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Abstract

Little is known about the genetic architecture of traits affecting educational attainment other than 

cognitive ability. We used Genomic Structural Equation Modeling and prior genome-wide 

association studies (GWAS) of educational attainment (n = 1,131,881) and cognitive test 

performance (n = 257,841) to estimate SNP associations with educational attainment variation that 

is independent of cognitive ability.We identified 157 genome-wide significant loci and a polygenic 

architecture accounting for 57% of genetic variance in educational attainment. Non-cognitive 

genetics were enriched in the same brain tissues and cell types as cognitive performance but 

showed different associations with gray-matter brain volumes. Non-cognitive genetics were further 

distinguished by associations with personality traits, less risky behavior,and increased risk for 

certain psychiatric disorders.For socioeconomic success and longevity, non-cognitive and 

cognitive-performance genetics demonstrated similar-magnitude associations. By conducting a 

GWAS of a phenotype that was not directly measured, we offer a first view of genetic architecture 

of non-cognitive skills influencing educational success.

“It takes something more than intelligence to act intelligently.”

– Fyodor Dostoyevsky, Crime and Punishment

Success in school—and life—depends on skills beyond cognitive ability1–4. Randomized 

trials of early-life education interventions find substantial benefits to educational outcomes, 

employment, and adult health, even though the interventions have no lasting effects on 

children’s cognitive functions5,6. These results have captured attention of educators and 

policy makers, motivating interest in so-called “non-cognitive skills”7–9. Non-cognitive 

skills suspected to be important for educational success include motivation, curiosity, 

persistence, and self-control1,10–13. However, questions have been raised about the substance 

of these skills and the magnitudes of their impacts on life outcomes14.

Twin studies find evidence that non-cognitive skills are heritable3,15–18. Genetic analysis 

could help clarify the contribution of these skills to educational attainment and elucidate 

their connections with other traits. However, lack of consistent and reliable measurements of 

non-cognitive skills in existing genetic datasets pose challenges19.

To overcome these challenges, we designed a GWAS of a latent trait, i.e. a trait not 

measured in any of the genotyped subjects20. We borrowed the strategy used in the original 

analysis of non-cognitive skills within the discipline of economics21,22: we defined genetic 

influences on non-cognitive skills as the genetic variation in educational attainment that was 

not explained by cognitive skills. We then performed GWAS on this residual “non-

cognitive” genetic variation in educational attainment. This approach is a necessarily 
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imperfect representation of the true relationship between cognitive and non-cognitive skills; 

in human development, cognitive abilities and other skills relevant for educational 

attainment likely interact dynamically, each influencing the other23. Our analysis excludes 

genetic influences on education-relevant skills that also influence measured cognitive 

abilities. The value of this imperfect approach is to make a quantity otherwise difficult to 

study tractable for analysis.

We conducted analysis using Genomic Structural Equation Modeling (Genomic-SEM)24 

applied to published GWAS summary statistics for educational attainment and cognitive 

performance25. Our analysis used these summary statistics to “subtract” genetic influence on 

cognitive performance from the association of each single-nucleotide polymorphism (SNP) 

with educational attainment. The remaining associations of each SNP with educational 

attainment formed a new GWAS of a non-cognitive skills phenotype that was never directly 

measured. We call this novel statistical approach GWAS-by-subtraction.

We used results from the GWAS-by-subtraction of non-cognitive skills to conduct two sets 

of analyses. First, we conducted hypothesis-driven analysis using the phenotypic annotation 

approach26. We used genetic correlation and polygenic score analysis to test the hypothesis 

that non-cognitive skills influence educational and economic attainments and longevity and 

to investigate traits and behaviors that constitute non-cognitive skills. Second, we conducted 

hypothesis-free bioinformatic annotation analysis to explore the tissues, cell-types, and brain 

structures that might distinguish the biology of non-cognitive skills from the biology 

mediating cognitive influences on educational attainment.

Results

GWAS-by-subtraction identifies genetic associations with non-cognitive variance in 
educational attainment

The term “non-cognitive skills” was originally coined by economists studying individuals 

who were equivalent in cognitive ability but who differed in educational attainment22. Our 

analysis of non-cognitive skills was designed to mirror this original approach: we focused on 

genetic variation in educational outcomes not explained by genetic variation in cognitive 

ability. Specifically, we applied Genomic Structural Equation Modeling (Genomic-SEM)24 

to summary statistics from GWASs of educational attainment25 and cognitive 

performance25. Both phenotypes were regressed on a latent factor representing genetic 

variance in cognitive performance (hereafter “Cog”). Educational attainment was further 

regressed on a second latent factor representing the residual genetic variance in educational 

attainment left over after regressing-out variance related to cognitive performance (hereafter 

“NonCog”). By construction, NonCog genetic variance was independent of Cog genetic 

variance (r g = 0). In other words, the NonCog factor represents genetic variation in 

educational attainment that is not accounted for by the Cog factor. These two latent factors 

were then regressed on individual SNPs, yielding a GWAS of the latent constructs NonCog 
and Cog. A graphical representation of the model is presented in Figure 1. Parameters are 

derived in terms of the observed moments of the joint distribution of educational attainment, 

cognitive performance, and a SNP (see Supplementary Note).
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The NonCog latent factor accounted for 57% of total genetic variance in educational 

attainment. Using LD Score regression27, we estimated SNP-heritability for NonCog to be h 
2 NonCog = 0.0637 (SE = 0.0021). After conventional GWAS significance threshold 

correction, GWAS of NonCog identified 157 independent genome-wide significant lead 

SNPs (independent SNPs defined as outside a 250-kb window, or within a 250-kb window 

and r 2 < 0.1). The results from the NonCog GWAS are graphed as a Manhattan plot in 

Figure 2. NonCog and Cog GWAS details are reported in Supplementary Tables 1-4, 
Supplementary Figure 1, and the Supplementary Note. In addition, we report a series of 

sensitivity analyses as follows: analysis of potential biases due to cohort differences 

(Supplementary Table 5 and Supplementary Figs. 2-4); analysis of impact of allowing for 

positive genetic correlations between NonCog and Cog (Supplementary Tables 6 and 7, 

and Supplementary Figs. 5 and 6; analysis of impact of allowing for a moderate causal 

effect of educational attainment on cognitive performance28 (Supplementary Table 8 and 

Supplementary Figs. 7-9).

Phenotypic annotation analysis elucidates behavioral, psychological and psychiatric 
correlates of non-cognitive skills genetics

Our phenotypic annotation analyses proceeded in two steps. First, we conducted polygenic 

score (PGS) and genetic correlation (rG) analysis to test whether our GWAS-by-subtraction 

succeeded in identifying genetic influences that were important to educational attainment 

and also distinct from genetic influences on cognitive ability. Second, we conducted PGS 

and rG analyses to explore how NonCog related to a network of phenotypes that psychology 

and economics research suggests might form the basis of non-cognitive influences on 

educational attainment.

NonCog genetics are distinct from cognitive performance and are important to education, 
socioeconomic attainment, and longevity. To establish whether the Genomic-SEM GWAS-

by-subtraction succeeded in isolating genetic variance in education that was independent of 

cognitive function, we compared genetic associations of NonCog and Cog with educational 

attainment and cognitive test performance. Results for analysis of education and cognitive 

test phenotypes are graphed in Figure 3.

We conducted PGS analysis of educational attainment in the Netherlands Twin Register29 

(NTR), National Longitudinal Study of Adolescent to Adult Health30 (AddHealth), Dunedin 

Longitudinal Study31, E-Risk32, and Wisconsin Longitudinal Study33 (WLS) cohorts (meta-

analysis n = 24,056; cohorts descriptions in Supplementary Tables 9 and 10 and 

Supplementary Note). PGS effect-sizes were the same for NonCog and Cog (NonCog β = 

0.24 (SE = 0.03), Cog β = 0.24 (SE = 0.02), P diff = 0.702; all PGS results are reported in 

Supplementary Tables 11 and 12). We conducted complementary genetic correlation 

analysis using Genomic SEM and GWAS summary statistics from a hold-out-sample GWAS 

of educational attainment (Supplementary Note). This analysis allowed us to compute an 

out-of-sample genetic correlation of NonCog with educational attainment. NonCog showed 

a stronger genetic correlation with educational attainment as compared to Cog (NonCog r g 

= 0.71 (SE = 0.02), Cog r g = 0.57 (SE = 0.02), P diff < 0.0001; all genetic correlation results 

are reported in Supplementary Tables 13 and 14).
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We conducted PGS analysis of cognitive test performance in the NTR, Texas Twin Project34, 

Dunedin, E-Risk, and WLS cohorts (combined n = 11,351). The goal of our GWAS-by-

subtraction analysis was to exclude, as much as possible, genetic variance in cognitive 

ability from genetic variance in skills relevant for education. Consistent with this goal, 

effect-sizes for NonCog PGS associations with full-scale IQ were smaller by half as 

compared to Cog PGS associations (NonCog β = 0.17 (SE = 0.02), Cog β = 0.29 (SE = 

0.03); P diff < 0.0001). However, the non-zero correlation between the NonCog PGS and 

full-scale IQ is a reminder that the cognitive performance GWAS used in our GWAS-by-

subtraction analyses does not capture the entirety of genetic influences on all forms of 

cognitive tests measured at all points in the lifespan. Additional PGS analyses of IQ 

subscales are reported in Supplementary Figure 10 and Supplementary Tables 11 and 12.

