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Abstract
A variety of Haseman-Elston type regression procedures
were used to perform a genome scan across five chromo-
somes, using replicates 1–5 of the Genetic Analysis Work-
shop 13 simulated data. The traits of interest were
variables corresponding to 'baseline' and 'slope' effects
derived from the fasting glucose phenotypes. Performance
in terms of detecting the locations of known trait loci was
poor for all methods, even when all five replicates were
combined to produce a large data set (9230 sib pairs). All
methods performed well, however, when applied to new
simulated data in which the true genetic effects were
allowed to explain a greater proportion of the overall
variance.

Methods
Haseman-Elston sib-pair regression procedures were used
to perform genetic linkage analysis on chromosomes 1, 2,
3, 9, and 21 in replicates 1–5 of the Genetic Analysis
Workshop (GAW13) simulated data. All of these chromo-
somes, except chromosome 2, were known from the
'answers' to contain trait loci that contributed in some
way to fasting glucose. This subset of chromosomes ana-
lyzed did not contain all loci involved in fasting glucose
levels, but did include 8 out of the 12 loci influencing
baseline effects (including the two loci with the largest
baseline effects, b14 and b15) and two out of the four loci
influencing slope effects (s4 and s6). Independent fami-
lies were selected for analysis by choosing the largest

nuclear family from each pedigree. Multipoint identity-
by-descent (IBD) sharing probabilities for each sib pair
within a family were calculated from the complete geno-
type data using the program GENEHUNTER. Trait values
were calculated from the complete phenotype data for
each sib as described below. Four different regression pro-
cedures were used to examine the relationship between
the trait values and IBD sharing: the original Haseman-
Elston method [1] in which the sib-pair trait difference
squared is regressed on the mean IBD sharing, the Hase-
man and Elston revisited method [2] in which the mean-
corrected sib-pair trait cross-product is regressed on the
mean IBD sharing, the unified Haseman-Elston method
[3] in which the test statistic is derived using appropriately
weighted contributions from the sib-pair trait difference
squared and the mean-corrected sib-pair trait sum
squared regressions respectively, and an IBD regression
method [4] in which IBD measures are regressed against
trait values as opposed to the other way around. This has
the advantage of being particularly appropriate when
applied to sib pairs that have been selected according to
their trait values [5]. For this last method, the IBD sharing
parameter p is modelled as a linear function of the sib-pair
trait difference squared, sibs are assumed to share 0, 1, or
2 alleles IBD with probability (1 - p)2, 2p(1 - p), p2 and an
appropriate likelihood is calculated [4]. All methods
made use of all possible sib pairs in a sibship and cor-
rected for the resulting non-independence of pairs within
a sibship by use of Wald tests with robust information-
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sandwich estimators of the variances [6,7] as opposed to
likelihood ratio tests. These robust information-sandwich
tests are available as a standard option when carrying out
regression analysis in the statistical software package
STATA [8].

The trait measures α and γ used in the regression proce-
dures were derived by fitting the model

yit = αi+ βT xit + γi (ait - 20)  (1)

using the statistical software package STATA [8], where yit
is the fasting glucose value for person i at examination
time t, xit is a vector of covariates for person i at examina-
tion time t (here chosen as log(weight), log(height), gen-
der, and the interactions gender*log(weight) and
gender*log(height)), and ait is the age of person i at exam-
ination time t. This model assumes that fasting glucose is
determined by a baseline value αi specific to each person
at age 20, effects due to covariates (corresponding to the
vector of coefficients β) that do not vary with time or age,
and a person-specific slope effect γi that allows fasting glu-
cose to increase or decrease linearly with age. Note that
this model does not correspond to the model that was
actually used to generate the data, which in fact takes the
more complicated form

Although this more complicated model (2) could, in prin-
ciple, be fitted, in real life one would be unlikely to pro-
pose such a model without prior knowledge of the
'answers' or some other belief concerning the underlying
biological process. We therefore choose to fit model (1) as
opposed to (2), since this reflects the model that would be
more likely to be assumed and hence the procedure that
would be more likely to be followed in practice.

