anti-DNP antibody than 
the control unprimed animals, although the antibody affinities were in the same 
range. Animals preimmunized with 50/~g of BGG, however, showed no sig- 
nificant difference from controls in the amount of antibody produced on day 
90, although its affinity was a half log lower than that of the controls (Table 
II) .  Such a difference in free energy change (--zXF °) was calculated to be 0.53 
kcal/mol. By contrast, animals preimmunized with 500/zg of BGG produced 
slightly less amounts of anti-DNP antibody after subsequent immunization 
with DNP-BGG in CFA, and the affinity of antibody produced was significantly 
lower than that of the control. The difference in free energy change (--AF °) 
between this and the control group amounted to 0.82 kcal/mol. Thus it ap- 
peared that animals primed with a small dose of BGG produced a markedly 
enhanced and more mature antihapten antibody response, whereas priming with 
larger doses of BGG suppressed both amounts and affinities of antibodies pro- 
duced (Table II) .  

In order to confirm the carrier effect on the regulation of antihapten antibody 
response and its maturation, a group of four rabbits was treated with two suc- 
cessive injections of 500 #g of BGG in CFA, given 2 wk apart. 2 wk later they 
were immunized with DNP-BGG. A control group was pretreated with two 
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FIo. 4. Anti-DNP antibody responses in rabbits preimmunized with different doses of un- 
conjugated carrier (BGG) 2 wk before the start of monthly injections of DNP-BGG in CFA. 
The doses of BGG for priming are shown on the right side of the graph. Control animals 
((2, O . . . .  O) were not primed with BGG. Each point and bracket are the geometric mean 
and standard deviation. 

TABLE II 

Enhancement and Suppression of Anti-DNP Antibody Formation by Preimmunization with 
Different Doses of BGG 90 Days after the Start ~ r Immunization with DNP-BGG 

Preimmuni- No, iof Anti-DNP antibody~ AntI-BGG antibody:~ 

zation* maria,s ABC-33 Affinity (K0) Day 0 Day 90 

None 4 
BGG in 
CFA 

50 #g 4 
50/zg 4 
500 #g 4 

mg/ml 

1.91 (1.71-2.33) 

5.56 (4.45-6.95) 
2.43 (1.54-3.81) 
1.49 (0.78-2.87 

X 101 liters/mol 

7.7 (6.2-9.6) 

6.8 (6.3-7.4) 
3.1 (2.0-4.9) 
1.9 (1.0-3.5) 

mg/ml 

0 

0.31 (0.20-0.47) 
0.78 (0.58-1.04) 
1.49 (1.30-2.78) 

mg/ml 

0.64 (0.33-1.31) 

3.2 (2.31--4.6~ 
1.84 (0.65-5.21) 
6.15 (4.20-8.94 

* Immunized with indicated doses of BGG 2 wk before the start of immunization with 
DNP-BGG. 

:~ Geometric means, lower and upper limits of standard deviations. 

injections of an unrelated antigen, HSA, in CFA. At this time members of both 
groups were producing considerable amounts  of anticarrier antibodies. 

The results of the above experiment (Fig. 5) confirm the findings of the first 
par t  of experiment 3. Pre t rea tment  with BGG in CFA produced markedly 
smaller amounts  of lower affinity an t i -DNP ant ibody than were found in con- 
trol rabbits pretreated with unrelated antigen. As shown in Table I I I ,  on day 
30 the amount  of an t i -DNP ant ibody in the BGG-preimmunized group was 
only }-~0th that  in the HSA-preimmunized group and its affinity was more than 
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Fro. 5. The amount (upper panel) and affinity (lower panel) of anti-DNP antibodies pro- 
duced in rabbits preimmunized with two injections of homologous carrier (BGG, 
0 - - 0  l - I )  or heterologous carrier (lISA, O . . . .  © [] . . . .  D) in CFA. Animals 
were given monthly injections of DNP-BGG in CFA 2 wk after the second injection of BGG 
or HSA. Each point and bracket are geometric mean and standard deviation of four similarly 
treated animals. 