We conducted complementary genetic correlation analysis using results from a published 

GWAS of childhood IQ35. Parallel to PGS analysis, the NonCog genetic correlation with 

childhood IQ was smaller by more than half as compared to the Cog genetic correlation 

(NonCog r g = 0.31 (SE = 0.06), Cog r g = 0.75 (SE = 0.08), P diff_fdr < 0.0001). Of the total 

genetic correlation between childhood IQ and educational attainment, 31% of the covariance 

was explained by NonCog and 69% by Cog.

We next examined downstream economic and health outcomes associated with greater 

educational attainment36,37. In PGS analysis in the AddHealth and Dunedin cohorts (n = 

6,358), NonCog and Cog PGSs showed similar associations with occupational attainment 

(NonCog β = 0.21 (SE = 0.01), Cog β = 0.21 (SE = 0.01), P diff = 0.902). In genetic 

correlation analysis, NonCog showed a similar relationship to income38 as Cog (NonCog r g 

= 0.62, (SE = 0.04), Cog r g = 0.62 (SE = 0.04), P diff_fdr = 0.947) and a stronger relationship 

with neighborhood deprivation38, a measure related to where a person can afford to live 

(NonCog r g = -0.51 (SE = 0.05), Cog r g = -0.32 (SE = 0.04), P diff_fdr = 0.001). In 

Genomic-SEM analysis, NonCog explained 53% of the genetic correlation between 

educational attainment and income and 65% of the genetic correlation between educational 

attainment and neighborhood deprivation (Supplementary Table 15).

We conducted genetic correlation analysis of longevity based on GWAS of parental 

lifespan39. Genetic correlations were stronger for NonCog as compared to Cog (NonCog r g 

= 0.37 (SE = 0.03); Cog r g = 0.27 (SE = 0.03); P diff_fdr = 0.024). In Genomic-SEM 

analysis, NonCog explained 61% of the genetic correlation between educational attainment 

and longevity.

In sum, NonCog and Cog genetics showed similar relationships with educational attainment 

and its long-term outcomes, despite NonCog genetic having a much weaker relationship to 

measured cognitive test performance than Cog genetics. These findings broadly support the 

hypothesis that non-cognitive skills distinct from cognitive abilities are an important 

contributor to success across the life course.

We next conducted a series of genetic correlation analyses to explore the network of 

phenotypes to which NonCog was genetically correlated. To develop understanding of the 

substance of non-cognitive skills, we tested where in that network of phenotypes genetic 
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correlations with NonCog diverged from genetic correlations with Cog. Our analysis was 

organized around four themes: decision-making preferences, health-risk and fertility 

behaviors, personality traits, and psychiatric disorders. Results of genetic correlation 

analyses are graphed in Figure 4 and Supplementary Figure 11. Results are reported in 

Supplementary Table 14.

NonCog genetics were associated with decision-making preferences. In economics, non-

cognitive influences on achievement and health are often studied in relation to decision-

making preferences40–43. NonCog was genetically correlated with higher tolerance of risks44 

(r g = 0.10 (SE = 0.03)) and willingness to forego immediate gratification in favor of a larger 

reward at a later time45 (delay discounting r g = -0.52 (SE = 0.08)). In contrast, Cog was 

genetically correlated with generally more cautious decision-making characterized by lower 

levels of risk tolerance (r g = -0.35 (SE = 0.07), P diff_fdr < 0.0001) and delay discounting (r g 

= -0.35 (SE = 0.07), P diff_fdr = 0.082).

NonCog genetics were associated with less health-risk behavior and delayed fertility. An 

alternative approach to studying specific non-cognitive skills is to infer individual 

differences in non-cognitive skills from patterns of health-risk behavior. NonCog was 

genetically correlated with less health-risk behavior as indicated by analysis of obesity46, 

substance use44,47–50, and sexual behaviors and early fertility44,51,52 (r g range 0.2-0.5), with 

the exception that the r g with alcohol use was not different from zero and r g with cannabis 

use was positive. Genetic correlations for Cog were generally in the same direction but of 

smaller magnitude.

NonCog genetics were associated with a broad spectrum of personality characteristics linked 
with social and professional competency. In psychology, non-cognitive influences on 

achievement are conceptualized as personality traits, i.e. patterns of stable individual 

differences in emotion and behavior. The model of personality that has received the most 

attention in genetics is a five-factor model referred to as the Big Five. Genetic correlation 

analysis of the Big Five personality traits53–55 revealed NonCog genetics were most strongly 

associated with Openness to Experience (being curious and eager to learn; r g = 0.30 (SE = 

0.04)) and were further associated with a pattern of personality characteristic of changes that 

occur as people mature in adulthood56. Specifically, NonCog showed a positive r g with 

Conscientiousness (being industrious and orderly; r g = 0.13 (SE = 0.03)), Extraversion 

(being enthusiastic and assertive; r g = 0.14 (SE = 0.03)), and Agreeableness (being polite 

and compassionate; r g = 0.14 (SE = 0.05)), and negative r g with Neuroticism (being 

emotionally volatile; r g = -0.15 (SE = 0.04)). Genetic correlations of Cog with Openness to 

Experience and Neuroticism were similar to those for NonCog (P diff_fdr-Openness = 0.040, P 

diff_fdr-Neuroticism = 0.470). In contrast, genetic correlations of Cog with Conscientiousness, 

Extraversion, and Agreeableness were in the opposite direction (r g = -0.25 to -0.12, P diff_fdr 

< 0.0005). PGS analysis of personality traits is reported in Supplementary Table 12, 

Supplementary Figure 12, and the Supplementary Note.

NonCog genetics were associated with higher risk for multiple psychiatric disorders. In 

clinical psychology and psychiatry, research is focused on mental disorders. Mental 

disorders are generally associated with impairments in academic achievement and social role 
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functioning57,58. However, positive genetic correlations with educational attainment and 

creativity have been reported for some disorders59,60. We therefore tested NonCog r g with 

psychiatric disorders based on published case-control GWAS of mental disorders61–67. 

NonCog was associated with higher risk for multiple clinically defined disorders, including 

anorexia nervosa (r g = 0.26 (SE = 0.04)), obsessive-compulsive disorder (r g = 0.31 (SE = 

0.06)), bipolar disorder (r g = 0.27 (SE = 0.03)), and schizophrenia (r g = 0.26 (SE = 0.02)). 

Genetic correlations between Cog and psychiatric disorders were either smaller in 

magnitude (anorexia nervosa r g = 0.08 (SE = 0.03), P diff_fdr < 0.001; obsessive-compulsive 

disorder r g = 0.05 (SE = 0.05), P diff_fdr = 0.002) or in the opposite direction (bipolar 

disorder r g = -0.07 (SE = 0.03), P diff_fdr < 0.001; schizophrenia r g = -0.22 (SE = 0.02), P 

diff_fdr < 0.001). Both NonCog and Cog showed negative genetic correlations with attention-

deficit/hyperactivity disorder (NonCog r g = -0.37 (SE = 0.03), Cog r g = -0.37 (SE = 0.04), 

P diff_fdr = 0.947).

In sum, NonCog genetics were associated with phenotypes from economics and psychology 

thought to mediate non-cognitive influences on educational success. These associations 

contrasted with associations for Cog genetics, supporting distinct pathways of influence on 

achievement in school and later in life. Opposing patterns of association were also observed 

for psychiatric disorders, suggesting that the unexpected positive genetic correlation between 

educational attainment and mental health problems uncovered in previous studies60,68,69 

arises from non-cognitive genetic influences on educational attainment.

Biological annotation analyses reveal shared and specific neurobiological correlates

The goal of biological annotation of GWAS discoveries is to elucidate molecular 

mechanisms mediating genetic influences on the phenotype of interest. Our biological 

annotation analysis proceeded in two steps. First, we conducted enrichment analysis to test 

whether some tissues and cell-types were more likely to mediate NonCog and Cog 
heritabilities than others. Second, we conducted genetic correlation analysis to explore how 

NonCog and Cog genetics related to different brain structures.

