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Abstract: Understanding the energy landscape and the conformational dynamics is crucial for
studying many biological or chemical processes, such as protein–protein interaction and RNA
folding. Molecular Dynamics (MD) simulations have been a major source of dynamic structure.
Although many methods were proposed for learning metastable states from MD data, some key
problems are still in need of further investigation. Here, we give a brief review on recent progresses in
this field, with an emphasis on some popular methods belonging to a two-step clustering framework,
and hope to draw more researchers to contribute to this area.

Keywords: molecular dynamics simulation; metastable states; energy landscape

1. Introduction

Proteins are basic building blocks of life, which carry out most essential functions in a
cell such as catalysation, signal transduction, gene regulation, molecular modification, etc.
These capabilities depend on their three-dimensional biomolecular structures, which also
undergo reversible transitions between alternative structures (also called conformations).
Different conformations have different Gibbs free energy. The free energy landscape
of the conformational space is rugged with a number of high-energy barriers. These
barriers partition the conformational space into a set of low-energy wells, which are
called metastable states. See Figure 1 for an illustration. Conformations belonging to one
metastable state do not easily change into conformations belonging to another metastable
state. For more details on the free energy landscape of proteins, we refer to Finkelstein and
Ptitsyn [1].
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Figure 1. An illustration of the free energy landscape of a conformational space. There are four
metastable states labeled as A, B, C and D. Conformations belonging to one metastable state, for
example state B, do not easily change into conformations belonging to another metastable state, e.g.,
state C, due to the energy barrier between them.

The elucidation of the energy landscape and the conformational dynamics is crucial
for understanding many biological processes, such as protein folding [2] and RNA fold-
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ing [3], and for deciphering diseases related to improper conformational changes, such as
Alzheimer’s disease, Mad cow disease, Huntington’s disease and Parkinson’s disease [4].
Several experimental methods have been proposed to study stable structures or conforma-
tional changes, such as X-ray imaging [5], nuclear magnetic resonance [6], single-molecule
fluorescence resonance energy transfer [7] and Cryo-electron [8]. Computational methods
have also been proposed to predict protein structure from primary sequences, such as the
generative probabilistic model by Boomsma et al. [9], the sequential Monte Carlo method
by Wong et al. [10], critical assessment of protein structure prediction experiment [11–13]
and deep neural network methods [14–17], including Google’s AlphaFold [18]. However,
these methods focus mainly on the protein-folding problem [19], which aims at the con-
formation of the lowest free energy. They cannot provide global dynamic information on
conformational changes at the atomic level.

Molecular Dynamics (MD) simulations [20], which simulate conformational trajecto-
ries, have emerged and are the major source of global dynamic information at the atomic
level. More specifically, MD simulations sample from a conformational space by evolving
the structure based on Newton’s equations of motion. Each evolution produces a trajectory
formed by a sequence of conformations at times t = 0, τ, 2τ, · · · , nτ, where τ denotes
the observation interval. To handle the rugged energy landscape as shown in Figure 1,
generalized ensemble algorithms, such as multicanonical algorithm [21] and Replica Ex-
change [22], are used in MD simulations to generate a wider sampling by helping the
simulation trajectories pass through energy barriers with a higher probability and avoid
trapping in local modes [23].

Due to the high computational cost of MD simulations, the timescale of MD trajectories
is usually shorter than the typical real conformational dynamics. To bridge the timescale
gap, Markov state models (MSMs) [24–30] were commonly used to reproduce the long-
time conformational dynamics of biomolecules using MD data, see for example, Chodera
and Noé [31], Wang et al. [32], and Husic and Pande [30] for a review on the status of
MSMs studies. Based on MSMs, current methods for identifying metastable states from
MD data mostly take a two-step clustering approach. In this review of methods for
learning metastable states from MD data, we provide a detailed discussion on this two-step
clustering framework, check some popular methods within this framework as well as
some initiatives beyond this framework. We hope this brief review would draw more
researchers to break through this two-step clustering framework for better detection of
metastable states.