TABLE III 

Effect of HyperimmunizaEon with Homologous and Heterologous Carriers on A nti-DNP A ntibody 
Formation by Subsequent Immunization 30 Days after the ImmunezaEon with 

DNP-BGG in CFA 

Pre- Anti-DNP antibody* AntI-BGG antibody:~ 
immuni- 
zation* Day 0 Day 30 

HSA 
BGG 

No. of 
ani- 
mals 

4 
4 

ABC-33 Affinity (K0) 

mg/ml I X lO-S liters~tool 

0.94 (0.60-1.48) 9.0 (2.8-23.1) 
0.09 (0.01-0.17) 0.5 (0.2-1.2) 3.01 

mg/ml 

0 
(1.27-7.27) 

mg/ml 

0.18 (0.13-0.21) 
6.50 (2.74-10.24) 

* Immunized with two injections of 0.5 mg of proteins 2 wk apart and then immunized 
with 0.5 mg of DNP-BGG in CFA. 

:~ Geometric means, lower and upper limits of standard deviations. 

one log scale lower. This difference in free energy change ( - -AF  °) was about  
1.7 kcal/mol. 

All of the BGG-preimmunized rabbits  in experiment 3 showed a substantial  
an t i -BGG secondary response upon immunizat ion with D N P - B G G  (Tables I I  
and III). However, no significant correlation was observed between an t i -BGG 
secondary response and DNP-specific ant ibody response. 
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Enhancement and Suppression of Hapten-Specific Antibody Response by Partial 
Tolerance to the Carrier (Experiment 4).--Since carrier preimmunization pro- 
duced dose-dependent effects on subsequent antihapten antibody responses, 
the effect of tolerizing injections of the carrier on the antihapten antibody was 
tested. Two groups of rabbits were given a single intravenous injection of 0.5 
mg and 500 mg of soluble BGG. Although a few rabbits produced minute 
amounts of anti-BGG antibody, barely detectable only by interracial ring pre- 
cipitation test 30 days after the intravenous injection, in no case did they pro- 
duce secondary anti-BGG antibody responses after subsequent immunization 
with DNP-BGG (Table IV). Thus, it was considered that these animals were 
partially tolerant to the carrier molecule. In response to a single injection 
of DNP-BGG in CFA (given 30 days after the tolerizing injection of soluble 
BGG), these animals produced only small amounts of anti-DNP antibody. 
However, after second and third injections of DNP-BGG, the group given 0.5 
mg of soluble BGG produced almost as much anti-DNP antibody as the un- 
treated controls. On the other hand, three of the five animals pretreated with 
500 mg of soluble BGG produced only minute amounts of anti-DNP antibody 
throughout the 90-day course (Fig. 6, 500 mg [b]). By contrast, the other two 
rabbits in this group showed a rapid increase in anti-DNP antibody after the 
third injections of DNP-BGG, which rose to about 8 mg/ml (Fig. 6 and Table 
IV, 500 mg [a]). 

The affinities of anti-DNP antibodies produced in these groups are shown in 
Table IV. The association constants of the group pretreated with 0.5 mg of 
soluble BGG and those of two enhanced rabbits (500 mg [a]) were similar to 
each other and only slightly lower than those of the controls, but the amount 
of anti-DNP antibody in the suppressed group was about ~'~00th that of the 

TABLE IV 
Enhancement and Suppression of Anti-DNP Antibody Formation by Tolerizing Injection of 

Soluble BGG 90 Days after the Start of Immunization with DNP-BGG 

Tolerizing injection* 

None 
Soluble B GG 
(i.v.) 