NonCog and Cog genetics were enriched in similar tissues and cells. We tested whether 

common variants in genes specifically expressed in 53 GTEx tissues70 or in 152 tissues 

captured in a previous aggregation of RNA-seq studies71,72 were enriched in their effects on 

Cog or NonCog. Genes predominantly expressed in the brain rather than peripheral tissues 

were enriched in both NonCog and Cog (Supplementary Table 16).

To examine expression patterns at a more granular level of analysis, we used MAGMA73 

and stratified LD score regression74 to test enrichment of common variants in 265 nervous 

system cell-type-specific gene-sets75 (Supplementary Table 17). In MAGMA analysis, 

common variants in 95 of 265 gene-sets were enriched for association with NonCog. The 

enriched cell-types were predominantly neurons (97%), with enrichment most pronounced 

for telencephalon-projecting neurons, di- and mesencephalon neurons, and to a lesser extent, 

telencephalon interneurons (Supplementary Fig. 13 and Supplementary Table 18). 

Enrichment for Cog was similar to NonCog (correlation between Z-statistics Pearson’s r = 

0.85), and there were no differences in cell-type-specific enrichment, suggesting that the 

same types of brain cells mediate genetic influences on NonCog and Cog (Supplementary 
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Fig. 14). Stratified LDSC results were similar to results from MAGMA (Supplementary 
Note, Supplementary Fig. 15, and Supplementary Table 19).

The absence of differences in cell-type specific enrichment is surprising given that NonCog 
and Cog are genetically uncorrelated. We therefore used the TWAS/Fusion tool76 to conduct 

gene-level analysis. This analysis revealed a mixture of concordant and discordant gene 

effects on NonCog and Cog consistent with the genetic correlation of zero (Supplementary 
Note, Supplementary Fig. 16, and Supplementary Table 20).

NonCog and Cog genetics show diverging associations with total and regional brain 
volumes. Educational attainment has previously been found to be genetically correlated with 

greater total brain volume77,78. We therefore used a GWAS of regional brain volume to 

compare the r g of NonCog and Cog with total brain volume and with 100 regional brain 

volumes (99 gray matter volumes and white matter volume) controlling for total brain 

volume (Supplementary Table 21)79. For total brain volume, genetic correlation was 

stronger for Cog as compared to NonCog (Cog r g = 0.22 (SE = 0.04), NonCog r g = 0.07 

(SE = 0.03), P diff = 0.005). Total gray matter volume, controlling for total brain volume, 

was not associated with either NonCog or Cog (NonCog: r g = 0.07 (SE = 0.04); Cog: r g = 

0.06 (SE = 0.04)). For total white matter volume, conditional on total brain volume, genetic 

correlation was weakly negative for NonCog as compared to Cog (NonCog r g = -0.12 (SE = 

0.04), Cog (r g = -0.01 (SE = 0.04), P diff = 0.04).

NonCog was not associated with any of the regional gray-matter volumes after FDR 

correction. In contrast, Cog was significantly associated with regional gray-matter volumes 

for the bilateral fusiform, insula and posterior cingulate (r g range 0.11-0.17), as well as left 

superior temporal (r g = 0.11 (SE = 0.04)), left pericalcarine (r g = -0.16 (SE = 0.05)) and 

right superior parietal volumes (r g = -0.22 (SE = 0.06)) (Fig. 5).

Finally, we tested genetic correlation of NonCog and Cog with white matter tract integrity as 

measured using diffusion tensor imaging (DTI)80. Analyses included 5 DTI parameters in 

each of 22 white matter tracts (Supplementary Table 22). NonCog was positively 

associated with the mode of anisotropy parameter (which denotes a more tubular, as opposed 

to planar, water diffusion) in the corticospinal tract, retrolenticular limb of the internal 

capsule, and splenium of the corpus callosum (Fig. 5). However, all correlations were small 

(0.10 < r g < 0.14), and we detected no genetic correlations that differed between NonCog 
and Cog (Supplementary Note).

Discussion

GWAS of non-cognitive influences on educational attainment identified 157 independent 

loci and polygenic architecture accounting for more than half the genetic variance in 

educational attainment. In genetic correlation and PGS analysis, these non-cognitive 

(NonCog) genetics showed similar magnitude of associations with educational attainment, 

economic attainment, and longevity to genetics associated with cognitive influences on 

educational attainment (Cog). As expected, NonCog genetics had much weaker associations 

with cognition phenotypes as compared to Cog genetics. These results contribute new 
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GWAS evidence in support of the hypothesis that heritable non-cognitive skills influence 

educational attainment and downstream life-course economic and health outcomes.

Phenotypic and biological annotation analyses shed light on the substance of heritable non-

cognitive skills influencing education. Economists hypothesize that preferences that guide 

decision-making in the face of risk and delayed rewards represent non-cognitive influences 

on educational attainment. Consistent with this hypothesis, NonCog genetics were 

associated with higher risk tolerance and lower time discounting. These decision-making 

preferences are associated with financial wealth, whereas opposite preferences are 

hypothesized to contribute to a feedback loop perpetuating poverty81. Consistent with results 

from analysis of decision-making preferences, NonCog genetics were also associated with 

healthier behavior and later fertility.

Psychologists hypothesize that the Big Five personality characteristics of conscientiousness 

and openness are the two “pillars of educational success”2,3,82. Our results provide some 

support for this hypothesis, with the strongest genetic correlation evident for openness. 

However, they also show that non-cognitive skills encompass the full range of personality 

traits, including agreeableness, extraversion, and the absence of neuroticism. This pattern 

mirrors the pattern of personality change that occurs as young people mature into 

adulthood56. Thus, non-cognitive skills share genetic etiology with what might be termed as 

“mature personality”. The absolute magnitudes of genetic correlations between NonCog and 

individual personality traits are modest. This result suggests that the personality traits 

described by psychologists capture some, but not all, genetic influence on non-cognitive 

skills.

Although the general pattern of findings in our phenotypic annotation analysis indicated 

non-cognitive skills were genetically related to socially desirable characteristics and 

behaviors, there was an important exception. Genetic correlation analysis of psychiatric 

disorder GWAS revealed positive associations of NonCog genetics with schizophrenia, 

bipolar disorder, anorexia nervosa, and obsessive-compulsive disorder. Previously, these 

psychiatric disorders have been shown to have a positive r g with educational attainment, a 

result that has been characterized as paradoxical given the impairments in educational and 

occupational functioning typical of serious mental illness. Our results clarify that these 

associations are driven by non-cognitive factors associated with success in education. These 

results align with the theory that clinically defined psychiatric disorders represent extreme 

manifestations of dimensional psychological traits, which might be associated with adaptive 

functioning within the normal range83–85.

Finally, biological annotation analyses suggested that genetic variants contributing to 

educational attainment not mediated through cognitive abilities are enriched in genes 

expressed in the brain, specifically in neurons. Even though NonCog and Cog were 

genetically uncorrelated, variants in the same neuron-specific gene-sets were enriched for 

both traits. Although we found some evidence of differences between NonCog and Cog in 

associations with gray matter volumes, moderate sample sizes in neuroimaging GWAS mean 

these results must be treated as preliminary, requiring replication with data from larger-scale 

GWAS of white-matter and gray-matter phenotypes. Limited differentiation of NonCog and 
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Cog in biological annotation analyses focused at the levels of tissue and cell type highlights 

need for finer-grained molecular data resources to inform these analyses and the 

complementary value of phenotypic annotation analyses focused at the level of psychology 

and behavior.

We acknowledge limitations. Cognitive and non-cognitive skills develop in interaction with 

one another. For example, the dynamic mutualism hypothesis86 proposes that non-cognitive 

characteristics shape investments of time and effort, leading to differences in the pace of 

cognitive development87,88. However, in Genomic-SEM analysis, the NonCog factor is, by 

construction, uncorrelated with genetic influences on adult cognition as measured in the Cog 
GWAS. Our statistical separation of NonCog from cognition is thus a simplified 

representation of development. Longitudinal studies with repeated measures of cognitive and 

candidate non-cognitive skills are needed to study their reciprocal relationships across 

development89,90. Our statistical separation of NonCog from cognition is also incomplete. 

The ability to control statistically for any variable, genetic or otherwise, depends on how 

well and comprehensively that variable is measured91. The tests of cognitive performance 

included in the Cog GWAS likely do not capture all genetic influences on all forms of 

cognitive ability across the lifespan92,93. Despite these limitations, our simplified and 

incomplete statistical separation of NonCog from Cog allowed us to test whether heritable 

traits other than cognitive ability influenced educational attainment and to explore what 

those traits might be.

Because our analysis was based on GWAS of educational attainment, non-cognitive genetics 

identified here may differ from non-cognitive genetics affecting other socioeconomic 

attainments like income, or traits and behaviors that mediate responses to early childhood 

interventions, to the extent that those genetics do not affect educational attainment. Parallel 

analysis of alternative attainment phenotypes will clarify the specificity of discovered non-

cognitive genetics.