2. Learning Metastable States from MD Data

Statistically, learning metastable states from MD data estimates the distribution of
conformations over the structural space. Given the molecular data (trajectories of confor-
mations as shown in Figure 2A) from MD simulations, we want to estimate the density
function f (x) = ∑k

i=1 qi fi(x|Ai), where {Ai : i = 1, 2, · · · , k} is a disjoint partition of the
conformation space Ω, i.e., Ai ∩ Aj = ∅ and ∪k

i=1 Ai = Ω. Ai corresponds to the basins or
metastable states of the energy landscape, qi is the probability of conformation x belonging
to basin Ai, and k is the unknown number of metastable states. Note that f (x) is a multi-
mode density function. Specifically, it has k modes, and each fi(x) has one mode in its
region Ai.

Taking the free energy landscape in Figure 1 for example, we may write the structural
density function as f (x) = ∑4

i=1 qi fi(x|Ai), with (A1, A2, A3, A4) obtained by partition the
conformation space according to the energy barriers between four basins (A, B, C, D). The
aim of MD data analysis is to recover basins (A, B, C, D) from data.

Before discussing the difference between estimating the structural density function
and traditional density function, we shall emphasize the biological property behind the
partition {Ai : i = 1, 2, · · · , k} in the structural density function. Specifically, conforma-
tions belonging to the same basin (partition) shall not only have geometrical similarity at
key parts but also have dynamical similarity. However, global geometrical similarity in
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structural space may not necessarily lead to dynamical similarity due to energy barriers.
In other words, two conformations exist such that they are geometrically similar, i.e., the
geometrical distance between them is smaller than some threshold; however, we may rarely
observe dynamical transitions between them along the trajectories.

A. Trajectories of conformations

Splitting step

………

… ...

...

C. Transition Matrix (microstates)

Lumping step

D. Transition Matrix (macrostates)

………
Geometrical Clustering

1 2 1

1 6

3
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8 16

4

1 2 3 4

1

2

3

4

Dynamical Clustering

…

B. Trajectories of microstates

Figure 2. Workflow of the two-step clustering framework for learning metastable states. (A) Trajecto-
ries of conformations obtained from MD simulations. Each circle represents a different conformation.
(B) Trajectories of microstates resulted from the splitting step. This step uses only the geometrical
information to cluster conformations with high geometrical similarity into a microstate. Circles of
the same number represent the conformations belonging to a same microstate. (C) The transition
matrix between microstates, which counts the number of jumps between them along the trajectories.
(D) Transition matrix between macrostates obtained from the lumping step by clustering microstates
into macrostates. Each macrostate is a collection of microstates. Solid triangles with different colors
represent different macrostates.

In the framework of traditional density estimation, the key is to get the best estimation
of the density, i.e., qi and fi(x). In other words, global geometrical similarity is the only
concern in traditional density estimation, and the special biological property is ignored.
Thus, Bayesian sequential partition [33], which extends the idea of classification tree [34]
for estimating a high-dimensional density function, can not be applied here. In the frame-
work of Markov state model for learning metastable states, one estimates directly the
partition {Ai : i = 1, 2, · · · , k} and ignores qi and fi(x) because they are unimportant to
metastable states.

In summary, the difficulty underlying estimating the structural density function is
how to recover the partition {Ai : i = 1, 2, · · · , k} and satisfy the biological property that
conformations belonging to the same partition have both the geometrical and dynamical
similarity. This difficulty increases with the complexity of the molecule under study. Note
that there are two important parts for learning metastable states: the partition of the
conformational space and the number of metastable states k. The metastable structure in
each partition is defined as the conformation with lowest free energy.

3. The Two-Step Clustering Framework

A two-step clustering approach is widely used for identifying metastable states from
MD data. This is due to the fact that the conformational space where MD simulations
sample from is essentially a high-dimensional, continuous coordinate space. Therefore,
even if the raw simulation trajectories may contain thousands of conformations, very few
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transitions between any specific pair of these conformations will be observed. To overcome
this sparsity problem at the conformation level, a two-step clustering framework, a clever
idea, is commonly adopted for analyzing the trajectories of conformations. See Figure 2 for
an overview of this two-step clustering framework.