0.5 mg 
500 mg(a) § 
500 rag(b)I[ 

N%o~ 
mals 

4 1.91 

Anti-DNP antibody$ 

ABC-33 

mg/ml 

(1.72-2.33) 

1.59 (1.18-2.14) 
8.34 (7.46-9.12) 
0.024 (0.02-0.03) 

Affinity (K0) 

X 10-6 liters~tool 

7.7 (6.2-9.6) 

4.5 (3.9-5.3) 
4.5 (4.4-4.7) 
0.7 (0.5-0.9) 

Anti-BGG antibody$ 

Day 0 

mg/ml 

0 

<0.1 
<0.I 
<0.1 

Day 90 

rag~rot 
0.64 (0.33-1.31) 

<0. l  
<0.1 
<0.l  

* Given 30 days before the start of immunization with DNP-BGG in CFA. 
:~ Geometric means, lower and upper limits of standard deviations. 
§ Enhanced rabbits. 
I[ Suppressed rabbits. 
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mg/ml 
500rag (a) 

8 

g° 

2 .............. ~c 

0 ~ ' i , 5 0 0 m g  ( b ) . . . . , ~ . . . .  . .......... " 0.5mg 
30 60 90 Days 

FIG. 6. Anti-DNP antibody responses in rabbits given a tolerizing injection of different 
doses of soluble BGG 1 mo before the start of monthly immunization with DNP-BGG in CFA. 
The dose of soluble BGG given to each group is shown on the right side of the graph. Control 
animals (C, (D . . . .  O) were given no tolerizing B GG. Animals given 500 mg of B GG responded 
in two different ways: two of five animals produced a large amount of anti-DNP antibody 
(500 mg [a]), but the other three rabbits produced a minute amount (500 mg [b]). 

controls, and its affinity was about 1/~0th of the control value. The difference in 
- - A F  ° between these groups was 1.5 kcal/mol. 

DISCUSSION 

Data  reported here suggest a dual role for thymus-derived lymphocytes in the 
ant ibody response and maturat ion in the rabbit. The first two experiments 
clearly demonstrated that  the relative diminution of T cells, caused either by  
surgical thymectomy in early adulthood or by  treatment with ATS, significantly 
enhanced the ant ibody response to a hapten-carrier conjugate, and that  the 
enhancement was associated with a marked increase in affinity of the ant ibody 
produced. I t  appears therefore that  both the amount  and affinity of ant ibody 
are, at least in part, influenced by the number of T cells present in immunized 
animals, and that  a large number of T cells can suppress both these attributes. 

Furthermore, experiments 3 and 4 suggested that  such a regulatory effect of 
T cells may  be antigen specific. This was shown by two different lines of evi- 
dence: (a) Preimmunization with carrier molecules either enhanced or sup- 
pressed the subsequent antibody response to a hapten on the same carrier, 
depending on the preimmunization dose of carrier. I t  similarly altered the 
average affinities of the antibodies produced. (b) A tolerizing injection of a 
large dose of carrier depressed that  antihapten ant ibody response in some 
animals, while the same dose markedly enhanced the response of other animals. 
Such alterations in the quant i ty  of the antibody response were also associated 
with changes, similar in direction, in antibody affinity. These results suggest 
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that the number of primed carrier-specific cells, possibly of thymic origin, 
influences the emergence and maturation of hapten-specific antibody-forming 
cell precursors. 

These results are only partly in agreement with reports by other investi- 
gators. Adult thymectomy in the rabbit has been reported to have variable 
effects on humoral antibody responses in a short-term study (1-3), but thymec- 
tomy of rats markedly enhanced and prolonged their production of IgE homo- 
cytotropic antibody against a hapten-carrier conjugate (22). The usual effect of 
ATS treatment in vivo is to depress the humoral antibody response to a variety 
of antigens (33), but in certain circumstances it enhances antibody formation 
against some antigens (25, 34, 35). Resolution of these conflicting findings may 
be obtained from the concept that T cells exert two opposite functions, de- 
pending on the experimental conditions: a well-established positive effect as 
helper cells in some humoral antibody responses, and a suppressive influence 
on similar humoral antibody responses (23, 24, 36-40). The relative depression 
of T-cell numbers by surgical, chemical, or immunochemical means might have 
permitted synthesis of more antibody if a critical supply of helper cells was pre- 
served, while the number of suppressor cells was effectively depressed. 