In the case of GWAS of educational attainment, the included samples were drawn mainly 

from Western Europe and the U.S., and participants completed their education in the late 

20th and early 21st centuries. The phenotype of educational attainment reflects an interaction 

between an individual and the social system in which they are educated. Differences across 

social systems, including education policy, culture, and historical context, may result in 

different heritable traits influencing on educational attainment94. Results therefore may not 

generalize beyond the times and places GWAS samples were collected.

Generalization of the NonCog factor is also limited by restriction of included GWAS to 

individuals of European ancestry. Lack of methods for integrating genome-scale genetic data 

across populations with different ancestries95,96 requires this restriction, but raises threats to 

external validity. GWAS of other ancestries and development of methods for trans-ancestry 

analysis can enable analysis of (Non)Cog in non-European populations.

Within the bounds of these limitations, results illustrate the application of Genomic-SEM to 

conduct GWAS of a phenotype not directly measured in GWAS databases. This application 

could have broad utility beyond the genetics of educational attainment. The GWAS-by-
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subtraction method allowed us to study a previously hard-to-interpret residual value. Our 

analysis provides a first view of the genetic architecture of non-cognitive skills influencing 

educational success. These skills are central to theories of human capital formation within 

the social and behavioral sciences and are increasingly the targets of social policy 

interventions. Our results establish that non-cognitive skills are central to the heritability of 

educational attainment and illuminate connections between genetic influences on these skills 

and social and behavioral science phenotypes.

Methods

Meta-analysis of educational attainment GWAS

We reproduced the Social Science Genetic Association Consortium (SSGAC) 2018 GWAS 

of educational attainment25 by meta-analyzing published summary statistics for n = 766,345 

(www.thessgac.org/data) with summary statistics obtained from 23andMe, Inc. (n = 

365,538). We included SNPs with sample size > 500,000 and MAF > 0.005 in the 1000 

Genomes reference set (10,101,243 SNPs). We did not apply genomic control, as standard 

errors of publicly available and 23andMe summary statistics were already corrected25. Meta-

analysis was performed using METAL100.

GWAS-by-subtraction

The objective of our GWAS-by-subtraction analysis was to estimate, for each SNP, the 

association with educational attainment that was independent of that SNP’s association with 

cognition (hereafter, the NonCog SNP effect). We used Genomic-SEM24 in R 3.4.3 to 

analyze GWAS summary statistics for the educational attainment and cognitive performance 

phenotypes in the SSGAC’s 2018 GWAS25. The model regressed the educational-attainment 

and cognitive-performance summary statistics on two latent variables, Cog and NonCog 
(Fig. 1). Cog and NonCog were then regressed on each SNP in the genome. This analysis 

allowed for two paths of association with educational attainment for each SNP. One path was 

fully mediated by Cog. The other path was independent of Cog and measured the non-

cognitive SNP effect, NonCog. To identify independent hits with P < 5 × 10-8 (the 

customary P-value threshold to approximate an alpha value of 0.05 in GWAS), we pruned 

the results using a radius of 250 kb and an LD threshold of r 2 < 0.1 (Supplementary Tables 
1-3). We explore alternative lead SNPs and loci definition in Supplementary Table 4. The 

parameters estimated in a GWAS-by-subtraction and their derivation in terms of the genetic 

covariance are described in the Supplementary Note (model specification), and practical 

analysis steps are further described in the Supplementary Note (SNP filtering). The 

effective sample size of the NonCog and Cog GWAS was estimated to 510,795 and 257,700, 

respectively (see Supplementary Note). We investigated biases from unaccounted-for 

heterogeneity in overlap across SNPs in the educational attainment and cognitive performace 

GWAS and describe possible strategy to deal with it (Supplementary Note). We 

investigated potential biases due to cohort differences in SNP heritability in the 

Supplementary Note. We evaluated the consequences of modifying r g (NonCog, Cog) = 0 

by evaluating r g = 0.1, 0.2 or 0.3, and we investigated the consequences of a violation of the 

assumed causation between cognitive performance and educational attainment in the 

Supplementary Note.
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Genetic correlations

We used Genomic-SEM to compute genetic correlations of Cog and NonCog with other 

education-linked traits for which well-powered GWAS data were available (SNP-h 2 z-

statistics > 2; Supplementary Table 13) and to test whether genetic correlations with these 

traits differed between Cog and NonCog. Specifically, models tested the null hypothesis that 

trait genetic correlations with Cog and NonCog could be constrained to be equal using a chi-

squared test with FDR adjustment to correct for multiple testing. The FDR adjustment was 

conducted across all genetic correlation analyses reported in the article, excluding the 

analyses of brain volumes described below. Finally, we used Genomic-SEM analysis of 

genetic correlations to estimate the percentage of the genetic covariance between educational 

attainment and the target traits that was explained by Cog and NonCog using the model 

illustrated in Supplementary Figure 17.

Polygenic score analysis

Polygenic score analyses were conducted in data drawn from six population-based cohorts 

from the Netherlands, the U.K., the U.S., and New Zealand: (1) the Netherlands Twin 

Register (NTR)29,101, (2) E-Risk32, (3) the Texas Twin Project34, (4) the National 

Longitudinal Study of Adolescent to Adult Health (AddHealth)30,102, dbGaP accession 

phs001367.v1.p1; (5) Wisconsin Longitudinal Study on Aging (WLS)33, dbGaP accession 

phs001157.v1.p1; and (6) the Dunedin Multidisciplinary Health and Development Study31. 

Supplementary Tables 9 and 10 describe cohort-specific metrics, and we include a short 

description of the cohorts’ populations and recruitment in Supplementary Note. Only 

participants with European ancestry were included in the analysis, due to the low portability 

of PGS between different ancestry populations. Polygenic scores were computed with 

PLINK based on weights derived using the LD-pred103 software with an infinitesimal prior 

and the 1000 Genomes phase 3 sample as a reference for the LD structure. LD-pred weights 

were computed in a shared pipeline to ensure comparability between cohorts. Each outcome 

(e.g., IQ score) was regressed on the Cog and NonCog polygenic scores and a set of control 

variables (sex, 10 principal components derived from the genetic data and, for cohorts in 

which these quantities varied, genotyping chip and age), using Stata 14 for WLS, Stata 15 

for E-Risk and the Dunedin Study, and R (versions 3.4.3 and newer) for NTR, AddHealth, 

and the Texas Twin Project. In cohorts containing related individuals, non-independence of 

observations from relatives was accounted for using generalized estimation equations (GEE) 

or by clustering of standard errors at the family level. We used a random effects meta-

analysis to aggregate the results across the cohorts. This analysis allows a cohort-specific 

random intercept. Individual cohort results are in Supplementary Table 11 and meta-

analytic estimates in Supplementary Table 12.

Biological annotation

Enrichment of tissue-specific gene expression. We used gene-sets defined in Finucane et al.
104 to test for the enrichment of genes specifically expressed in one of 53 GTEx tissues70, or 

152 tissues captured by the Franke et al. aggregation of RNA-seq studies71,72. This analysis 

seeks to confirm the role of brain tissues in mediating Cog and NonCog influences on 
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educational attainment. The exact analysis pipeline used is available online (https://

github.com/bulik/ldsc/wiki/Cell-type-specific-analyses).

Enrichment of cell-type specific expression. We leveraged single cell RNA sequencing 

(scRNA-seq) data of cells sampled from the mouse nervous system75 to identify cell-type 

specific RNA expression. Zeisel et al.75 sequenced cells obtained from 19 regions in the 

contiguous anatomical regions in the peripheral sensory, enteric, and sympathetic nervous 

system. After initial QC, they retained 492,949 cells, which were sampled down to 160,796 

high quality cells. These cells were further grouped into clusters representing 265 broad cell-

types. We analyzed the dataset published by Zeisel et al. containing mean transcript counts 

for all genes with count >1 for each of the 265 clusters (Supplementary Table 17). We 

restricted analysis to genes with expression levels above the 25th percentile. For each gene in 

each cell-type, we computed the cell-type specific proportion of reads for the gene 

(normalizing the expression within cell-type). We then computed the proportion of 

proportions over the 265 cell-types (computing the specificity of the gene to a specific cell-

type). We ranked the 12,119 genes retained in terms of specificity to each cell-type and then 

retained the 10% of genes most specific to a cell-type as the “cell-type specific” gene-set. 