Firstly, a splitting step is used to group conformations into a number of microstates
according to their structural (geometric) similarity. In this step, we introduce a new
concept, called microstate, which is defined as a set of conformations with high geometrical
similarity. Actually, conformations belonging to the same microstates are assumed to
have both geometrical similarity and dynamical (kinetic) similarity, which ensures the fast
converting among them. It is expected to observe more transitions between microstates than
between conformations; thus, we can hopefully get a statistically stable transition matrix
between microstates. Since this step uses only the geometric information of conformations,
we refer it to as the geometric clustering step.

Secondly, a lumping step is used to cluster further microstates into macrostates (also
called metastable states) based on the transition matrix between microstates. Thus, a
macrostate (metastable state) is as a set of microstates with high dynamical similarity. This
step depends on the dynamic information between microstates; thus, it is referred to as the
dynamical clustering step.

To have relatively stable jumps between microstates, the number of microstates should
be selected carefully. If it is too large, the transition frequency between microstates will
be very low. If it is too small, a microstate may contain conformations that are separated
by energy barriers. Both situations will prevent the detection of true metastable states. In
addition, ignoring the geometrical information in the lumping step is problematic and
gives undesired results. In the following, we dive into details of this two-step clustering
framework.

3.1. The Splitting Step: Geometrical Clustering

The splitting step corresponds to the transition from Figure 2A to Figure 2B. The
input of this step is the vector data in Rm of n samples, where n is the total number of
conformations in all trajectories, and m is the dimension of the molecule, depending on the
pre-processing of the MD data. A conformation can be represented by the coordinates of all
atoms or its torsion angles. Thus, the dimension m of these two different representations
may be different. K-means [35] and K-medoids [36] algorithms are widely used in this step
due to their easy implementation.

To improve the efficiency of these two algorithms, dimension reduction methods such
as principle component analysis are applied before geometrical clustering. The principle
components (PCs) of coordinates and that of torsion angles are commonly used as the
representation of a conformation, see for example Mu et al. [37], Altis et al. [38]. For more
information about principle component analysis (PCA) of molecular dynamics, we refer to
Sittel et al. [39], where a detailed comparison of PCA on the use of Cartesian and internal
coordinates is given.

The main concerns about K-means/K-medoids algorithms are as follows. Firstly, both
of them give a local optimum instead of a global optimum due to the large sample size.
This means there may be some conformations belonging to the same microstates that are
clustered into different microstates, and thus leads to bad basins. Researchers usually try
to run the K-means or K-medoids algorithm multiple times to get better results. Second,
the aim of K-means/K-medoids algorithms, essentially, is to obtain an η-cover of the vector
space with centers {P1,P2, ....Pk} such that for each conformation P, there is an Pi, such
that d(P,Pi) ≤ η, where d(·, ·) is a distance function defined for any two vectors, and η
can be understood as the similarity threshold for defining microstates. It is impossible for
us to find a suitable η and k in real applications, which implies the inevitable difficulty of
K-means/K-medoids algorithms in the splitting step to give satisfactory microstates.

In principle, any clustering algorithm (see Jain [40] for a review) taking vector data as
input can be used for geometrical clustering. The computational burden and the quality
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of resultant microstates are the main concerns in this step. In addition, there are methods
proposed to improve the quality of microstates from this step. We will discuss them in
Section 3.3.

3.2. The Lumping Step: Dynamical Clustering

The lumping step corresponds to the transition from Figure 2C to Figure 2D. The input
of this step is the transition matrix between microstates obtained from the splitting step.
There are many different strategies for this dynamical clustering. We introduce below the
representative ones and discuss their performance on an MD alanine dipeptide dataset, a
well-understood molecule with six metastable states. The reason for choosing this historic
dataset is that we know the ground truth of its metastable states, which is crucial for us to
understand the performance of each method.

The MD trajectory data are taken from Chodera et al. [41], which consists of 974 20-ps
NVE simulations with conformations stored every 0.1 ps, and there are 194,800 conforma-
tions in the dataset. The detailed simulation information can be found in Chodera et al. [41].
The conformation space of the alanine dipeptide can be represented by two torsion angles
φ and ψ [41]; thus, it is a simple molecule often taken as a benchmark. Figure 3 shows the
scatter plot of φ-ψ of these 194,800 conformations with transition matrixes between its six
metastable states, shown in Table 1, where the partition of the conformational space into
six clusters (metastable states) follows that given in Chodera et al. [41]. Note that these
six metastable states are given by a manual partition according to the estimated landscape
from the parallel tempering simulation [41]. To eliminate the impact of microstates from
the splitting step on the lumping step, the microstates of the alanine dipeptide are obtained
by a grid method that partitions the φ-ψ space into 80× 80 grids and takes each non-empty
grid as a microstate.