Results and Discussion
Initially the analyses were performed for each replicate
separately, but this did not succeed in localizing any of the
known genetic effects to their correct locations. The five
replicates were therefore pooled and analyzed together to
see if the larger ensuing sample size (9230 sib pairs)
would help in the detection of the trait loci. Figure 1
shows the results for the baseline (α) and slope (γ meas-
ures using the unified Haseman-Elston method [3]: simi-
lar results were produced by the other methods (data not
shown). Even with such a large sample size, there is little
evidence for or localization of any of the known trait loci:
the results on chromosomes 1, 3, 9, and 21 are essentially
indistinguishable from those on chromosome 2 on which
it is known that no trait loci reside.

These disappointing results could be due to the relatively
small proportion of the overall variance that is accounted
for by each trait locus, and/or to the fact that our pheno-
type measures α and γ are very poor measures of the true
baseline and slope effects due to the difference between
the generating model (equation (2)) and that assumed
(equation (1)) when deriving α and γ. To assess the per-
formance of our procedure in a situation where the true
generating model does in fact take the form of equation
(1), we used the GAW13 simulated data provided as the
basis of a new simulation. We simulated data in which the
genetic contribution to baseline phenotype was deter-
mined solely by genotype at marker locus 2 on chromo-
some 21: if an individual had any copies of alleles 1–3 at
this locus, the mean baseline phenotype was set to 5, oth-
erwise it was set to 3. Similarly, the genetic contribution to
slope phenotype was determined solely by genotype at
marker locus 5 on chromosome 21: any copies of alleles
1–3 at this locus caused the slope value to have mean
0.002, otherwise mean 0.001. The final simulated glucose
phenotype for individual i at time t was determined as

glucose = baseline + ε1 + weight/150 + (slope + ε2)(age -
20) + ε3,

where at each i and t, ε1, ε2 and ε3, were sampled from nor-
mal distributions with mean 0 and standard deviations
0.4, 0.0001, and 0.0003, respectively. These data were
analysed in the same way as the original data, and the
results using replicate 1 only (1899 sib pairs) are shown
in rows 1 and 2 of Figure 2. All four of the regression pro-
cedures succeeded in detecting and accurately locating
both the locus controlling the baseline effect (which
should be located at 13.84 cM) and the locus controlling
slope effect (which should be located at 43.89 cM). It is
interesting that the IBD regression method [4] gives
higher significance than the other methods when detect-
ing the baseline effect: further investigation of the proper-
ties of this method through theoretical calculations and
simulation will be required to determine the cause of this
elevated significance.

The success here could be due to the fact that the effects we
simulated were relatively extreme, or to the fact that the
generating model (equation (1)) corresponded to that
assumed in the analysis. We therefore repeated the simu-
lation using identical baseline and slope effects, but with
the final glucose phenotype generating model altered to

(i.e., taking the same form as equation (2)) with ε1, ε2,
and ε3 as described previously. The results are shown in
rows 3 and 4 of Figure 2. Again we find that the loci con-
trolling the baseline and slope effects are both accurately
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detected. It would therefore appear that our procedure
works well even when the true biological model does not
exactly correspond to that assumed in the derivation of
the trait measures α and γ. The poor performance in the
GAW13 simulated data is therefore likely to be due to the
fact that in the GAW13 data, there were very many con-
tributing genetic and environmental factors, resulting in a
much smaller relative contribution for any given locus to
the overall variation in fasting glucose. Unfortunately, for
many complex traits the true situation is likely to be closer
to the GAW13 simulation than to our simulation, indicat-
ing that often there may be very low power to detect
effects of this magnitude, even with very large sample
sizes.

Results (-log p-value) for unified Haseman-Elston analysis of derived baseline and slope phenotypesFigure 1
Results (-log p-value) for unified Haseman-Elston analysis of derived baseline and slope phenotypes.
Page 3 of 5
(page number not for citation purposes)



BMC Genetics 2003, 4 http://www.biomedcentral.com/1471-2156/4/s1/S6
Results (-log p-value) for new simulated dataFigure 2
Results (-log p-value) for new simulated data. Rows 1 and 2 correspond to data simulated under model (1) and rows 3 
and 4 to data simulated under model (2). Derived baseline and slope phenotypes were analyzed using four different regression 
methods.
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