We then tested whether any of the 265 cell-type specific gene-sets were enriched in the Cog 
or NonCog GWAS. This analysis sought to identify specific cell-types and specific regions 

in the brain involved in the etiology of Cog and NonCog. We further computed the 

difference in enrichment for Cog and NonCog to test whether any cell types were specific to 

either trait. For these analyses, we leveraged two widely used enrichment analysis tools: 

MAGMA73 and stratified LD score regression74 with the European reference panel from 

1000 Genomes Project Phase 3 as SNP location and LD structure reference, Gencode release 

19 as gene location reference and the human-mouse homology reference from MGI (http://

www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt).

MAGMA. We used MAGMA (v1.07b73), a program for gene-set analysis based on GWAS 

summary statistics. We computed gene-level association statistics using a window of 10 kb 

around the gene for both Cog and NonCog. We then used MAGMA to run a competitive 

gene-set analysis, using the gene P-values and gene correlation matrix (reflecting LD 

structure) produced in the gene-level analysis. The competitive gene-set analysis tests 

whether the genes within the cell-type-specific gene-set described above are more strongly 

associated with Cog/NonCog than other genes.

Stratified LD-score regression. We used LD-score regression to compute LD scores for the 

SNPs in each of our “cell-type specific” gene-sets. Parallel to MAGMA analysis, we added a 

10-kb window around each gene. We ran partitioned LD-score regression to compute the 

contribution of each gene-set to the heritability of Cog and NonCog. To guard against 

inflation, we used LD score best practices, and included the LD score baseline model 

(baselineLD.v2.2) in the analysis. We judged the statistical significance of the enrichment 

based on the P-value associated with the tau coefficient.

Difference in enrichment between Cog and NonCog. To compute differences in enrichment, 

we compute a standardized difference between the per-annotation enrichment for Cog and 

NonCog as:
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Zdiff = eCog − eNonCog
sqrt seCog

2 + seNonCog
2 − 2 ∗ CTI ∗ seCog

∗ seNonCog
(Equation 1)

where e Cog is the enrichment of a particular gene-set for Cog, eNonCog is the enrichment for 

the same gene-set for NonCog, seCog is the standard error of the enrichment for Cog, 

seNonCog is the standard error of the enrichment for NonCog, and CTI is the LD score cross-

trait intercept, a metric of dependence between the GWASs of Cog and NonCog.

We investigated the significance of the difference between Cog and NonCog tau coefficient 

with Equation 1 as well as by computing jackknifed standard errors. From the jackknifed 

estimates of the coefficient output by the LDSC software, we computed the jackknifed 

estimates and standard errors of the difference between Cog and NonCog tau coefficients, as 

well as a z-statistic for each annotation.

Enrichment of gene expression in the brain. We performed a transcriptome-wide association 

study (TWAS) using FUSION76 (http://gusevlab.org/projects/fusion/). We used pre-

computed brain-gene-expression weights available on the FUSION website, generated from 

452 human individuals as part of the CommonMind Consortium. We then superimposed the 

bivariate distribution of the results of the TWAS for Cog and NonCog over the bivariate 

distribution expected given the sample overlap between educational attainment and cognitive 

performance (the GWAS on which our GWAS of Cog and NonCog are based, see 

Supplementary Note).

Brain modalities

Brain volumes. We conducted genetic correlation analysis of brain volumes using GWAS 

results published by Zhao et al.79, who performed GWAS of total brain volume and 100 

regional brain volumes, including 99 gray matter volumes and total white matter volume 

(Supplementary Table 21). Analyses included covariate adjustment for sex, age, their 

square interaction and 20 principle components. Analyses of regional brain volumes 

additionally included covariate adjustment for total brain volume. GWAS summary statistics 

for these 101 brain volumes were obtained from https://med.sites.unc.edu/bigs2/data/gwas-

summary-statistics/. Summary statistics were filtered and pre-processed using Genomic-

SEM’s “munge” function, retaining all HapMap3 SNPs with allele frequency > 0.01 outside 

the MHC region. We used Genomic-SEM to compute the genetic correlations between Cog, 
NonCog and brain volumes. Analyses of regional volumes controlled for total brain volume. 

For each volume, we tested whether correlations differed between Cog and NonCog. 

Specifically, we used a chi-squared test to evaluate the null hypothesis that the two genetic 

correlations were equal. We used FDR adjustment to correct for multiple testing. The FDR 

adjustment is applied to the results for all gray matter volumes for Cog and NonCog 
separately.

White matter structures. We conducted genetic-correlation analysis of white-matter 

structures using GWAS results published by Zhao et al.80, who performed GWAS of 

diffusion tensor imaging (DTI) measures of the integrity of white-matter tracts. DTI 
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parameters were derived for fractional anisotropy (FA), mean diffusivity (MD), axial 

diffusivity (AD), radial diffusivity (RD), and mode of anisotropy (MO). Each of these 

parameters was measured for 22 white matter tracts of interests (Supplementary Table 22), 

resulting in 110 GWAS. GWAS summary statistics for these 110 GWAS were obtained from 

https://med.sites.unc.edu/bigs2/data/gwas-summary-statistics/. Summary statistics were 

filtered and processed using Genomic-SEM’s “munge” function, retaining all HapMap3 

SNPs with allele frequency > 0.01 outside the MHC region. For each white matter structure, 

we tested whether genetic correlations differed between Cog and NonCog. Specifically, we 

used a chi-squared test to evaluate the null hypothesis that the two genetic correlations were 

equal. We used FDR adjustment to correct for multiple testing. As these different diffusion 

parameters are statistically and logically interdependent, having been derived from the same 

tensor, FDR adjustment was applied to the results for each type of white matter diffusion 

parameter separately. FDR correction was applied separately for Cog and NonCog.

Additional Resources—A FAQ on why, how and what we studied is available here: 

https://medium.com/@kph3k/investigating-the-genetic-architecture-of-non-cognitive-skills-

using-gwas-by-subtraction-b8743773ce44

A tutorial on how to perform GWAS-by-subtraction: http://rpubs.com/MichelNivard/565885

Additional resources to Genomic SEM software:

- A wiki including numerous tutorials: https://github.com/MichelNivard/

GenomicSEM/wiki

- A Genomic SEM user group for specific questions relating to models and 

software: https://groups.google.com/g/genomic-sem-users

- A venue to report technical issues: https://github.com/MichelNivard/

GenomicSEM/issues

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Code availability

Code used to run the analyses is available at: https://github.com/PerlineDemange/non-

cognitive

A tutorial on how to perform GWAS-by-subtraction: http://rpubs.com/MichelNivard/565885

All additional software used to perform these analyses are available online.

Data availability

GWAS summary data for NonCog and Cog (excluding 23andMe) have been deposited in the 

GWAS Catalog with accession numbers GCST90011874 and GCST90011875, respectively 

(NonCog GWAS: ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/

GCST90011874, Cog GWAS: ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/

GCST90011875).

For 23andMe dataset access, see https://research.23andme.com/dataset-access/.

Part of the National Longitudinal Study of Adolescent to Adult Health (Add Health) data is 

publicly available and can be downloaded at the following link: https://data.cpc.unc.edu/
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projects/2/view#public_li. For restricted access data, details of the data sharing agreement 

and data access requirements can be found at the following link: https://data.cpc.unc.edu/

projects/2/view

The Dunedin study datasets reported in the current article are not publicly available due to 

lack of informed consent and ethical approval, but are available on request by qualified 

scientists. Requests require a concept paper describing the purpose of data access, ethical 

approval at the applicant’s university, and provision for secure data access. We offer secure 

access on the Duke, Otago and King's College campuses. All data analysis scripts and 

results files are available for review (https://moffittcaspi.trinity.duke.edu/research-topics/

dunedin).

The E-Risk Longitudinal Twin Study datasets reported in the current article are not publicly 

available due to lack of informed consent and ethical approval, but are available on request 

by qualified scientists. Requests require a concept paper describing the purpose of data 

access, ethical approval at the applicant’s university, and provision for secure data access. 

We offer secure access on the Duke and King's College campuses. All data analysis scripts 

and results files are available for review (https://moffittcaspi.trinity.duke.edu/research-topics/

erisk).

Netherlands Twin Register data may be accessed, upon approval of the data access 

committee (email: ntr.datamanagement.fgb@vu.nl).

Researchers will be able to obtain Texas Twins data through managed access. Requests for 

managed access should be sent to Dr. Elliot Tucker-Drob (tuckerdrob@utexas.edu) and Dr. 

Paige Harden (harden@utexas.edu), joint principal investigators of the Texas Twin Project.