−3 −2 −1 0 1 2 3
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−
1

0
1
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ψ
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S3
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Figure 3. The scatter plot of φ-ψ of the alanine dipeptide with φ, ψ ∈ [−π, π]. The partition of φ-ψ
space into six clusters follows that given in Chodera et al. [41].
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Table 1. Transition matrix of the benchmark clusters of the alanine dipeptide with S1–S6 shown in
Figure 3.

S1 S2 S3 S4 S5 S6

S1 0.9457 0.0477 0.0062 0.0004 0.0000 0.0000
S2 0.0609 0.9365 0.0004 0.0021 0.0000 0.0002
S3 0.0403 0.0021 0.8939 0.0636 0.0000 0.0000
S4 0.0020 0.0090 0.0526 0.9356 0.0008 0.0000
S5 0.0013 0.0013 0.0000 0.0098 0.9718 0.0158
S6 0.0000 0.0401 0.0000 0.0000 0.0519 0.9080

Sum of diagonals: 5.591479
Mean of diagonals: 0.9319131
Minimal of diagonals: 0.8939

Perron Cluster Cluster Analysis (PCCA, Deuflhard et al. [42]) and Its Variants. PCCA
is based on two important observations of transition matrix P between microstates: (P1)
if P has an s block-diagonal structure, its eigenvalue λ = 1 is s-fold, which is used to
identify the number of macrostates; (P2) the sign structure of the eigenvector corresponds
to the assignment of macrostates. Thus, the idea of PCCA is mathematically solid and
easy to implement. In practice, one should input the number of clusters (metastable states)
generated from PCCA, which is difficult to estimate for real applications.

In PCCA, the true transition matrix between microstates is assumed to be block-
diagonal, i.e., D = diag(D11, D22, · · · , Dkk), where k is the number of macrostates, and the
observed transition matrix P = D + E, where E is the perturbation matrix representing
error of the observations. This assumption may fail sometimes. Consider a special case
where microstates are macrostates, we find that the true transition matrix can not be
block-diagonal (see Table 1 for example). Secondly, PCCA can be understood as finding
a macrostate assignment, based on property (P1) and (P2), by maximizing the sum of
diagonals of the transition matrix between macrostates, i.e., the metastability of macrostates.
However, this kind of object may not directly lead to macrostates with the biological
property that conformations belonging to the same partition have both the geometrical
and dynamical similarity. That is, although conformations within the same macrostates
obtained by PCCA have high dynamical similarity, the geometric similarity between
conformations belonging to the same macrostates are not guaranteed. This is partly due to
its ignorance of geometric information when clustering microstates into macrostates. To
make this point clear, we show in Figure 4A the clustering results of alanine dipeptide from
PCCA by setting the number of clusters (metastable states) as its true number of clusters 6,
which is very different from the reference clustering labels shown in Figure 3. Typically,
metastable states S3 and S4 in Figure 3 are recognized as one metastable state in Figure 4A.
However, PCCA gives satisfied results according to the corresponding transition matrix
given in Table 2, which has a sum of diagonals close to that of the true transition matrix in
Table 1. These facts together imply that the mathematical optimal solution provided by
PCCA may not be biologically meaningful.

Different versions of PCCA, such as PCCA+ [43] and Flux PCCA (FPCCA, Beauchamp
et al. [44]), are proposed to improve its robustness to random perturbations. PCCA+ needs
users to give the range of number of clusters (metastable states). Figure 4B,C shows the
clustering results of the alanine dipeptide from PCCA+ with different ranges, and the
results are undesired.