Of more interest in our present studies is the increase in binding affinities of 
antibodies produced in relatively T-cell-deprived animals. Recently, Gershon 
and Paul (21) clearly demonstrated an influence of T cells on antibody affinity. 
They reported that adult-thymectomized, lethally irradiated, bone marrow- 
reconstituted mice produced only small amounts of antibody of low affinity 
when immunized with DNP-BSA in the presence of a small number (0.33 X 
108) of syngeneic thymocytes. The passive transfer of a somewhat larger number 
(1 X 108) of thymocytes into recipient mice resulted in an increase of both 
amount and affinity of antibody produced. On the other hand, when such 
animals were immunized with DNP-keyhole limpet hemocyanin and were 
given 0.33 )< 10 s thymocytes, they produced normal amounts of anti-DNP 
antibody with affinity comparable to that of control mice. The authors suggested 
that T cells are important in increasing the rate of change in the precursors of 
antibody-forming cells, upon which antigen-driven selection operates. The 
present results support their idea that T cells regulate the stimulation of 
precursors of antibody-forming cells by antigen, although our results indicate a 
depression rather than enhancement of antibody affinities. We believe that our 
results do not necessarily contradict those of Gershon and Paul (21), if we as- 
sume that T cells may either facilitate or suppress the proliferation and dif- 
ferentiation of antigen-stimulated B cells. The lack of such suppression by T 
cells may have allowed the increases of both amount and affinity of the antibody 
seen in thymectomized and ATS-treated animals, who perhaps retained enough 
T cells to serve as helper cells. 

The second part of our results concerns the effects of priming and tolerizing 
with carrier molecules on the antihapten antibody response. Katz et al. (10) 
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reported that the primary antihapten antibody response of rabbits and guinea 
pigs to a hapten coupled to a carrier was enhanced if the animals had been pre- 
immunized with small doses of free carrier. Carrier preimmunization had no 
effect on the affinity of the antihapten antibody, however. A similar enhancing 
effect of carrier preimmunization on an in vitro antihapten antibody response 
in mice was reported by Falkoff and Kettman (41) using trinitrophenyl as a 
hapten and sheep red blood cell (SRBC) as a carrier. In these experiments the 
enhancing effect was dependent on the dose of carrier used for priming. Only small 
doses of carrier, suboptimal for the induction of a primary anticarrier antibody 
response, were effective in enhancing subsequent hapten-specific antibody re- 
sponses to hapten-carrier conjugate. Grantham (42) also reported that the 
secondary response of mice to SRBC was significantly enhanced by a low dose 
priming rather than by high dose priming with SRBC. More recently, Ishizaka 
and Okudaira (43) studied the relationship between the dose of carrier used for 
preimmunization of mice and the magnitude of hapten-specific IgG and IgE 
antibody responses produced by immunization with a hapten-carrier conjugate. 
They also found that only small doses of carrier could effectively enhance the 
anti-DNP antibody responses of both classes; doses that were optimal or supra- 
optimal for inducing anticarrier antibody suppressed the antibody responses. 
Our previous study on the rat antihapten IgE antibody response (24) also 
demonstrated a definite suppressive effect of carrier preimmunization. Since in 
the present studies the secondary anticarrier response occurred in all cases, 
suppression by carrier preimmunization is not considered to be due to the lack 
of carrier-specific helper cells. Therefore, it seems reasonable to conclude that 
only in suitable numbers can carrier-specific cells effectively cooperate with 
hapten-specific antibody-forming cell precursors to induce antihapten antibody, 
while larger numbers may suppress stimulation of the latter cell type. 

Although Katz et al. (10) found no change in affinity after preimmunization 
of rabbits with 1-50/zg of BGG, our results clearly demonstrated that 500/~g of 
BGG decreased the average association constant of rabbit antihapten antibody 
produced by subsequent immunizations with DNP-BGG. This effect was more 
striking when animals were preimmunized with two injections of 500 #g BGG. 
On the other hand, preimmunization with 5/~g of BGG had no effect on the 
affinity of anti-DNP antibody, although it significantly elevated the quantities 
produced. These results suggest that high affinity cells are more sensitive than 
low affinity cells to the suppressive effects of carrier-specific cells. 