Wisconsin Longitudinal study data can be requested following this form: https://

www.ssc.wisc.edu/wlsresearch/data/Request_Genetic_Data_28_June_2017.pdf

References

1. Moffitt TE, et al. A gradient of childhood self-control predicts health, wealth, and public safety. Proc 
Natl Acad Sci USA. 2011; 108:2693–2698. [PubMed: 21262822] 

2. von Stumm S, Hell B, Chamorro-Premuzic T. The hungry mind: intellectual curiosity is the third 
pillar of academic performance. Perspect Psychol Sci. 2011; 6:574–588. [PubMed: 26168378] 

3. Tucker-Drob EM, Briley DA, Engelhardt LE, Mann FD, Harden KP. Genetically-mediated 
associations between measures of childhood character and academic achievement. J Pers Soc 
Psychol. 2016; 111:790–815. [PubMed: 27337136] 

4. Heckman JJ, Stixrud J, Urzua S. The effects of cognitive and noncognitive abilities on labor market 
outcomes and social behavior. J Labor Econ. 2006; 24:411–482.

5. Heckman JJ, Moon SH, Pinto R, Savelyev PA, Yavitz A. The rate of return to the HighScope Perry 
Preschool Program. J Public Econ. 2010; 94:114–128. [PubMed: 21804653] 

6. Conti G, Heckman JJ, Pinto R. The effects of two influential early childhood interventions on health 
and healthy behaviour. Econ J. 2016; 126:F28–F65.

7. Gutman LM, Schoon I. The impact of non-cognitive skills on outcomes for young people. Educ 
Endow Found. 2013; 59:2019.

8. Garcia, E. The Need to Address Noncognitive Skills in the Education Policy Agenda. 2014. https://
www.epi.org/publication/the-need-to-address-noncognitive-skills-in-the-education-policy-agenda/

Demange et al. Page 17

Nat Genet. Author manuscript; available in PMC 2021 July 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://data.cpc.unc.edu/projects/2/view#public_li
https://data.cpc.unc.edu/projects/2/view
https://data.cpc.unc.edu/projects/2/view
https://moffittcaspi.trinity.duke.edu/research-topics/dunedin
https://moffittcaspi.trinity.duke.edu/research-topics/dunedin
https://moffittcaspi.trinity.duke.edu/research-topics/erisk).
https://moffittcaspi.trinity.duke.edu/research-topics/erisk).
https://www.ssc.wisc.edu/wlsresearch/data/Request_Genetic_Data_28_June_2017.pdf
https://www.ssc.wisc.edu/wlsresearch/data/Request_Genetic_Data_28_June_2017.pdf
https://www.epi.org/publication/the-need-to-address-noncognitive-skills-in-the-education-policy-agenda/
https://www.epi.org/publication/the-need-to-address-noncognitive-skills-in-the-education-policy-agenda/


9. Kautz, T, Heckman, JJ, Diris, R, Ter Weel, B, Borghans, L. Fostering and measuring skills: 
improving cognitive and non-cognitive skills to promote lifetime successOECD Education Working 
Papers, No. 110. OECD Publishing; Paris: 2014. 

10. Heckman JJ. Skill formation and the economics of investing in disadvantaged children. LIFE 
CYCLES. 2006; 312:4.

11. Heckman JJ, Kautz T. Hard evidence on soft skills. Labour Econ. 2012; 19:451–464. [PubMed: 
23559694] 

12. Rimfeld K, Kovas Y, Dale PS, Plomin R. True grit and genetics: Predicting academic achievement 
from personality. J Pers Soc Psychol. 2016; 111:780–789. [PubMed: 26867111] 

13. Richardson M, Abraham C, Bond R. Psychological correlates of university students’ academic 
performance: a systematic review and meta-analysis. Psychol Bull. 2012; 138:353–387. [PubMed: 
22352812] 

14. Smithers LG, et al. A systematic review and meta-analysis of effects of early life non-cognitive 
skills on academic, psychosocial, cognitive and health outcomes. Nat Hum Behav. 2018; 2:867–
880. [PubMed: 30525112] 

15. Kovas Y, et al. Why children differ in motivation to learn: Insights from over 13,000 twins from 6 
countries. Personal Individ Differ. 2015; 80:51–63.

16. Loehlin, JC. Genes and environment in personality development. Sage Publications; 1992. 

17. Tucker-Drob EM, Harden KP. Learning motivation mediates gene-by-socioeconomic status 
interaction on mathematics achievement in early childhood. Learn Individ Differ. 2012; 22:37–45. 
[PubMed: 22611326] 

18. Malanchini M, Engelhardt LE, Grotzinger AD, Harden KP, Tucker-Drob EM. “Same but 
different”: associations between multiple aspects of self-regulation, cognition, and academic 
abilities. J Pers Soc Psychol. 2019; 117:1164–1188. [PubMed: 30550329] 

19. Morris, TT; Smith, GD; van Den Berg, G; Davies, NM. Investigating the longitudinal consistency 
and genetic architecture of non-cognitive skills, and their relation to educational attainment. 2018. 

20. Liu JZ, Erlich Y, Pickrell JK. Case–control association mapping by proxy using family history of 
disease. Nat Genet. 2017; 49:325–331. [PubMed: 28092683] 

21. Bowles, S, Gintis, H. Schooling In Capitalist America: Educational Reform And The 
Contradictions Of Economic Life. Basic Books; 1977. 

22. Heckman JJ, Rubinstein Y. The importance of noncognitive skills: lessons from the GED Testing 
Program. Am Econ Rev. 2001; 91:145–149.

23. Ackerman PL, Kanfer R, Goff M. Cognitive and noncognitive determinants and consequences of 
complex skill acquisition. J Exp Psychol Appl. 1995; 1:270–304.

24. Grotzinger AD, et al. Genomic structural equation modelling provides insights into the multivariate 
genetic architecture of complex traits. Nat Hum Behav. 2019; 3:513–525. [PubMed: 30962613] 

25. Lee JJ, et al. Gene discovery and polygenic prediction from a genome-wide association study of 
educational attainment in 1.1 million individuals. Nat Genet. 2018; 50:1112–1121. [PubMed: 
30038396] 

26. Belsky DW, Harden KP. Phenotypic annotation: using polygenic scores to translate discoveries 
from genome-wide association studies from the top down. Curr Dir Psychol Sci. 2019; 28:82–90.

27. Bulik-Sullivan BK, et al. LD Score regression distinguishes confounding from polygenicity in 
genome-wide association studies. Nat Genet. 2015; 47:291–295. [PubMed: 25642630] 

28. Ritchie SJ, Tucker-Drob EM. How much does education improve intelligence? A meta-analysis. 
Psychol Sci. 2018; 29:1358–1369. [PubMed: 29911926] 

29. Ligthart L, et al. The Netherlands Twin Register: longitudinal research based on twin and twin-
family designs. Twin Res Hum Genet. 2019; 22:623–636. [PubMed: 31666148] 

30. Harris KM, et al. Cohort profile: The National Longitudinal Study of Adolescent to Adult Health 
(Add Health). Int J Epidemiol. 2019; 48:1415–1415k. [PubMed: 31257425] 

31. Poulton R, Moffitt TE, Silva PA. The Dunedin Multidisciplinary Health and Development Study: 
overview of the first 40 years, with an eye to the future. Soc Psychiatry Psychiatr Epidemiol. 2015; 
50:679–693. [PubMed: 25835958] 

Demange et al. Page 18

Nat Genet. Author manuscript; available in PMC 2021 July 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



32. Moffitt TE, E-risk Team. Teen-aged mothers in contemporary Britain. J Child Psychol Psychiatry. 
2002; 43:727–742. [PubMed: 12236608] 

33. Herd P, Carr D, Roan C. Cohort profile: Wisconsin longitudinal study (WLS). Int J Epidemiol. 
2014; 43:34–41. [PubMed: 24585852] 

34. Harden KP, Tucker-Drob EM, Tackett JL. The Texas Twin Project. Twin Res Hum Genet. 2013; 
16:385–390. [PubMed: 23111007] 

35. Benyamin B, et al. Childhood intelligence is heritable, highly polygenic and associated with 
FNBP1L. Mol Psychiatry. 2014; 19:253–258. [PubMed: 23358156] 

36. Chetty R, et al. The association between income and life expectancy in the United States, 
2001-2014. JAMA. 2016; 315:1750–1766. [PubMed: 27063997] 

37. Case A, Deaton A. Mortality and morbidity in the 21st century. Brook Pap Econ Act. 2017; 
2017:397–476.

38. Hill WD, et al. Molecular genetic contributions to social deprivation and household income in UK 
Biobank. Curr Biol. 2016; 26:3083–3089. [PubMed: 27818178] 

39. Timmers PR, et al. Genomics of 1 million parent lifespans implicates novel pathways and common 
diseases and distinguishes survival chances. eLife. 2019; 8:e39856. [PubMed: 30642433] 

40. Almlund, M, Duckworth, AL, Heckman, J, Kautz, T. Personality psychology and 
economicsHandbook of the Economics of Education. Vol. 4. Elsevier; 2011. 1–181. 