Gibbs Sampling Algorithm (GSA, Wang et al. [45]). GSA is based on a Poisson model
assuming that the observed number of jumps between macrostates follows a Poisson
distribution. Taking the transition matrix between macrostates as a parameter, given
this Poisson model, we have the likelihood function for the macrostates assignment of
microstates. The transition matrix and the macrostates assignment of microstates is learned
by maximizing the likelihood function. To the best of our knowledge, this is the first
attempt on statistical modeling of the transition matrix between macrostates. The major
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point of GSA is to take the unknown number of macrostates as input. Figure 4D–F shows
the clustering results of alanine dipeptide from GSA with different numbers of clusters.
When users specify the right number of clusters, as shown in Figure 4D, GSA gives quite
good results. However, when users specify a bad one, the results will be bad, as shown in
Figure 4E,F.
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Figure 4. Clustering results of the alanine dipeptide from PCCA, PCCA+ and Gib algorithms. The
axis is the same as that in Figure 3. (A) PCCA with 6 clusters; (B) PCCA+ with estimated number of
cluster belonging to [3, 9]; (C) PCCA+ with estimated number of cluster belonging to [5, 7]; (D) GSA
with 6 clusters; (E) GSA with 5 clusters; (F) GSA with 7 clusters.

Table 2. Transition matrix between clusters of the alanine dipeptide obtained by PCCA with S1–S6
shown in Figure 4A.

S1 S2 S3 S4 S5 S6

S1 0.9352 0.0003 0.0018 0.0000 0.0000 0.0626
S2 0.0477 0.9131 0.0000 0.0068 0.0324 0.0000
S3 0.0042 0.0000 0.9752 0.0000 0.0004 0.0202
S4 0.0000 0.0032 0.0000 0.9104 0.0816 0.0048
S5 0.0000 0.0269 0.0175 0.0672 0.8884 0.0000
S6 0.0508 0.0000 0.0068 0.0000 0.0000 0.9424

Sum of diagonals: 5.564797
Mean of diagonals: 0.9274662
Minimal of diagonals: 0.8884

Most Probable Pathway (MPP, Jain and Stock [46]). The idea underlying MMP is straight-
forward: it merges the microstate with its neighboring microstates on its most probable
pathway that has the lowest free energy. The merit of MPP is that it does not require an
estimated value or range on number of clusters (metastable states) as input. However, due
to the discreteness of MD data, there exits undesired cases; for a microstate belonging to
state A, we may observe its most probable pathway leads to a microstate with the lowest
free energy belonging to state B. According to the principle of MPP, we should merge
this microstate into state B, which is undesired. To make this point clear, we show in
Figure 5A the clustering results of alanine dipeptide from MPP. As shown in the figure,
some microstates belonging to state S4 are clustered wrongly into states S1 and S3.
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Minimum Variance Clustering Approach (MVCA, [47]). Husic et al. [47] considered a
different strategy in the second step by using symmetric Jensen–Shannon divergence to
measure the similarity between microstates and Ward’s minimum variance criterion to do
the agglomerative clustering. Following this idea, one may use other distance metrics to
measure the similarity between microstates, and use agglomerative clustering to cluster
microstates into macrostates. We show in Figure 5B the clustering results of the alanine
dipeptide from MVCA.

S0
S1
S2
S3
S4
S5

(A) (B)

Figure 5. Clustering results of the alanine dipeptide from MPP (A) and MVCA (B). The axis is the
same as that in Figure 3. Different colors in the figure present different clusters.

In summary, we discussed the performance of different strategies for the lumping
step by providing the same (and almost ideal) microstates to different methods. That
is, the performance of each method only depends on the strategy for the lumping step.
According to results shown in Figures 4 and 5, the performance PCCA(+), MPP, MVCA
and GSA depends strongly on the number of macrostates from the algorithm. Importantly,
the scatterplots from PCCA(+), MPP and MVCA are different from the ground truth shown
in Figure 3, although their underlying principle is well-understood. This may be partially
caused by the fact that the lumping step uses only the dynamical information between
microstates but ignores the geometrical information between them. GSA shows good
performance when microstates are well defined and the number of macrostates is correctly
specified, which are quite difficult as discussed before.

3.3. Refinements to The Framework

Researchers have noticed two shortcomings for the above two-step procedure [25,48,49]
when applied to complex systems: (1) the quality of microstates is not guaranteed, which
has a strong impact on the downstream analysis; (2) some poorly sampled states may
dominate the coarse-grained model. In the following, we discuss a few strategies to refine
the two-step framework.