Since the preimmunized animals had moderate to large amounts of anti- 
carrier antibodies in their circulation, one might reasonably argue that anti- 
carrier antibody was responsible for the observed suppression. At the present 
time this possibility cannot be denied, but we prefer to think that carrier-specific 
cells are responsible for this suppression, for the following reasons: (a) There 
was no strict correlation between the amount of circulating anticarrier antibody 
and the degree of suppression (Tables I I  and III), and in some cases antihapten 
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antibody was even enhanced in the presence of moderate amounts of anticarrier 
antibody. (b) In the presence of moderate to large amounts of circulating anti- 
carrier antibody, secondary anticarrier antibody responses were never sup- 
pressed. Thus, the helper function of carrier-specific helper cells was not blocked 
by anticarrier antibody. (c) In the suppressed groups, affinity for DNP of the 
antibody produced was lowered; if the circulating anticarrier antibody had 
reacted with antigen to diminish the effective antigen concentration available 
to antibody-forming precursor cells, the affinity of antibody produced should 
have increased rather than decreased (18). Moreover, antibody-mediated sup- 
pression is, in most cases, determinant specific (44, 45) although some inves- 
tigators reported that anticarrier antibody can suppress the production of 
antihapten antibody as well (46). Thus, at the present time it is reasonable to 
assume that carrier-specific cells in large numbers may have inhibited the immune 
response to hapten coupled to the homologous carrier, and that the same carrier- 
primed cells in optimal numbers may have facilitated the B-cell response as 
suggested by Katz et al, (47). 

The last experiment demonstrated that partial tolerance induced in carrier- 
specific cells significantly diminished the antibody response to the hapten- 
homologous carrier complex. Such suppression was also accompanied by a 
marked decrease in the antibody affinity. Some of the tolerized animals sud- 
denly began producing large amounts of antihapten antibody late in the course 
of immunization. This burst of activity was accompanied by a quick recovery 
of antibody affinity. The observed suppression by the tolerizing injection of the 
carrier may have resulted from a lack of helper activity in carrier-specific cells 
(24, 48). Since the tolerance was induced by carrier and not by hapten, the 
observed suppression cannot be explained by lack of hapten-specific antibody- 
forming cell precursors, and therefore the decrease in antibody affinity was not 
due to hapten-specific tolerance (49). Termination of carrier-specific tolerance 
would, at least transiently, result in the appearance of a suitable number of 
carrier-specific helper cells to allow prompt production of hapten-specific anti- 
body. The somewhat lower affinity of such antibody, despite its higher amount, 
may be due to a slow start of B-cell response or to inactivation of high affinity 
cells by the hapten under a circumstance in which helper cells had been absent. 

Although it is still not determined whether the carrier-specific cells heretofore 
mentioned are actually thymus derived, the above results give reason to assume 
that these cells may be at least functionally identical to carrier-specific T cells 
found in other species. Our simplified conclusions are as follows: (a) Relative 
diminution of T cells resulted in an increase in both amount and affinity of anti- 
body produced by immunization with a hapten-carrier conjugate; (b) Over- 
stimulation of T cells by the carrier caused a suppression of antihapten anti- 
body formation and a decrease in antibody affinity; (c) The presence of an 
optimal number of carrier-stimulated T cells is necessary for production of anti- 
hapten antibody response and for the increase in antibody affinity. These 
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conclusions imply that T cells have a dual regulatory role on the maturation of 
the immune response, although the possibility that helper and suppressor 
functions are conducted by different cell types cannot be denied, especially in 
view of the recognized heterogeneity among T cells (50) and the fact that carrier- 
specific B cells as well as T cells coexist. 