41. Borghans L, Duckworth AL, Heckman JJ, terWeel B. The economics and psychology of 
personality traits. J Hum Resour. 2008; 43:972–1059.

42. Rabin M. A perspective on psychology and economics. Eur Econ Rev. 2002; 29

43. Becker A, Deckers T, Dohmen T, Falk A, Kosse F. The relationship between economic preferences 
and psychological personality measures. Annu Rev Econ. 2012; 4:453–478.

44. Linnér RK, et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 
million individuals identify hundreds of loci and shared genetic influences. Nat Genet. 2019; 
51:245–257. [PubMed: 30643258] 

45. Sanchez-Roige S, et al. Genome-wide association study of delay discounting in 23,217 adult 
research participants of European ancestry. Nat Neurosci. 2018; 21:16–18. [PubMed: 29230059] 

46. Yengo L, et al. Meta-analysis of genome-wide association studies for height and body mass index 
in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018; 27:3641–3649. [PubMed: 
30124842] 

47. TobaccoConsortium, Genetics. Genome-wide meta-analyses identify multiple loci associated with 
smoking behavior. Nat Genet. 2010; 42:441–447. [PubMed: 20418890] 

48. Walters RK, et al. Transancestral GWAS of alcohol dependence reveals common genetic 
underpinnings with psychiatric disorders. Nat Neurosci. 2018; 21:1656–1669. [PubMed: 
30482948] 

49. Schumann G, et al. KLB is associated with alcohol drinking, and its gene product β-Klotho is 
necessary for FGF21 regulation of alcohol preference. Proc Natl Acad Sci USA. 2016; 
113:14372–14377. [PubMed: 27911795] 

50. Pasman JA, et al. GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with 
psychiatric traits, and a causal effect of schizophrenia liability. Nat Neurosci. 2018; 21:1161–1170. 
[PubMed: 30150663] 

51. Linnér RK, et al. Multivariate genomic analysis of 1.5 million people identifies genes related to 
addiction, antisocial behavior, and health. bioRxiv. 2020; doi: 10.1101/2020.10.16.342501

52. Barban N, et al. Genome-wide analysis identifies 12 loci influencing human reproductive behavior. 
Nat Genet. 2016; 48:1462–1472. [PubMed: 27798627] 

53. Lo M-T, et al. Genome-wide analyses for personality traits identify six genomic loci and show 
correlations with psychiatric disorders. Nat Genet. 2017; 49:152–156. [PubMed: 27918536] 

54. John OP, Naumann LP, Soto CJ. Paradigm shift to the integrative Big Five Trait taxonomy. Handb 
Personal Theory Res. 2008; :114–158. DOI: 10.1016/S0191-8869(97)81000-8

55. de Moor MHM, et al. Meta-analysis of genome-wide association studies for personality. Mol 
Psychiatry. 2012; 17:337–349. [PubMed: 21173776] 

Demange et al. Page 19

Nat Genet. Author manuscript; available in PMC 2021 July 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



56. Caspi A, Roberts BW, Shiner RL. Personality development: stability and change. Annu Rev 
Psychol. 2005; 56:453–484. [PubMed: 15709943] 

57. Kessler RC, et al. Social consequences of psychiatric disorders, I: educational attainment. Am J 
Psychiatry. 1995; 152:1026–1032. [PubMed: 7793438] 

58. Breslau J, Lane M, Sampson N, Kessler RC. Mental disorders and subsequent educational 
attainment in a US national sample. J Psychiatr Res. 2008; 42:708–716. [PubMed: 18331741] 

59. Power RA, et al. Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nat 
Neurosci. 2015; 18:953–955. [PubMed: 26053403] 

60. Bansal V, et al. Genome-wide association study results for educational attainment aid in identifying 
genetic heterogeneity of schizophrenia. Nat Commun. 2018; 9

61. Wray NR, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic 
architecture of major depression. Nat Genet. 2018; 50:668–681. [PubMed: 29700475] 

62. Ruderfer DM, et al. Genomic dissection of bipolar disorder and schizophrenia, including 28 
subphenotypes. Cell. 2018; 173:1705–1715. [PubMed: 29906448] 

63. Jansen PR, et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk 
loci and functional pathways. Nat Genet. 2019; 51:394–403. [PubMed: 30804565] 

64. Duncan L, et al. Significant locus and metabolic genetic correlations revealed in genome-wide 
association study of anorexia nervosa. Am J Psychiatry. 2017; 174:850–858. [PubMed: 28494655] 

65. Grove J, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat 
Genet. 2019; 51:431–444. [PubMed: 30804558] 

66. Arnold PD, et al. Revealing the complex genetic architecture of obsessive–compulsive disorder 
using meta-analysis. Mol Psychiatry. 2018; 23:1181–1188. [PubMed: 28761083] 

67. Ripke S, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014; 
511:421–427. [PubMed: 25056061] 

68. Bulik-Sullivan B, et al. An atlas of genetic correlations across human diseases and traits. Nat 
Genet. 2015; 47:1236–1241. [PubMed: 26414676] 

69. Nieuwboer HA, Pool R, Dolan CV, Boomsma DI, Nivard MG. GWIS: genome-wide inferred 
statistics for functions of multiple phenotypes. Am J Hum Genet. 2016; 99:917–927. [PubMed: 
27616482] 

70. The GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene 
regulation in humans. Science. 2015; 348:648–660. [PubMed: 25954001] 

71. Pers TH, et al. Biological interpretation of genome-wide association studies using predicted gene 
functions. Nat Commun. 2015; 6

72. Fehrmann RSN, et al. Gene expression analysis identifies global gene dosage sensitivity in cancer. 
Nat Genet. 2015; 47:115–125. [PubMed: 25581432] 

73. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of 
GWAS data. PLoS Comput Biol. 2015; 11:1–19.

74. Finucane HK, et al. Partitioning heritability by functional annotation using genome-wide 
association summary statistics. Nat Genet. 2015; 47:1228–1235. [PubMed: 26414678] 

75. Zeisel A, et al. Molecular architecture of the mouse nervous system. Cell. 2018; 174:999–1014. 
[PubMed: 30096314] 

76. Gusev A, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat 
Genet. 2016; 48:245–252. [PubMed: 26854917] 

77. Nave G, Jung WH, Karlsson Linnér R, Kable JW, Koellinger PD. Are bigger brains smarter? 
Evidence from a large-scale preregistered study. Psychol Sci. 2019; 30:43–54. [PubMed: 
30499747] 

78. Elliott ML, et al. A polygenic score for higher educational attainment is associated with larger 
brains. Cereb Cortex. 2019; 29:3496–3504. [PubMed: 30215680] 

79. Zhao B, et al. Genome-wide association analysis of 19,629 individuals identifies variants 
influencing regional brain volumes and refines their genetic co-architecture with cognitive and 
mental health traits. Nat Genet. 2019; 51:1637–1644. [PubMed: 31676860] 

80. Zhao B, et al. Large-scale GWAS reveals genetic architecture of brain white matter microstructure 
and genetic overlap with cognitive and mental health traits (n=17,706). Mol Psychiatry. 

Demange et al. Page 20

Nat Genet. Author manuscript; available in PMC 2021 July 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



81. Haushofer J, Fehr E. On the psychology of poverty. Science. 2014; 344:862–867. [PubMed: 
24855262] 

82. Briley DA, Domiteaux M, Tucker-Drob EM. Achievement-relevant personality: relations with the 
Big Five and validation of an efficient instrument. Learn Individ Differ. 2014; 32:26–39. [PubMed: 
24839374] 

83. Smoller JW, et al. Psychiatric genetics and the structure of psychopathology. Mol Psychiatry. 2019; 
24:409–420. [PubMed: 29317742] 

84. Plomin R, Haworth CMA, Davis OSP. Common disorders are quantitative traits. Nat Rev Genet. 
2009; 10:872–878. [PubMed: 19859063] 

85. Meehl PE. Schizotaxia, schizotypy, schizophrenia. Am Psychol. 1962; 17:827–838.

86. von Stumm S, Ackerman PL. Investment and intellect: a review and meta-analysis. Psychol Bull. 
2013; 139:841–869. [PubMed: 23231531] 

87. Tucker-Drob, EM, Harden, KP. A behavioral genetic perspective on non-cognitive factors and 
academic achievementGenetics, Ethics and Education. Grigorenko, EL, Tan, M, Latham, SR, 
Bouregy, S, editors. Cambridge University Press; 2017. 134–158. 

88. Tucker-Drob, EM. Motivational factors as mechanisms of gene-environment transactions in 
cognitive development and academic achievementHandbook of competence and motivation: 
Theory and application. 2nd. The Guilford Press; 2017. 471–486. 