Iterative framework to improve microstates. An iterative framework [48,49] was proposed
to obtain better microstates. It goes as follows: (a) splitting macrostates by geometrical
clustering using stepwise K-means algorithm by incorporating other information, such as
escape probability; (b) lumping microstates into macrostates by dynamical clustering using
PCCA, PCCA+ or any other method; (c) repeating (a–b) until it converges. Note that there
is only one macrostate in the fist iteration. Essentially, this kind of iterative algorithm is to
improve the quality of microstates. In other words, if we have another way to get better
microstates, this iterative framework may not be helpful in basin estimation. This iterative
method may improve the quality of microstates, but it still can not make sure the resultant
microstates are good enough.

Other methods for the splitting step. Ignoring the dynamic information between confor-
mations, geometric clustering is just a clustering problem with vectors as input. Based on
this observation, all other methods for vector clustering [40] are applicable to the current
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problem. For example, Sittel and Stock [50] and Liu et al. [51] proposed a density-based
clustering [52,53] method to cluster conformations into microsates and then used MPP or
PCCA to further cluster microstates into macrostates. Taking a density-based clustering
method in the splitting step avoids the difficulty of local convergence from K-means or
K-medoids algorithms. However, selecting the bandwidth, the key parameter determining
the number of clusters, for density-based clustering is still in need of further investigation.
Furthermore, dimension reduction methods other than PCA are suggested to extract impor-
tant coordinates before going to the splitting step, see Sittel and Stock [54] for a discussion.

Reducing the impact of poorly sampled microstates. Bayesian agglomerative cluster-
ing engine (BACE, Bowman [55] and Hierarchical Nyströn expansion graph (HNEG,
Yao et al. [56] are proposed to amend the shortcoming of PCCA and PCCA+, that they tend
to identify poorly sampled states as being kinetically distinct from their neighbors [25].
Specifically, BACE identifies coarse-grained states by finding sets of states that have the
same kinetics (i.e., transition probabilities to other states) within statistical uncertainty
through Bayes factor. See Bowman [55] for details. HNEG attempts to solve this problem
by placing more emphasis on well-sampled states than poorly sampled ones based on the
idea that the whole transition matrix can be approximated by a sub-stable transition matrix
between well-sampled states. The metastable macrostates are obtained by applying PCCA
(PCCA+) to the sub-stable transition matrix. In other words, HNEG is an improved version
of PCCA and PCCA+. We refer to Bowman et al. [57] for a review and a comparison on the
performance of some of these methods, where the authors pointed out PCCA (PCCA+) has
a similar performance with BACE and HNEG, but it is better than MPP.

For complex systems, the shortcomings of the lumping step discussed before still exist.
The additional difficulty comes from the splitting step, which, as discussed in Section 3.1,
is from the following two fundamental facts: (1) K-means/K-medoids algorithms are
very difficult to converge, and (2) the number of microstates from them is also very
difficult to determine. Although different methods are proposed to improve the quality of
microstates, we still do not know whether they are good enough for downstream analysis
on complex systems, as these methods work in an intuitive way. Thus, we expect new
ideas to overcome these limitations. The optimal reaction coordinates [58] that treat the
free energy as a function of reaction coordinates is a good example on this direction.

4. Some Extensions

In previous sections, we gave a brief review on methods under the two-step clustering
framework for learning metastable states. Here, we discuss some extensions for modeling
MD data beyond MSMs.

Deep neural networks (DNN) for learning molecular dynamics. DNN has rapidly developed
in recent years due to its successful application to image processing. See LeCun et al. [59]
for a review. Researchers are motivated to apply DNN to other areas including predicting
protein folding and exploring the landscape of proteins. For example, Wu et al. [60] and
Mardt et al. [17] proposed a deep generative Markov state model based on deep neural
network to learn molecular dynamics and sample conformations from conformation space.
The key elements in their DNN models are (1) a DNN encoding the coordinates information
into latent space, (2) a Markov transition model between elements in latent space and
(3) a generative model decoding from latent space to coordinates information. These
DNN models are promising. However, to train the DNN, we should know the number
of macrostates first, which is unknown to us. How to learn automatically the number of
macrostates from MD data is still open.