I t  has been well documented by Siskind and Benacerraf (20) that maturation 
of the immune response is explained in terms of the thermodynamically driven 
selection of B cells by antigen and is hence primarily determined by the con- 
centration of the antigen in the microenvironment of B cells. B cells with higher 
affinity antigen receptors can more easily capture the antigen, allowing them 
to proliferate and differentiate into antibody-forming cells. Recent studies by 
Davie and Paul (51, 52) presented direct evidence that antibody maturation 
results from the continued proliferation of higher affinity cells after an immuni- 
zation, while the number of cells with lower affinity falls rapidly. However, 
recent advances in cellular immunology argue that selection by antigen is not 
by itself enough to stimulate antibody-forming cell presursors, and that 
"helper" T cells are necessary for maximal stimulation of B cells (53-55). 
Mediators driving this cellular interaction have recently been reported by 
several authors (56-61). A most important point, considered critical to the 
regulatory influence of T cells on antibody maturation, is how the T cells in- 
fluence selection of B cells by an antigen. Gershon and Paul (10) as well as 
Katz and Benacerraf (62) hypothesized that T cells indirectly influence B cell 
selection, independently of an antigen-driven mechanism, by increasing the 
rate of proliferation and accelerating the change of the B-cell population leading 
to more rapid appearance of B cells bearing higher affinity receptors. We would 
propose a somewhat different hypothesis in which a more direct action of T 
cells is considered. By the simple selection theory, cells with higher affinity 
receptors would be expected to be more easily selected by antigen. However, 
such selected cells would not proliferate and differentiate into antibody- 
forming cells without the help of antigen-stimulated T cells. If an optimal 
number of T cells is present, they would specifically cooperate with B cells 
which had already been selected by the antigen, and the latter would now 
proliferate and synthesize antibody with the destined affinity. Therefore, the 
T cells' help would preferentially be directed to B cells which easily capture the 
antigen, leading to production of high affinity antibody by their progeny. In 
this manner optimal numbers of T cells would facilitate the maturation of 
immune response. 

On the other hand, supraoptimal numbers of antigen-stimulated T cells 
would "inactivate" the B cells that had already been selected by antigen. Thus 
B cells with higher affinity receptors would be more easily influenced by T cells' 
suppressive activity, leaving low affinity cells relatively unaffected and leading 
ultimately to synthesis of low affinity antibody. This interpretation is in accord 
with the selection theory of Siskind and Benacerraf (20) and further permits 
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an explanation for the decrease in affinity after long-term immunization. A 
proof at the cellular level for the preferential suppression of high affinity cells 
by carrier-specific T cells is in progress in our laboratory. 

SUMMARY 

Rabbits thymectomized in early adulthood produced more antihapten anti- 
body than sham-thymectomized controls after hyperimmunization with 2,4- 
dinitrophenyl bovine gamma globulin (DNP-BGG). The average associated 
constant of anfi-DNP antibody produced by thymectomized animals was more 
than 10 times higher than that of the controls. Similar effects were obtained 
by extensive treatment of rabbits with antithymocyte serum (ATS) before and 
during the immunization with DNP-BGG. The results indicated that relative 
diminution of thymus-derived lymphocytes (T cells) resulted in a stimulation 
of antibody-forming cells with a higher affinity. 

On the other hand, preimmunization of rabbits with different doses of BGG 
caused either enhancement or suppression of the hapten-specific antibody 
response, depending on the priming dose of BGG. The suppressed antibody 
response was always associated with a marked decrease in the antibody affinity. 
If rabbits were partially tolerized with a large dose of soluble BGG, some of 
the animals produced little antibody against hapten (DNP) coupled to this 
carrier, and the affinity of produced antibody was low. However, other rabbits 
tolerized with BGG produced large amounts of anti-DNP antibody upon 
hyperimmunization with DNP-BGG, whose affinity was only slightly lower 
than that of the control. 

These results can be harmonized if it is assumed that the thymus plays an 
important role in the maturation of the immune response. I t  is postulated that 
T cells, in numbers ordinarily available, would first assist in the proliferation of 
antihapten antibody-forming cell precursors already selected by antigen, thus 
accounting for the rapid increase of antibody affinity in the early stage of im- 
munization. However, after a larger number of carrier-specific T cells are made 
in response to continued immunization, these would suppress antibody-forming 
cells. The suppression would be greater for cells with higher affinity for antigen, 
resulting in a decrease in antibody affinity. This postulate explains preferential 
stimulation and suppression of cells having higher affinity receptors under 
circumstances in which T cell are relatively depleted or overstimulated, and 
further permits an explanation for the decrease of antibody affinity after long- 
term immunization. 
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