89. Tucker-Drob EM, Harden KP. Intellectual interest mediates gene × socioeconomic status 
interaction on adolescent academic achievement: intellectual interest and G×E. Child Dev. 2012; 
83:743–757. [PubMed: 22288554] 

90. Malanchini M, et al. Reading self-perceived ability, enjoyment and achievement: A genetically 
informative study of their reciprocal links over time. Dev Psychol. 2017; 53:698–712. [PubMed: 
28333527] 

91. Westfall J, Yarkoni T. Statistically controlling for confounding constructs is harder than you think. 
PLoS One. 2016; 11:e0152719. [PubMed: 27031707] 

92. de la Fuente J, Davies G, Grotzinger AD, Tucker-Drob EM, Deary IJ. Genetic “General 
Intelligence,” Objectively Determined and Measured. 2019; doi: 10.1101/766600

93. Tucker-Drob EM, Briley DA. Continuity of genetic and environmental influences on cognition 
across the life span: a meta-analysis of longitudinal twin and adoption studies. Psychol Bull. 2014; 
140:949–979. [PubMed: 24611582] 

94. Tropf FC, et al. Hidden heritability due to heterogeneity across seven populations. Nat Hum Behav. 
2017; 1:757–765. [PubMed: 29051922] 

95. Duncan L, et al. Analysis of polygenic risk score usage and performance in diverse human 
populations. Nat Commun. 2019; 10

96. Martin AR, et al. Human demographic history impacts genetic risk prediction across diverse 
populations. Am J Hum Genet. 2017; 100:635–649. [PubMed: 28366442] 

97. Klein A, Tourville J. 101 labeled brain images and a consistent human cortical labeling protocol. 
Front Neurosci. 2012; 6:171. [PubMed: 23227001] 

98. Klein A. Mindboggle-101 manually labeled individual brains. 2016; doi: 10.7910/DVN/HMQKCK

99. Gorgolewski KJ, et al. NeuroVault.org: a web-based repository for collecting and sharing 
unthresholded statistical maps of the human brain. Front Neuroinformatics. 2015; 9:8.

100. Willer CJ, Li Y, Abecasis GR. METAL: Fast and efficient meta-analysis of genomewide 
association scans. Bioinformatics. 2010; 26:2190–2191. [PubMed: 20616382] 

101. Willemsen G, et al. The Adult Netherlands Twin Register: twenty-five years of survey and 
biological data collection. Twin Res Hum Genet. 2013; 16:271–281. [PubMed: 23298648] 

102. Highland, HM; Avery, CL; Duan, Q; Li, Y; Harris, KM. Quality control analysis of Add Health 
GWAS data. 2018. https://www.cpc.unc.edu/projects/addhealth/documentation/guides/
AH_GWAS_QC.pdf

103. Vilhjálmsson BJ, et al. Modeling linkage disequilibrium increases accuracy of polygenic risk 
scores. Am J Hum Genet. 2015; 97:576–592. [PubMed: 26430803] 

104. Finucane HK, et al. Heritability enrichment of specifically expressed genes identifies disease-
relevant tissues and cell types. Nat Genet. 2018; 50:621–629. [PubMed: 29632380] 

Demange et al. Page 21

Nat Genet. Author manuscript; available in PMC 2021 July 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://www.cpc.unc.edu/projects/addhealth/documentation/guides/AH_GWAS_QC.pdf
https://www.cpc.unc.edu/projects/addhealth/documentation/guides/AH_GWAS_QC.pdf


Figure 1. GWAS-by-subtraction Genomic-SEM model.
Cholesky model as fitted in Genomic SEM, with path estimates for a single SNP included as 

illustration. SNP, cognitive performance (CP), and educational attainment (EA) are observed 

variables based on GWAS summary statistics. The genetic covariance between CP and EA is 

estimated based on GWAS summary statistics for CP and EA. The model is fitted to a 3 x 3 

observed variance-covariance matrix (i.e. SNP, CP, EA). Cog and NonCog are latent 

(unobserved) variables. The covariances between CP and EA and between Cog and NonCog 
are fixed to 0. The variance of the SNP is fixed to the value of 2pq (p = reference allele 

frequency, q = alternative allele frequency, based on 1000 Genomes phase 3). The residual 

variances of CP and EA are fixed to 0, so that all variance is explained by the latent factors. 

The variances of the latent factors are fixed to 1. The observed variables CP and EA were 

regressed on the latent variables resulting in the estimates for the path loadings: λCog-CP = 

0.4465; λCog-EA = 0.2237; λNonCog-EA = 0.2565. The latent variables were then 

regressed on each SNP that met QC criteria.
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Figure 2. Manhattan plot of SNP associations with NonCog.
Plot of the -log10(P-value) associated with the Wald test (two-sided) of βNonCog for all 

SNPs, ordered by chromosome and base position. Purple triangles indicate genome-wide 

significant (P < 5 × 10-8) and independent (within a 250-kb window and r 2 < 0.1) 

associations. The red dashed line marks the threshold for genome-wide significance (P = 5 × 

10−8), and the black dashed line the threshold for nominal significance (P = 1 × 10−5).
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Figure 3. Polygenic prediction and genetic correlations with IQ and educational achievement.
a, Genetic correlations of NonCog and Cog with educational attainment, highest math class 

taken, self-reported math ability, and childhood IQ. The dots represent genetic correlations 

estimated using Genomic SEM. Correlations with NonCog are in orange, and with Cog in 

blue. Error bars represent 95% CIs. Exact estimates and P-values are reported in 

Supplementary Table 14. For analysis of genetic correlations with educational attainment, 

we re-ran the Genomic-SEM model to compute NonCog and Cog using summary statistics 

that omitted the 23andMe sample from the educational attainment GWAS. We then used the 

23andMe sample to run the GWAS of educational attainment. Thus, there is no sample 

overlap in this analysis. b, Effect-size distributions from meta-analysis of NonCog and Cog 
polygenic score associations with cognitive test performance and educational attainment. 

Outcomes were regressed simultaneously on NonCog and Cog polygenic scores. Effect-

sizes entered into the meta-analysis were standardized regression coefficients interpretable 

as Pearson r. Exact estimates and P-values are reported in Supplementary Table 12. 

Samples and measures are detailed in Supplementary Tables 9 and 10. Traits were 

measured in different samples: educational attainment was measured in the AddHealth, 

Dunedin, E-Risk, NTR, and WLS samples (n = 24,056); reading achievement and 

mathematics achievement were measured in the AddHealth, NTR, and Texas-Twin samples 

(n = 9,274 for reading achievement; n = 10,747 for mathematics achievement); cognitive test 

performance (IQ) was measured in the Dunedin, E-Risk, NTR, Texas Twins, and WLS 

samples (n = 11,351). The densities were obtained by randomly generating normal 
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distributions where the meta-analytic estimate was included as the mean and the meta-

analytic standard error as the standard deviation.
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Figure 4. Estimates of genetic correlations with NonCog, Cog, and educational attainment.
Genetic correlations of NonCog, Cog, and educational attainment with selected phenotypes. 

The dots represent genetic correlations estimated in Genomic SEM. Correlations with 

NonCog are in orange, with Cog in blue, and with educational attainment in gray. Error bars 

represent 95% CIs. Red stars indicate a statistically significant (FDR corrected P < 0.05, 

two-tailed test) difference in the magnitude of the correlation with NonCog versus Cog. 

Exact P-values for all associations are reported in Supplementary Table 14. The FDR 

correction was applied based on all genetic correlations tested (including in Supplementary 
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Fig. 11). The difference test is based on a chi-squared test associated with a comparison 

between a model constraining these two correlations to be identical versus a model where 

the correlations are freely estimated. Source GWAS are listed in Supplementary Table 13.
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Figure 5. Genetic correlations with regional gray matter volumes and white matter tracts
a, Cortical patterning of FDR-corrected significant genetic correlations with regional gray 

matter volumes for Cog versus NonCog, after correction for total brain volume. Regions of 

interest are plotted according to the Desikan-Killiany-Tourville atlas97, shown on a single 

manually-edited surface (http://mindboggle.info)98. Exact estimates and P-values are 

reported in Supplementary Table 21. Cog showed significant associations with gray matter 

volume for the bilateral fusiform, insula and posterior cingulate, the left superior temporal 

and left pericalcarine and right superior parietal volumes. NonCog was not associated with 

any of the regional brain volumes. b, White matter tract patterning of FDR-corrected 

significant genetic correlations with regional mode of anisotropy (MO) for Cog versus 

NonCog. White matter tract probability maps are plotted according to the Johns Hopkins 

University DTI atlas (https://identifiers.org/neurovault.image:1401)99. Exact estimates and 

P-values are reported in Supplementary Table 21. Cog was not associated with regional 

MO. NonCog showed significant associations with MO in the corticospinal tract, the 

retrolenticular limb of the internal capsule and the splenium of the corpus callosum.
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