DNN is a powerful tool for many problems, especially for image processing. How-
ever, a lack of explanation of results from deep learning is the key point that hinders its
application on other areas, for example, biology. It is well known that obtaining MD data is
time-consuming, and it is helpful to get it from deep learning, which is potential direction
for future works. For more discussions on machine learning methods for MD data analysis,
we refer to Noé [61].
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Improvements on MSMs. Markov state models assume a Markov chain on a discretiza-
tion of the state space. However, it is difficult to apply to high-dimensional biomolecular
systems. The quality and reproducibility of MSMs are therefore limited. Differently, pro-
jected Markov Models (PMMs, Noé et al. [62]) only assume that the full phase space
molecular dynamics is Markovian, and a projection of this full dynamics is observed on
the discrete states. However, estimating PMMs is very difficult. In addition, Dynamic
Graphical Models (DGMs, Olsson and Noé [63]) are proposed to deal with the case where
the size of global metastable states grow exponentially with the system size. Similar to
how spins interact in the Ising model, DGMs describe molecules as assemblies of coupled
subsystems, and the change of each subsystem state is only governed by the states of itself
and its neighbors. We refer to their original paper for more details about PMMs and DGMs.

5. Discussion and Outlook

In this paper, we reviewed some popular methods for learning metastable states from
molecular dynamics data, and most of them belong to a two-step clustering framework
including a splitting step and a lumping step. The performance of popular methods is
illustrated based on MD data of the alanine dipeptide.

In the splitting step, one wants to obtain microstates by clustering conformations
into microstates while ignoring the dynamical information underlying them. K-means
and K-medoids are commonly used in this step. However, they suffer from drawbacks
such as being stuck in a local mode and not easily obtaining microstates with biological
properties that conformations belonging to the same partition have both the geometrical
and dynamical similarity. Density-based clustering is used to avoid the drawback of these
two methods, but it introduces a new difficulty on selecting the threshold to define the
local density. Microstates from the splitting step have a strong impact on the downstream
analysis. Bad microstates may lead to bad metastable states. For simple systems such as
alanine dipeptide, a grid clustering method is available for geometrical clustering to get
better microstates. However, for proteins such as HP35 NLE/NLE, methods such as MPP
will inevitably give poor results due to bad microstates.

In the lumping step, there are many methods proposed for dynamical clustering.
Each method has its own philosophy. PCCA has solid mathematical foundation, the idea
behind MPP is straightforward, and GSA is based on a Poisson model. The key problem
underlying them is their failures on estimating the number of metastable states; however,
PCCA and GSA should take this unknown number as input. In addition, they strongly
rely on the microstates from the splitting step. Bad microstates inevitably lead to bad
macrostates no matter what method is used in the lumping step.

The key features of this two-step framework are (1) the quality of microstates has a
strong impact on the quality of macrostates and (2) a separate consideration of geometric
clustering and dynamical clustering. That is, the geometric information of conformations
is only used in geometric clustering, and dynamical clustering uses only the dynamic
information. Although an iterative framework is proposed to refine the microstates, we
still can not make sure the conformations belong to the same microstates from the splitting
step with the biological property. Thus, further investigation should focus on how to obtain
high-quality microstates and how to combine the geometric and dynamic information to
learn the metastable states.

Deep neural networks (DNN) are proposed to learn molecular dynamics from MD
data, and thus learn the metastable states. However, it can not learn the number of
metastable states. Instead, it should take this number as input. In other words, how to
design a DNN for learning automatically the number of metastable states is still open. How
to verify the DNN learned from MD data also needs further study.

Another interesting problem related to metastable states learning is to explore the
relationship between local geometric similarity and dynamical similarity. We believe that
the dynamic similarity between conformations comes from the local similarity in geometry.
The advantage of DNN is to learn this relationship automatically from MD data, which is
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hidden from us and loses its interpretation. However, the two-step clustering framework
ignores this point.

Finally, all of these methods do not take into consideration the statistical uncertainty of
the MD data. There is great need of a full statistical model for MD data. GSA is a statistical
model for the transition matrix between macrostates, and it has a good performance when
we know the true numbers of macrostates and microsates are well defined. This fact sheds
some light on statistical modeling on MD data. Based on the success of DNN, we should
incorporate dimension reduction/variable selection into the statistical model for MD data,
which would enable us to infer metastable states and the number of macrostates in a full
statistical manner.
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